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Image enhancement in low-light conditions is a critical area of research, and is essential for 

applications such as autonomous driving, security surveillance, and medical imaging. Low-light 

environments can significantly degrade image quality, reducing visibility and detail, which impacts 

the accuracy and reliability of computer vision systems. Traditional image enhancement techniques 

often struggle to deliver satisfactory results under challenging lighting conditions, leading to the 

exploration of generative AI methods as a promising solution. This review examines the state-of-

the-art approaches in low-light image enhancement utilizing generative adversarial networks 

(GANs), convolutional neural networks (CNNs), and other machine learning techniques. We 

synthesize advancements in GAN-based low-light image enhancement, focusing on methods like 

Retinex-based illumination decomposition, multi-scale feature extraction, attention mechanisms, 

and visible-infrared fusion. Key methodologies, such as decomposing images into illumination and 

reflectance components, attention-guided feature prioritization, and adaptive loss functions, are 

highlighted for their ability to improve both global brightness and local detail retention. 

Experimental results from recent studies indicate that these techniques enhance visibility, maintain 

natural colors, and reduce artifacts across varied low-light scenarios. The paper concludes by 

identifying future research directions, including real-time optimization, lightweight architectures 

for edge devices, and the integration of multi-modal data for more robust low-light enhancement.    

Keywords: Image enhancement, Generative AI, GANs, CNNs.  

 

 

1. Introduction 

Low-light image enhancement has emerged as a critical area of research in computer vision, 

driven by the increasing demand for reliable image processing solutions in diverse applications 

such as surveillance, autonomous driving, medical imaging, and photography. Conventional 

enhancement methods, while foundational, often struggle to address the complexities of 

modern imaging challenges, such as non-uniform illumination, noise, and color distortion. In 

response, deep learning-based approaches, particularly Generative Adversarial Networks 

(GANs), have revolutionized the field by offering robust solutions that leverage their unique 

adversarial training mechanisms. GANs, introduced by Ian Goodfellow in 2014, consist of two 

neural networks—a generator and a discriminator—that compete to improve image quality 

iteratively. This framework has given rise to various advanced architectures such as 

http://www.nano-ntp.com/
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CycleGAN, EnlightenGAN, and RetinexGAN, each tailored to address specific challenges in 

low-light scenarios. 

Recent studies have demonstrated significant advancements in GAN-based methodologies, 

integrating physics-informed principles, attention mechanisms, and multi-scale processing to 

enhance low-light image quality. By leveraging state-of-the-art datasets and innovative loss 

functions, these models achieve remarkable improvements in image clarity, brightness, and 

realism while addressing domain-specific challenges. Despite these advancements, the field 

continues to grapple with issues such as computational complexity, the scarcity of high-quality 

datasets, and the need for better generalization across diverse real-world conditions. This 

review aims to explore the progression of low-light image enhancement techniques, analyze 

the strengths and limitations of existing methods, and provide insights into future research 

directions. 

 

2. Generative Adversarial Networks 

Theoretical Framework 

Generative Adversarial Networks (GANs) are deep learning models consisting of a generator 

and a discriminator trained in an adversarial manner. They offer powerful tools for 

unsupervised and semi-supervised learning, and have applications in various fields like image 

synthesis, medical diagnostics, and 3D modeling. GANs address challenges in data 

representation and synthesis, particularly in high-dimensional spaces. Advanced variants like 

Conditional GANs and Wasserstein GANs address training instability and mode collapse. 

(Creswell et al., 2017). 

GAN architecture is a deep learning system that uses specialized neural networks to transform 

dark, low-quality images into brighter, clearer versions. GANs consist of two main 

components: the Generator and the Discriminator. The Generator enhances dim, underexposed 

images by adding appropriate lighting, reducing noise, and improving details. The 

Discriminator acts as a quality inspector, learning to distinguish between naturally well-lit 

images and artificially enhanced ones. The Generator continually improves its enhancement 

techniques, while the Discriminator becomes better at detecting artificial enhancements. 

Eventually, the Generator becomes so skilled that the Discriminator struggles to differentiate 

between natural and enhanced images. GANs have transformed low-light photography, 

enabling automatic enhancement of night-time photos and security camera footage under 

challenging lighting conditions. The generator model creates synthetic data that mimics real 

data distribution, using random noise or latent variables as input. The generator fine-tunes its 

parameters using back propagation to produce enhanced images that closely resemble well-lit, 

high-quality versions of the input. The goal is to create visually realistic images that can 

deceive the discriminator, and the generator minimizes its loss function to create realistic low-

light enhanced images. The loss function is defined as: 

 

Where, JG: Measures how effectively the generator fools the discriminator and logD(G(zi)): 

(1) 
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The log probability that the discriminator classifies the generated image as real. 

