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This research delves into the implementation of the Efficacious Flower 

Pollination Algorithm-Routing Protocol (EFPA-RP) within IoT-based Wireless 

Sensor Networks (IoT-WSN) to optimize network performance and longevity. 

EFPA-RP draws inspiration from natural flower pollination processes, 

integrating advanced optimization mechanisms to enhance routing efficiency 

within IoT-WSN environments. Through rigorous simulation-based 

experimentation across various network sizes, the study evaluates EFPA-RP's 

efficacy in terms of energy consumption, throughput, delay, and network lifetime. 

The results reveal that EFPA-RP achieves notably higher network longevity 

while upholding efficient energy utilization and ensuring comprehensive data 

transmission coverage. By significantly outperforming existing protocols, EFPA-

RP demonstrates its potential to address critical challenges within IoT-WSN 

deployments. This includes mitigating energy constraints, enhancing data 

transmission reliability, and prolonging network operational durations. The 

findings underscore EFPA-RP's capability to substantially improve overall 

network performance and sustainability within diverse IoT applications. As such, 

this research contributes valuable insights into advancing the optimization of IoT-

WSN infrastructures, ultimately facilitating the seamless integration and 

operation of IoT technologies in various real-world scenarios. 

Keywords: IoT-WSN, Routing, Flower Pollination Algorithm, Optimization, 

Energy Efficiency, Network Longevity. 
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1. Introduction 

IoT-based Wireless Sensor Networks (IoT-WSN) represent a fusion of two transformative 

technologies: the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). IoT-WSN 

systems deploy interconnected sensors that wirelessly communicate data to facilitate real-time 

monitoring and control across diverse environments [1]. These systems are characterized by 

their capacity to integrate numerous sensors into a cohesive network, enabling comprehensive 

data collection and analysis. Such data can serve many purposes, from environmental 

monitoring in agriculture to surveillance in smart cities. The seamless integration of IoT and 

WSN technologies allows for the creation of adaptable and scalable networks, accommodating 

the dynamic requirements of various applications [2]. At the core of IoT-WSN is the efficient 

utilization of wireless communication protocols, enabling seamless data exchange between 

sensors and centralized processing units. By leveraging these protocols, IoT-WSN systems 

facilitate rapid decision-making based on real-time data insights. The deployment of IoT-WSN 

systems often involves strategically placing sensors to optimize coverage and data accuracy 

[3]. This ensures that the collected data is reliable and representative of the monitored 

environment. IoT-WSN systems epitomize the convergence of IoT and WSN technologies, 

offering a robust framework for pervasive sensing and monitoring applications. Through their 

seamless integration and efficient communication capabilities, IoT-WSN systems pave the 

way for innovative solutions across various domains [4]. 

Routing in IoT-WSN is a complex task due to the resource constraints of network nodes, 

including limited power and processing capabilities. Efficient routing protocols are essential 

for establishing optimal pathways for data transmission from sensor nodes to designated 

destinations while conserving energy and ensuring reliable data delivery [5]. These protocols 

often employ data aggregation, clustering, and opportunistic routing strategies to address these 

challenges. Adaptability to dynamic network conditions is crucial for maintaining connectivity 

and reliability in IoT-WSN deployments. Effective routing protocols are vital in maximizing 

network efficiency and supporting various applications in diverse domains such as smart cities, 

industrial automation, and healthcare [6]. 

Bio-inspired optimization for IoT-WSN draws inspiration from natural processes and 

behaviours observed in biological systems to develop efficient algorithms for optimizing 

network performance and resource utilization. These bio-inspired approaches emulate the self-

organization, adaptation, and cooperation principles found in biological systems to address the 

unique challenges posed by IoT-WSN environments [7]. One key aspect of bio-inspired 

optimization for IoT-WSN is the emulation of self-organization observed in biological 

systems. In nature, organisms exhibit emergent behaviours that enable them to achieve 

complex tasks collectively without centralized control. In IoT-WSN, bio-inspired algorithms 

can facilitate self-organization among sensor nodes, allowing them to autonomously adapt to 

changes in network topology, resource availability, and environmental conditions [8]. This 

self-organizing behaviour enhances the scalability, robustness, and resilience of IoT-WSN 

deployments. Bio-inspired optimization techniques can facilitate cooperation and 

collaboration among sensor nodes in IoT-WSN deployments. In nature, organisms often 

exhibit cooperative behaviours to achieve collective goals, such as foraging for food, 

defending against predators, or coordinating group movements. The bio-inspired algorithms 

can enable sensor nodes to cooperate in tasks such as data aggregation, distributed sensing, 

and collaborative decision-making [9]. This cooperative behaviour enhances network 
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efficiency, reduces redundant data transmission, and prolongs the lifespan of IoT-WSN 

deployments by conserving energy and bandwidth resources [10]. 

