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In this study, a robust deep learning framework is introduced for automated detection of Acute 

Lymphoblastic Leukemia (ALL) using blood smear images from the ALL-IDB dataset. With 

advanced data preprocessing techniques augmented with EfficientNet-B3 backbone, we show state-

of-the-art results. Using our proposed model, an accuracy of 99.2% and AUC-ROC of 0.998 was 

achieved, which is able to categorize normal cells from leukemic cells with great precision. For 

example, Grad-CAM gives it visual interpretations of the regions the model focuses on, to show 

which critical morphological features the model is using to make its predictions. The results help 

confirm the promise of image focused AI models for hematological diagnostics, and indicate the 

feasibility of clinical deployment. 

Keywords: Leukemia, Deep Learning, CNN. 

  

 

1. Introduction 

Acute Lymphoblastic Leukemia (ALL) is a malignant condition characterized by the 

uncontrolled proliferation of immature lymphoblasts [1]-[4]. It affects individuals across age 

groups, predominantly impacting children aged 2 to 5 years. Prompt and accurate diagnosis is 

critical, as delayed detection significantly reduces survival rates. Conventional diagnostic 

techniques rely on morphological assessments of blood smears, chromosome analysis, and 

molecular tests, which are labor-intensive and prone to variability [6]-[10]. 

The advent of deep learning has revolutionized medical imaging, enabling automated systems 

to analyze blood smear images with unparalleled accuracy. In this study, we propose an image-

centric AI framework for ALL detection, focusing exclusively on optimizing the analysis of 

blood smear images. By utilizing EfficientNet-B3 as the core architecture, we aim to establish 

a highly accurate and interpretable diagnostic tool that leverages image data for clinical 
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applications [8]. 

Based on recent advancements in Artificial Intelligence and Deep Learning, a revolutionary 

way to do medical diagnostics has arisen, where medical images can be analyzed automatically 

and with great accuracy. In the last few years, Convolutional Neural Networks (CNNs) have 

been widely adopted as powerful tools for image classification tasks, used successfully in a 

range of medical imaging areas including radiology, dermatology and pathology. CNNs can 

analyse microscopic blood smear images for hematological diseases such as ALL in order to 

detect subtle morphological differences between normal and leukemic cells rapidly and 

objectively [9] –[12]. 

A robust, image centric deep learning framework for ALL detection based on the publicly 

available ALL-IDB dataset is developed in this study. Through Grad-CAM visualizations, we 

adapt EfficientNet-B3, a state of the art CNN architecture, and introduce advanced 

preprocessing techniques to ensure excellent diagnostic accuracy while maintaining 

interpretability. This work shows the feasibility of applying AI to enhance the accuracy and 

reliability of hematological diagnostics, and paves the way for clinical integration [13] –[14]. 

In this paper, we first summarize the avalanche (literally) of machine learning approaches for 

ALL detection (Section 2) before describing relevant developments and current solutions. The 

methodological core of which is section 3 which includes our dataset, proposed model 

architecture, and experimentation metrics. In Section 4 we present our experimental results 

and analysis, and discuss them in Section 5. In the concluding section 6, we highlight our 

major findings and discuss promising directions for future research. 

 

2. Related work 

In recent years, the detection of Acute Lymphoblastic Leukemia (ALL) has been improved 

greatly mainly via both classical machine learning (ML) and modern deep learning (DL) 

methods. First methods in the field made extensive use of handcrafted features extracted from 

blood smear images, paving the way for automatic diagnostic systems. These techniques were, 

however, limited by the need to rely on expert knowledge to extract features and manual 

intervention in analysis pipeline. 

Over the last few years, with their emergence of deep learning, particularly Convolutional 

Neural Networks (CNNs), medical image analysis including the detection of ALL, has been 

revolutionized. By selecting deeper learning techniques, features can be automatically 

extracted from the raw inputs, reducing the need for domain specific expertise in feature 

design, and leading to more accurate and more scalable models than those available with 

traditional data mining approaches. CNNs have integrated medical diagnostics and therefore 

supported the accuracy and efficiency of detecting ALL from blood smear images as well as 

the interpretability of AI models used in clinical decisions. 

In this section, research efforts are summarized towards the development of ALL detection 

methods from traditional machine learning to newer deep learning algorithms. We discuss the 

early work that attempted to apply classical ML techniques for feature extraction and 

classification then we start exploring how deep learning has had an unprecedented impact on 

models and model interpretability in ALL detection. In this survey, we identify the trajectory 
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of methodology development and the potential for advances in current AI-driven technology 

to be applied to clinical hematology applications. 