The Discriminator Model is a binary classifier that distinguishes between real and enhanced 

images, with convolutional layers for image data. It improves over time through training and 

minimizes the negative log-likelihood of correctly classifying both images. The loss function 

is defined as: 

        

Where, JD: Evaluates the discriminator’s ability to classify real and generated images, logD(xi

): Log-likelihood of correctly classifying real images and log(1−D(G(zi))): Log-likelihood of 

correctly classifying generated images as fake. 

Minimax Loss is a key feature in adversarial training in GANs, ensuring iterative improvement 

of the generator and discriminator, resulting in realistic and detailed low-light images. Loss 

function is  

  

Where, G: The generator network, D: The discriminator network, pdata(x): True data 

distribution for well-lit images, pz(z): Prior noise distribution (e.g., normal or uniform), D(x): 

Probability that the discriminator classifies real data as authentic and D(G(z)): Probability that 

the discriminator classifies generated data as authentic. 

Working of GAN 

GANs are a revolutionary approach in generative modeling that operates through a 

sophisticated adversarial training mechanism between two neural networks. The process 

begins with the establishment of two distinct neural networks: a Generator (G) and a 

Discriminator (D). The Generator transforms random noise vectors into synthetic data 

samples, while the Discriminator evaluates the authenticity of data samples. The system's core 

functionality lies in its adversarial training dynamic, where the Discriminator successfully 

identifies real data and synthetic data, providing appropriate feedback. The Generator's 

parameters are updated based on the Discriminator's evaluations, and the Discriminator's 

adaptation is continuous. As training progresses, the system aims to reach a state of 

equilibrium where the Generator produces high-quality synthetic samples, and the 

Discriminator achieves only random chance accuracy in distinguishing between real and 

generated data. This interplay between the Generator and Discriminator represents a unique 

approach to unsupervised learning, enabling the system to capture complex data distributions 

without explicit probability density estimation. GANs have demonstrated significant potential 

in advancing the field of generative modelling in various applications, such as image synthesis 

and data augmentation. 

 

 

 

(2) 

 

(3) 
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TABLE I.  TYPES OF GENERATIVE ADVERSARIAL NETWORKS 

Type of GAN Key Features Advantages for Low-Light Image 

Enhancement 

Limitations 

Vanilla GAN Basic architecture with multi-

layer perceptrons. Uses 
stochastic gradient descent. 

Simple to implement. Provides a 

baseline for generative tasks. 

Limited capacity to capture 

complex spatial features. Not 
specialized for low-light 

conditions. 

Conditional GAN 
(CGAN) 

Adds conditional parameters to 
the Generator and 

Discriminator. Labels guide 

data generation. 

Enables targeted enhancements 
(e.g., brightness adjustments). 

Improves control over the 

enhancement process. 

Requires labeled data. 
Complexity increases with the 

addition of conditions. 

Deep 

Convolutional 

GAN (DCGAN) 

Uses ConvNets with strided 

convolutions. Excludes max 

pooling and fully connected 
layers. 

Captures spatial features effectively. 

Suitable for improving details in 

low-light images. 

May struggle with global 

consistency in very challenging 

lighting conditions. 

Laplacian 

Pyramid 

GAN(LAPGAN) 

Multi-scale representation with 

Laplacian pyramids. Multiple 

Generators and Discriminators 
for refinement. 

Produces high-quality, detailed 

results. Progressive image 

refinement addresses noise and 
artifacts in low-light images. 

Computationally intensive. 

Requires careful tuning to 

maintain balance between 
scales. 

Super-Resolution 

GAN (SRGAN) 

Combines deep neural networks 

with adversarial loss. Optimized 
for high-resolution output. 

Enhances resolution and details.  

Ideal for recovering textures and 
brightness in low-light images. 

Focused on resolution; may 

need adaptation for more 
specific low-light enhancement  

requirements. 

 

3. Low-Light Image Enhancement Methods 

This section discusses the progress in enhancing low-light images (LLI) using traditional 

methods, machine learning, and deep learning. Traditional methods use algorithms to modify 

visual properties, but they can introduce artifacts or fail to preserve details in complex lighting 

conditions. Machine learning automates the enhancement process, using statistical models and 

feature extraction techniques to recognize patterns in data. This allows for adaptive and 

context-aware image processing, offering a balance between computational efficiency and 

performance. Deep learning, the latest evolution, uses advanced neural network architectures 

like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) 

to enhance low-light images. However, they require extensive datasets and computational 

resources, making them less accessible for some applications. 