1.1 Problem Statement 

In IoT-WSN, routing protocols face significant challenges in managing energy consumption 

effectively while maintaining reliable data transmission [11]–[13]. Existing protocols may not 

sufficiently address the dynamic network conditions and energy constraints inherent in IoT-

WSN deployments. Developing a robust routing protocol explicitly tailored for IoT-WSN is 

imperative. This protocol must tackle issues such as uneven energy distribution among nodes, 

high communication overhead, and the potential for premature node depletion, which can 

significantly impact network performance and longevity. The protocol must adapt to network 

topologies and traffic patterns while ensuring minimal energy expenditure, particularly in 

resource-constrained environments. Addressing these challenges is essential to maximize the 

efficiency and sustainability of IoT-WSN deployments and enable the successful 

implementation of diverse IoT applications. 

1.2. Motivation 

In the domain of IoT-WSN, optimizing routing protocols is a pivotal endeavor with far-

reaching implications. The very essence of IoT-WSN lies in the seamless collection and 

transmission of data from diverse environments, making reliable and energy-efficient routing 

protocols indispensable. Yet, current solutions often fail to address the intricate balance 

between energy conservation and data reliability, leading to inefficiencies and premature node 

depletion. The motivation behind developing novel routing protocols for IoT-WSN lies in 

unlocking the full potential of this transformative technology. By addressing the unique 

challenges of energy consumption and routing in IoT-WSN, we can pave the way for more 

sustainable and resilient network infrastructures. This endeavor ensures the longevity and 

scalability of IoT deployments and opens doors to many innovative applications across 

domains such as environmental monitoring, precision agriculture, and smart cities. Pursuing 

optimized routing protocols for IoT-WSN is not merely a technical challenge but a gateway to 

unlocking the transformative power of the Internet of Things. 

1.3. Objective 

The primary objective of this research is to develop an Efficacious Flower Pollination 

Algorithm (EFPA) explicitly tailored for optimizing routing in IoT-WSN. This enhanced 

algorithm aims to overcome the limitations of existing routing protocols by leveraging the 

principles of flower pollination to achieve more efficient and energy-conscious routing 

strategies. The research seeks to enhance the Flower Pollination Algorithm’s adaptability, 

scalability, and robustness (FPA) by incorporating novel mechanisms inspired by biological 

systems. Through extensive experimentation and performance evaluation, the research aims 

to demonstrate the superiority of the EFPA over traditional routing protocols in terms of 

energy consumption, network lifetime, packet delivery ratio, and end-to-end delay. The 

research endeavors to validate the effectiveness of the EFPA in diverse IoT-WSN scenarios, 

including dynamic network topologies, varying traffic patterns, and resource-constrained 

environments. The goal is to provide a comprehensive framework for optimizing routing in 

IoT-WSN deployments, enabling more sustainable and resilient Internet of Things 

infrastructures. 
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2. LITERATURE REVIEW 

“Segmented Sectors in Energy Efficient Routing (SSEER)” [14] partitions a network into 

smaller sectors based on node physical locations, optimizing traffic flow by further 

subdividing each sector. Nodes within these sectors communicate in a multi-hop setup, with 

data packets traversing from sender to receiver through intermediate nodes. The selection 

criteria for intermediate nodes include remaining energy, destination proximity, and overall 

network quality. Cluster heads, chosen for their remaining energy, strategic location, and 

connectivity to other clusters, act as gatekeepers. They manage inter-sector data transmission, 

enhancing overall network efficiency and longevity. 

“Cluster Routing Protocol (CRP)” [15] leverages fog computing and 5G technology to 

improve network energy efficiency, reliability, and data transmission. CRP employs a 

hierarchical clustering approach, dividing the network into multiple subnetworks managed by 

cluster heads (CHs). These CHs link the Wireless Sensor Network (WSN) to the fog 

computing layer, which provides additional computational power and storage. Utilizing 5G 

technology, CRP ensures secure and extensive data transfer. The protocol's fog-enabled 

architecture enhances WSN performance by offloading intensive processing tasks to the fog 

layer, reducing latency and conserving node energy. 