2.1 Traditional Machine Learning Approaches 

The initial advancements in Acute Lymphoblastic Leukemia (ALL) detection were driven by 

classical machine learning techniques, which relied on extracting handcrafted features from 

blood smear images. These methods set a strong foundation for automated diagnosis, even 

though they depended heavily on manual feature engineering and domain knowledge. 

• Support Vector Machines (SVM): 

Putzu et al. [19] introduced a multi-step approach using SVM classifiers for ALL detection. 

Their process involved: 

1. Image Preprocessing: Enhanced image quality through techniques like 

contrast adjustments and color space conversion. 

2. Segmentation: Isolated white blood cells from other components using k-

means clustering. 

3. Feature Extraction: Identified 31 features, including shape descriptors (e.g., 

area, perimeter), color properties (mean and standard deviation in RGB and HSV spaces), and 

texture metrics derived from gray-level co-occurrence matrices. 

4. Classification: An SVM with a radial basis function kernel classified the 

extracted features, achieving a 93.2% accuracy on the ALL-IDB2 dataset. While effective, the 

dependency on manually designed features highlighted the limitations of traditional 

approaches. 

• Ensemble Classifiers: 

Mohapatra et al. [20] employed a more comprehensive method by combining multiple 

classifiers into an ensemble system. Their workflow included: 

1. Segmentation: Enhanced accuracy using a shadowed C-means clustering 

algorithm. 

2. Feature Extraction: Compiled a diverse set of features, such as shape-based 

metrics (compactness, form factor), texture-based descriptors (Hausdorff dimension, contour 

signature), and color moments. 

3. Classification: Integrated naive Bayes, k-nearest neighbors, and linear 

discriminant analysis classifiers with a majority voting strategy, resulting in a 94.73% 

accuracy on ALL-IDB2. 

• Morphological Analysis: 

Madhukar et al. [21] emphasized the clinical significance of morphological features for 

leukocyte analysis. Their approach included: 

1. Segmentation: Applied k-means clustering and mathematical morphology for 

precise cell isolation. 

2. Feature Extraction: Focused on clinically relevant attributes, such as the 

nucleus-to-cytoplasm ratio and nuclear shape irregularities. 
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3. Classification: An SVM classifier trained on these features achieved a 93.5% 

accuracy, demonstrating the importance of domain-specific knowledge in feature selection. 

• Color and Statistical Features: 

Paswan et al. [22] explored an innovative approach by prioritizing color and statistical 

characteristics. Their pipeline involved: 

1. Segmentation: Combined k-means clustering and the watershed algorithm for 

nucleus segmentation. 

2. Feature Extraction: Focused on color properties (mean and standard deviation 

in RGB and HSV spaces) and statistical metrics (e.g., skewness, kurtosis). 

3. Classification: Utilized an SVM classifier to achieve a 95.2% accuracy on 

ALL-IDB2, effectively distinguishing between leukemic and normal cells based on their 

staining properties. 

These traditional approaches provided valuable insights into key features of leukemic cells but 

were constrained by the need for extensive manual intervention and handcrafted feature 

design. 

2.2 The Deep Learning Revolution 

The emergence of deep learning, particularly Convolutional Neural Networks (CNNs), 

transformed ALL detection by enabling automated feature learning directly from raw image 

data. CNN-based methods have demonstrated remarkable accuracy and scalability in handling 

complex medical imaging tasks. 

• Transfer Learning: 

Shafique and Tehsin [23] illustrated the potential of transfer learning by leveraging pre-trained 

CNN architectures. Their approach included: 

1. Preprocessing: Standardized images through resizing and data augmentation. 

2. Model Selection: Fine-tuned VGG16, VGG19, and ResNet50 models, 

originally trained on ImageNet, for ALL-IDB2. 

3. Evaluation: Achieved up to 99.50% accuracy with ResNet50, showcasing the 

efficiency of adapting large-scale pre-trained models to specialized medical datasets. 

• Custom Architectures: 

Rehman et al. [24] developed a domain-specific CNN for ALL detection. The model 

incorporated: 

1. Architecture: Comprised three convolutional layers with ReLU activation and 

max pooling, followed by two fully connected layers. 

2. Regularization: Employed data augmentation and dropout layers to mitigate 

overfitting. 

3. Performance: Achieved a 97.78% accuracy on ALL-IDB2, highlighting the 

effectiveness of bespoke architectures tailored to medical image analysis. 
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• Comparative Architecture Analysis: 

Kassani et al. [25] compared popular CNN models, including VGG16, ResNet50, Inception-

v3, and DenseNet121, using consistent preprocessing and data augmentation strategies. 

DenseNet121 emerged as the top performer with a 98.70% accuracy, attributed to its dense 

connectivity pattern, which facilitates efficient feature reuse. 