Traditional Low-Light Image Enhancement (LLIE) methods are mathematical and algorithmic 

techniques used to improve image quality and perception in various fields such as 

transportation, healthcare, and business. These methods can be categorized into three main 

types: gray-level transformation, histogram equalization, and Retinex-based methods. Gray-

level transformation improves image contrast and brightness by adjusting grayscale values 

through functions like gamma, logarithmic, piecewise, and linear transformations. Histogram 

equalization increases the dynamic range and improves the brightness and contrast of low-

light images by modifying gray levels through the Cumulative Distribution Function (CDF). 

Advanced methods like Brightness Preserving Bi-Histogram Equalization (BBHE), Dualistic 

Sub-Image Histogram Equalization (DSIHE), and Recursive Mean Separate Histogram 

Equalization (RMSHE) focus on preserving image brightness while enhancing contrast. 
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Retinex-based methods address illumination and reflectance separation to enhance brightness, 

contrast, and color consistency in images. Early approaches like Single-Scale Retinex (SSR), 

Multi-Scale Retinex (MSR), and MSR with Color Restoration (MSRCR) focused on dynamic 

range compression and edge enhancement. Innovations like Illumination Map Estimation 

(LIME) improved computational efficiency, kernel-based Retinex models minimized 

complexity, and methods like sigmoid MSR tackled color distortion and noise in low-light 

conditions. Retinex-based approaches continue to evolve, offering robust solutions for low-

light image enhancement. 

Machine learning (ML) has significantly improved low-light image enhancement (LLIE) by 

addressing the limitations of traditional methods like histogram equalization and Retinex 

algorithms. ML techniques leverage large datasets to optimize enhancement processes, 

offering adaptive and advanced solutions. ML-based LLIE methods, such as color estimation 

models and fuzzy rule-based algorithms, enable models to adjust automatically to varying 

lighting conditions, enhancing image quality effectively. The process generally involves image 

pre-processing, feature extraction, and dividing  data  into  training  and  testing  sets.  ML 

techniques for LLIE have shown significant promise by synthesizing traditional and advanced 

methodologies. Examples include sparse representation techniques, fuzzy rule image 

enhancement algorithms, Color Estimation Models (CEM), sparse imaging principles, and 

advanced computational strategies like modified U-Net architectures, Recurrent Residual 

Convolutional Units (RRCU), and Dilated Convolutions. 

Machine learning's capability to enhance image quality extends beyond aesthetics to feature 

retrieval for computer vision applications. Convolutional Neural Networks (CNNs) are used 

to generate reference data from luminance characteristics under low-light conditions, which 

are then employed in Gaussian Process models to enhance image features in real-time. The 

TreEnhance method, which combines Monte Carlo Tree Search with deep reinforcement 

learning, enhances image resolution and provides transparency in the enhancement process. 

The transition to deep learning further enhances this process, employing neural networks to 

capture complex visual attributes and deliver superior results. 

Deep learning, a subset of AI, has significantly improved low-light image enhancement (LLIE) 

by extracting complex features from vast datasets. Techniques like Generative Adversarial 

Networks (GANs) and Deep Convolutional Neural Networks (CNNs) significantly improve 

image quality and visibility. LLIE methods, categorized into supervised, unsupervised, and 

zero-shot learning paradigms, enable systematic investigations tailored to specific conditions. 

These methods involve pre-processing, data division, training, and evaluation using metrics 

like SSIM and PSNR. Despite technical complexities, they outperform traditional approaches, 

delivering enhanced image clarity and facilitating advancements in image processing and 

computer vision. Supervised learning methods, such as GANs and CNNs, are widely used in 

LLIE, relying on paired datasets to train models that adjust brightness, contrast, and color 

balance. However, their reliance on specific training datasets limits adaptability to 

unstructured, dynamic lighting conditions. Unsupervised learning methods, such as 

EnlightenGAN and Exposure Correction Network (ExCNet), address issues like over fitting 

and poor generalization by balancing global and local enhancement and minimizing feature 

discrepancies between input and enhanced images. 
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4. Literature Review 

The reviewed studies employ a diverse range of methods to address the challenges of low-

light image enhancement, demonstrating innovations in GAN architectures and training 

paradigms.  

Zero-DCE (Zero-Reference Deep Curve Estimation) is a novel zero-reference learning 

framework for low-light image enhancement, using a curve estimation network trained without 

reference images to estimate pixel-wise light adjustment curves. This method enhances image 

brightness and clarity, especially in scenarios where ground-truth images are unavailable. 