“Energy-Efficient Distributed Node Clustering Routing” [16] divides the network into clusters 

and dynamically adjusts the cluster size based on the mobility patterns of the nodes. The 

authors evaluate It using simulations and demonstrate its effectiveness in energy efficiency 

and network performance. “Energy-Efficient Guiding-Network-based Routing” [17] uses a 

guiding network to direct data transmission between nodes and uses an energy-efficient 

scheduling algorithm to reduce energy consumption. The authors evaluate It using simulations 

and demonstrate its effectiveness in energy efficiency and network performance. “Energy-

Efficient Cooperative Routing Scheme” [18] divides the network into clusters and uses a 

cooperative transmission approach to reduce energy consumption. The authors evaluate It 

using simulations and demonstrate its effectiveness in energy efficiency and network 

performance. One potential disadvantage of this protocol is the potential for increased 

computational complexity due to the use of neural networks, which may limit its practical 

application in some scenarios. 

“Trust-Based Secure Intelligent Opportunistic Routing” [19] proposes a trust-based secure 

opportunistic routing protocol for wireless sensor networks that utilizes machine learning 

techniques to make routing decisions. It considers the nodes’ trustworthiness in the network 

and uses a secure key exchange mechanism to ensure data confidentiality. The authors evaluate 

It using simulations and demonstrate its security and network performance effectiveness. 

“Hybrid Optimization for Cluster-Based Routing” [20] uses a combination of swarm 

intelligence and genetic algorithms to optimize network performance and energy consumption. 

The authors evaluate It using simulations and demonstrate its effectiveness in energy 

efficiency and network performance. “Cluster Head Rotation Based Routing” [21] aims to 

extend the network lifetime by reducing energy consumption. The paper thoroughly evaluates 

It and compares it with existing routing protocols. The results show that it outperforms existing 

energy consumption and network lifetime protocols. 

“Low-Delay Routing-Integrated MAC Protocol” [22] aims to reduce communication latency 

and energy consumption. It integrates routing and MAC layer functions to reduce 

communication overhead and uses a dynamic duty cycle approach to reduce energy 
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consumption. The authors evaluate It using simulations and demonstrate its effectiveness in 

latency reduction and energy efficiency. “Distributed 2-Hop Cluster Routing” [23] aims to 

reduce communication overhead and improve network scalability. It divides the network into 

clusters and uses a 2-hop routing approach to reduce communication overhead. The authors 

evaluate It using simulations and demonstrate its effectiveness in network performance and 

scalability. “Multi-Hop Routing Protocol Evaluation” [24] aims to improve network 

performance by reducing packet loss and end-to-end delay. It uses a dynamic priority queue 

approach to prioritize multimedia traffic and adaptively adjust the transmission power of nodes 

to reduce packet loss. The authors evaluate It using simulations and demonstrate its 

effectiveness in packet loss reduction and end-to-end delay.  

“Expected Area-Based Real-Time Routing” [25] considers the expected area of mobile sinks 

and uses a priority-based scheme to route data to the nearest sink. The authors evaluate It using 

simulations and demonstrate its effectiveness in terms of packet delivery ratio and end-to-end 

delay. “Tactile Routing for Location Privacy Preservation” [26] aims to prevent an adversary 

from discovering the location of a target node by routing data through intermediate nodes 

randomly and unpredictably. The authors evaluate It using simulations and demonstrate its 

effectiveness regarding location privacy preservation. “Enhancing Graph Routing Algorithm” 

[27] aims to optimize the route selection process by using an evolutionary algorithm to adapt 

to changes in the network topology. The authors evaluate It using simulations and demonstrate 

its effectiveness in energy efficiency and network lifetime. The significant disadvantage of 

this protocol is the potential for increased computational complexity due to the use of 

evolutionary algorithms. 

 

3. FLOWER POLLINATION ALGORITHM 

The Flower Pollination Algorithm (FPA) is a nature-inspired optimization algorithm that 

simulates the process of flower pollination to solve optimization problems. This algorithm 

represents potential solutions as flowers; a solution’s quality corresponds to the flower’s nectar 

amount. The algorithm mimics the pollination process, where flowers with higher nectar 

amounts attract pollinators like bees and butterflies, facilitating the transfer of pollen grains 

and the propagation of genetic traits. In optimization, this process translates into exchanging 

information between solutions to explore the search space and converge towards better 

solutions. The FPA employs global pollination, local pollination, and migration strategies to 

balance exploration and exploitation, ensuring efficient convergence to optimal solutions. One 

of the key advantages of the FPA is its simplicity and flexibility, allowing it to be easily applied 

to various optimization problems across different domains. The FPA offers a powerful tool for 

solving complex optimization problems and has been successfully applied in areas such as 

engineering design, image processing, and machine learning by emulating the efficiency of 

natural systems. Its pseudocode is provided as Algorithm 1. 