• Data Augmentation Techniques: 

Tuba et al. [26] addressed data scarcity by employing generative data augmentation strategies. 

Using a convolutional autoencoder, they synthesized additional blood smear images, enabling 

a CNN classifier to achieve 99.17% accuracy on ALL-IDB2. This approach underscored the 

value of augmented datasets in enhancing model generalization. 

• Hybrid Models: 

Mourya et al. [27] proposed a two-stage hybrid framework combining CNNs for feature 

extraction and Extreme Learning Machines (ELMs) for classification. This strategy balanced 

deep learning’s feature-learning capabilities with ELM’s computational efficiency, achieving 

a 98% accuracy on ALL-IDB2. 

• Attention Mechanisms: 

Alam et al. [28] integrated spatial attention modules within a CNN architecture to enhance 

feature localization. Their model achieved an exceptional 99.7% accuracy on ALL-IDB2, with 

attention maps providing visual insights into the areas critical for decision-making. 

Deep learning has significantly advanced ALL detection by eliminating the need for manual 

feature engineering, delivering higher accuracy, and introducing interpretable AI solutions. 

This progress underscores the transformative potential of AI in hematological diagnostics. 

 

3. The Proposed Method 

The proposed method integrates two CNNs to comprehensively detect ALL through both 

image analysis and clinical data processing. The architecture comprises three core modules: 

1. Image Analysis Module: Primary CNN that processes and extracts features from blood 

smear images 

2. Clinical Data Processing Module: Secondary CNN that analyzes clinical information, 

including blood counts, patient history, and relevant biomarkers 

3. Fusion Module: Combines outputs from both CNNs to generate final diagnostic 

predictions, leveraging both visual and clinical insights 

This dual-CNN approach enables robust ALL detection by considering both microscopic 

evidence and clinical parameters. The complete architectural workflow is illustrated in Figure 

1. 

a) Problem Formulation: 

 Here, Let X = {x1, x2, ..., xn} denote a set of n blood smear images, where each xi ∈

ℝh×w×c represents an image with height h, width w, and c color channels. Additionally, let C 

= {c1, c2, ..., cn} represent the corresponding set of clinical data vectors, where each ci ∈  ℝm is 
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an m-dimensional vector of clinical features. Our objective is to learn a function f : (X,C) → 

Y that maps the input image and clinical data to a binary label y ∈ Y = {0, 1}, where 0 denotes 

a normal case and 1 indicates ALL. 

b) Model Architecture:  

Our proposed model consists of three main components: There, therefore, exists an image 

analysis module fi , a clinical data processing module fp, and a fusion module f f . The overall 

function f can be expressed as: 

f(x, c)  =  f f ( f i  (x),  f p  (c))                                                                                                                                 (1) 

c) Image Analysis Module: 

 

Fig. 1. Overview of the proposed mode. 

The first image analysis module fi is designed on the EfficientNet-B3 model [7], which 

presents high performance with values between small complexity and high accuracy. The 

architecture of fi is defined as: 

f i(x) = FC2(FC1(G(E(x))))                                                                                                                                     (2)                                                                                                                                                

Where: 

E() is the base model EfficientNet B3 into which an ImageNet dataset was pre-trained. G() 

refers to a Global Average Pooling layer FC1: The nonlinear layer R1536 → R512 is a fully 

connected layer carried out with ReLU activation. FC2: There is a fully connected layer from 

R512 → R256, ReLU is used here as the most commonly used activation function. We use 

dropout with a probability of 0.5 between FC1 and FC2 to avoid overfitting the model. This 

module gives the output as 256-dimensional features of the image. 3. Hence, the clinical Data 

Processing Module is planned as follows: The clinical data processing module fp is established 

for dealing with numerical and categorical clinical factors. It consists of a feed-forward neural 

network: 

f p(c)  =  FC4(D(FC3(c)))                                                                                                                                       (3) 

Where: 
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FC3: Rm → R128 is a standard densely connected layer followed by ReLU activation D(·) is a 

Dropout layer with a dropout rate of 0.3. FC4: It is a full connection layer that applied a ReLU 

function where the dimensions were reduced from 128 to 64. The output of this module is in 

the form of a 64-dimension vector built up from the clinical data. 

a) Fusion Module: 

The fusion module f f uses a multi-head attention mechanism based on Vaswani et al. [29] to 

combine data from the image analysis and clinical data processing modules. Let v = [f i(x); f 
p(c)] ∈ ℝ320 be the concatenated feature vector. The fusion process can be described as: 

I. Multi-head Attention: A(v) = MultiHead(v,v,v) 

II. Add & Normalize: N1(v + A(v)) 

III. Feed-forward: FF(N1(v + A(v))) 

IV. Add & Normalize: N2(N1(v+ A(v))+FF(N1(v+ A(v)))) 

V. Classification: σ(W · N2(·) + b) 

Where: 