Zero-DCE uses self-supervised learning to estimate light curves, eliminating the need for 

paired datasets. It uses LPIPS (Learned Perceptual Image Patch Similarity) in TensorFlow and 

trains on SICE, LOL, and LIME datasets. The framework can be further enhanced using 

contrastive learning and domain adaptation strategies to improve robustness and 

generalizability. Integrating physics-informed approaches also enhances interpretability. (Guo 

et al., 2020) 

EnlightenGAN is a generative adversarial network designed for light enhancement using 

unpaired learning to handle datasets without paired low-light and normal-light images. It 

employs a U-Net with attention mechanisms and a self-feature-preserving discriminator to 

preserve critical image features. EnlightenGAN incorporates adversarial loss and perceptual 

loss, improving subjective quality metrics like NIQE and user satisfaction. It uses unpaired 

datasets and is validated on LOL and LIME datasets. EnlightenGAN uses PyTorch and NIQE 

and BRISQUE to evaluate naturalness. Its application in surveillance, autonomous vehicles, 

and medical imaging has expanded. (Jiang et al., 2021). 

The Cycle-LLIE (Cycle-Consistent GAN for Low-Light Image Enhancement) is a specialized 

version of CycleGAN designed for bidirectional transformations between low-light and 

normal-light images. It uses dual discriminators and cycle-consistent generators for reversible 

mappings. . It is particularly effective for surveillance systems where image quality and 

contextual integrity are crucial. 

Cycle-LLIE uses cycle consistency loss to maintain reversible mappings, along with 

adversarial and identity losses for added stability. It is trained on unpaired images and tested 

on surveillance-specific datasets and LOL. However, it is insufficient for capturing real-world 

scene variability. (Kim et al., 2021) 

RetinexGAN, inspired by Retinex theory, uses a dual-stream generator and multi-scale 

discriminators to separate images into illumination and reflectance components. This 

decomposition improves image visibility while preserving natural reflectance and col  or 

balance. It also incorporates reconstruction loss and perceptual loss to enhance details, 

especially in low-light conditions. RetinexGAN uses LOL and SICE for training and evaluates 

on LIME, MEF, and NPE datasets. However, it faces limitations when applied to real-world 

images with unpredictable lighting variations and balancing enhancement and noise reduction. 

(Chen et al., 2022). 
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TABLE II OVERVIEW OF LOW-LIGHT IMAGE ENHANCEMENT METHODS USING 

GAN 

 

Acknowledgment (Heading 5) 
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WaveletGAN is a multi-resolution image processing algorithm that uses wavelet 

decomposition and dual discriminators to enhance global and local image features. It uses 

wavelet reconstruction loss, adversarial loss, and feature matching loss to achieve fine-grained 

enhancements, especially for high-frequency image details. WaveletGAN uses LOL, SICE, 

and Dark Face datasets for training and validation, employing LPIPS to gauge perceptual 

similarity. It uses PyTorch for processing high-noise environments. (Zhang et al., 2023). 

Physics-Guided GAN (Physics-GAN) is a physics-based generator that uses domain-specific 

knowledge of light behavior to enhance images. It uses multi-scale discriminators and a light 

estimation branch to align the output with physical models of light and reflectance. This 

method is useful in scientific and engineering applications where theoretical accuracy is 

crucial. It incorporates physics-guided learning and self-supervised learning to improve 

enhancement accuracy. Physics-GAN uses a custom physics-based dataset and LPIPS to gauge 

perceptual similarity. It shows promise for domain-specific tasks but relies heavily on physics-

based assumptions' accuracy. Future research could explore hybrid frameworks combining 

data-driven methods with theoretical principles. (Park et al., 2023) 

The DEGAN (Decompose-Enhance GAN) framework, developed by Zhang et al., combines 

two sub-networks, Decom-Net and Enhance-Net, to enhance light and reduce noise 

simultaneously. It uses adversarial, MSE, SSIM, and perceptual losses to improve visibility 

and denoising. DEGAN is versatile, processing both paired and unpaired datasets, making it 

ideal for industrial and smart camera applications. However, achieving the optimal balance 

remains a challenge. (Zhang et al., 2023). 

LEGAN (Low-Light Image Enhancement GAN)  is a dual-channel encoder-decoder 

architecture designed for industrial imaging systems, specifically smart camera systems. It 

combines MSE loss, VGG loss, and adversarial loss to enhance brightness and reduce noise. 

The architecture is implemented in TensorFlow and uses a custom dataset of 900 low-light 

images for training and 100 for testing. The architecture uses VGG-based perceptual metrics 

to evaluate structural integrity in high-resolution outputs. However, broader adoption requires 

diverse, large-scale datasets. (Tao et al., 2024) 

Super-Resolution GAN (SRGAN) is a deep learning model used for super-resolution tasks, 

generating high-quality images from low-resolution inputs. It uses residual learning and up-

sampling layers to preserve natural textures and details. SRGAN is commonly used in 

applications like medical imaging and satellite imagery, and can be optimized for constrained 

environments using techniques like neural architecture search and model pruning. 

(Ajuluchukwu et al., 2024). 

The Modified Perceptual CycleGAN (Cho and Baek, 2024) integrates perceptual loss and 

segmentation networks like PSPNet, enhancing image quality and segmentation accuracy. 

This makes it suitable for low-light urban scene analysis, combining enhancement and 

segmentation tasks. (Cho and Baek, 2024) 

Pix2PixGAN + CycleGAN is a hybrid approach that combines paired learning from 

Pix2PixGAN with unpaired learning from CycleGAN, making it effective for tasks like 

vehicle detection and localization in low-light traffic scenarios. This approach leverages L1 

loss and adversarial loss to ensure contextual integrity and visual realism. It combines 
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PKUdata, Stanford-Cars, and Caltech-Cars for vehicle detection and enhancement tasks, 

enhancing adaptability and reducing computational resources for real-time applications on 

resource-constrained devices. (Hassan Onim et al., 2023). 

Deep Photo Enhancer uses a two-way GAN architecture and global U-Net-based feature fusion 

to improve photographic images in unpaired settings. It balances local and global features 

using Wasserstein loss and adaptive weighting. The model uses MIT-Adobe 5K for training 

and testing, but requires significant computational resources, making it limited for real-time 

applications. (Chen et al., 2018) 

MAGAN, a multi-scale attention learning technique, enhances performance in high-

dimensional tasks like medical imaging by focusing on relevant features across multiple 

scales. (Zhong et al., 2023). 

Efficient Lane Detection using GAN combines style transfer with YOLO for robust low-light 

lane detection. It uses binary cross-entropy and anchor loss, using DIML, Caltech, and KITTI 

datasets. F1 score, recall, and precision are critical. However, generalization struggles under 

diverse conditions. Techniques like neural architecture search and model pruning could 

improve performance. (Akilan et al., 2022) 

Marzook et al. (Marzook Onim et al., 2023), highlight the need for perceptual metrics that 

align with human visual preferences in user studies. They suggest using novel evaluation 

methods to ensure better acceptance and usability of enhanced images. Google Colab is used 

for image enhancement under low-light conditions, demonstrating the accessibility of cloud-

based platforms for experimentation. 

Domain-specific applications like medical imaging, surveillance, and autonomous driving 

require low-light enhancement methods that can be complex. Multi-Scale Attention GAN, for 

example, targets medical images, allowing models to focus on essential features. Expanding 

these mechanisms to dynamically adapt enhancement strategies based on scene context could 

significantly improve real-world performance. (Zhong, Ming et al., 2023) 

The review of low-light image enhancement studies focuses on various learning methods, 

including supervised and unsupervised techniques, loss functions, datasets, evaluation metrics, 

and platforms. Challenges include diverse illumination conditions, noise amplifying, data 

limitations, and computational complexity. Future directions include advancing self-

supervised and unsupervised learning, multi-task learning, large-scale real-world datasets, 

crowd-sourced datasets, context-aware and attention-based models, lightweight and energy-

efficient architectures, user-centric evaluations, and perceptual metrics. The focus should also 

be on improving cross-domain generalization, allowing models to perform effectively across 

multiple applications without retraining. Techniques like transfer learning and meta-learning 

could further enhance the versatility of low-light image enhancement models, enabling their 

application in various fields. 

 

5. Conclusions 

The advancements in low-light image enhancement through GAN-based approaches represent 

a significant leap in image processing capabilities, addressing longstanding challenges of 
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illumination inconsistencies, noise amplification, and structural degradation. Furthermore, the 

adoption of advanced datasets, innovative loss functions, and hybrid frameworks has expanded 

the applicability of these methods to diverse fields, including surveillance, autonomous 

vehicles, and medical imaging. 

However, persistent challenges such as the high computational demands of GAN training, the 

need for scalable and diverse datasets, and limited generalizability across domains highlight 

the ongoing gaps in this field. Future research must focus on developing lightweight 

architectures, enhancing cross-domain learning capabilities, and incorporating human-centric 

evaluation metrics to improve real-world applicability. By addressing these challenges, low-

light image enhancement can further evolve to meet the demands of emerging technologies 

and practical applications. This review underscores the transformative potential of GAN-based 

methods while paving the way for innovative solutions to the remaining challenges in this 

dynamic area of research. 
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