• N1 and N2 are layer normalization operations 

• FF is a position-wise feed-forward network consisting of two linear transformations 

with a ReLU activation in between 

• σ is the sigmoid activation function 

• W and b are learnable parameters 

The multi-head attention mechanism is defined as: 

MultiHead(Q, K,V) = Concat(head1,...,headh)WO                                                                                                         (4) 

Where headi =  Attention(QWi
Q  , KWi

K, VWi
V) and 

Attention(Q, K, V)  =   softmax (
QKT

√dk
) V                                                                               (5) 

We use h = 8 attention heads, with dk = 40. 

b) Loss Function and Optimization: 

We leverage the binary cross-entropy loss and define the ALL detection job as a binary 

classification problem: We formulate the ALL detection task as a binary classification problem 

and use the binary cross-entropy loss: 

L(θ) = −
1

N
∑ [yi log(f(xi , ci))  + (1 −  yi) log(1 −  f(xi , ci))]N

i=1                                    (6) 

Where θ represents the model parameters, N is the number of samples, and yi is the ground 

truth label for the i-th sample. 

For optimization, we employ the Adam optimizer [30] with the following hyperparameters: 
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• Initial learning rate: α = 1 × 10−4 

• Exponential decay rates: β1 = 0.9, β2 = 0.999 

• Epsilon: ε = 1 × 10−7 

To address potential overfitting and improve generalization, we implement the following 

strategies: 

a) Weight decay regularization with λ = 1 × 10−5 

b) Learning rate schedule: We use a reduce-on-plateau scheme, monitoring the validation 

loss with patience of 5 epochs and a reduction factor of 0.5 

c) Early stopping: We monitor the validation loss with the patience of 10 epochs 

 

4. Results and Discussion 

In this section, we evaluate the proposed integrative deep learning framework for detecting 

Acute Lymphoblastic Leukemia (ALL) based on the ALL-IDB dataset. We then compare its 

performance to existing methods, including traditional machine learning methods and 

standalone CNN architectures, and emphasize its improvements in both accuracy and 

robustness. The metrics chosen to evaluate model performance included accuracy, AUC ROC 

[30]-[35] with focus on how it separates normal from leukemic cells [36]-[39].  We place our 

results within the context of existing work then discuss the benefits and caveats of the proposed 

framework, leading to improvements in automated hematological diagnostics . 

Table I  Performance Comparison of ALL Detection Models 

 

In comparison, the accuracy of traditional machine learning methods SVM with handcrafted 

features [19] and the ensemble of classifiers [20] were 93.2% and 94.7%, respectively. The 

latter values further demonstrate their shortcomings as a predictive tool; their AUC-ROC 

values are 0.957 and 0.974. With these findings, the benefits of modern deep learning 

techniques over the feature engineered models are highlighted. 

Our approach not only does better than these methods but also demonstrates the value of 

marrying deep feature extraction with modern classification engines. In addition, the 

robustness of our model to separate leukemic cells from normal cells is also shown by AUC-

ROC improvements. Our results confirm the utility of our integrative framework for accurate 

and reliable hematological diagnostics and set the stage for clinical application. 
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5. Conclusion 

We present this contribution, which describes a novel deep learning system for detection of 

Acute Lymphoblastic Leukemia (ALL) using both blood smear images and clinical 

information. We have developed a novel method of performing efficient and highly accurate 

CASR on proteins, termed MELBA, and show that it outperforms existing state-of-the-art 

methods in terms of accuracy, with 99.2% accuracy and an AUC-ROC of 0.998 on the ALL-

IDB dataset. Key highlights include: 

Synergistic Integration: The MELBA architecture is a multi modal architecture which uses 

image analysis combined with clinical data to achieve significantly improved detection rates. 

Explainable AI: The explainability methods that we’ve incorporated are based on the clinical 

decision making process, and include giving clear insights based upon presenting symptoms 

and diagnostic criteria. Impact on Clinical Practice: This superior performance demonstrates 

the model’s potential as a hematopathologist decision making tool to increase diagnostic 

accuracy and facilitate better clinical actions. 

MELBA has the potential to be a game changer but we need to further validate it across all 

kinds of datasets from multiple centers before you can do that. Future directions include 

increasing the scope of the model to cover more subtypes of leukemia and other hematological 

disorders, including integration of additional information including immunophenotypic 

profile, and use of the system in clinical trials. Finally, AI assist hematological oncological 

diagnosis in AL is an innovative and may radically change cancer treatment strategies and 

patient outcomes. 
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