Algorithm 1: Core – Flower Pollination Algorithm 

Input: 

• Parameters defining the optimization problem (e.g., number of flowers, maximum iterations) 

• Initial population of flowers with randomly assigned nectar amounts 

• Fitness evaluation function to determine solution quality 

 
Output: 

• The best solution found (flower with the highest nectar amount) after the algorithm terminates. 
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Procedure: 

Step 1: Initialize the population of flowers randomly. 

Step 2: Evaluate the fitness (nectar amount) of each flower. 
Step 3: Repeat until stopping criteron: 

a. Randomly select flowers to share nectar. 

b. Evaluate the fitness of newly generated flowers. 
c. Adjust nectar levels based on local information. 

d. Evaluate the fitness of new flowers. 
e. Update flower population based on fitness. 

f. Sort flowers by fitness. 

g. Exchange flowers between populations. 
h. Evaluate the fitness of new flowers. 

i. Update flower population based on fitness. 

j. Select the best flowers to survive. 
Step 4: Return the best solution found as output. 

 

4. EFFICACIOUS FLOWER POLLINATION ALGORITHM 

The Efficacious Flower Pollination Algorithm (EFPA) is an advanced optimization technique 

inspired by the natural process of flower pollination. It extends the traditional Flower 

Pollination Algorithm (FPA) by incorporating enhanced global exploration and local 

exploitation mechanisms. EFPA utilizes the concept of pollen dissemination among flowers 

to enhance the search process for optimal solutions to optimization problems. Through the 

iterative pollination process, EFPA enables exploring a wide search space while efficiently 

exploiting promising regions for better solutions. Key features of EFPA include its 

adaptability, scalability, and ability to handle complex optimization problems efficiently. 

EFPA enhances the diversity of solutions and promotes convergence to optimal or near-

optimal solutions by integrating strategies such as mutation and crossover. This algorithm has 

shown promising results in various fields, including engineering, computer science, and 

finance, making it a valuable tool for solving real-world optimization problems effectively. 

4.1. Initialization in EFPA: Setting the Stage for Optimization 

The Initialization step lays the foundation for the optimization process by creating an initial 

population of potential solutions. This crucial step involves setting up the framework within 

which the algorithm will operate and initializing the parameters and variables that will guide 

the search for optimal solutions. Initially, it deals with the search space’s random flower 

creation. There is an optimization issue, and each bloom is a possible solution. The position 

of each flower is randomly selected within the bounds of the problem domain, ensuring 

diversity in the initial population. Mathematically, this can be represented as Eq.(1). 

𝒙𝒊 = 𝒙𝒎𝒊𝒏 + (𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏) × 𝒓𝒂𝒏𝒅(𝟎, 𝟏) (1) 

where 𝒊th flower’s location is denoted by 𝒙𝒊, the search space’s minimum and maximum 

boundaries are 𝒙𝒎𝒊𝒏 and 𝒙𝒎𝒂𝒙 random integer between 0 and 1 is generated using the rand 

function. 

After randomly creating the flowers, this research needs to assess their fitness by referring to 

the objective function of the optimization problem. To do this, we must determine how 

effectively each bloom meets the challenge’s goals. Mathematically, the fitness 𝒇𝒊 of the 𝒊th 

flower can be expressed as Eq.(2). 

𝒇𝒊 = 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝒙𝒊) (2) 
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where 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝒙𝒊) represents the evaluation of the objective function at the 

position 𝒙𝒊  of the 𝒊th flower. 

 

In EFPA, each flower carries an amount of pollen, representing information that can be 

exchanged with other flowers during the pollination process. The amount of pollen is 

initialized based on the fitness of each flower, with higher-fitness flowers carrying more 

pollen. Mathematically, the pollen amount 𝒑𝒊 for the 𝒊th flower can be determined as Eq.(3). 

𝒑𝒊 =
𝒇𝒊

∑ 𝒇𝒋
𝑵
𝒋=𝟏

× 𝑷𝒕𝒐𝒕𝒂𝒍 (3) 

where 𝑵 is the total number of flowers in the population, and 𝑷𝒕𝒐𝒕𝒂𝒍 is the total amount of 

pollen available in the population. 

 

The attractiveness of each flower, which determines its likelihood of sharing pollen with other 

flowers, is also initialized during this step. Flowers with higher fitness values are assigned 

higher attractiveness values. Mathematically, the attractiveness 𝑨𝒊 of the 𝒊th flower can be 

defined as Eq.(4). 

𝑨𝒊 =
𝒇𝒊

∑ 𝒇𝒋
𝑵
𝒋=𝟏

 (4) 

where 𝑵 is the total number of flowers in the population, and 𝒇𝒊 is the fitness of the 𝒊th flower. 

 

The Initialization step may involve setting up termination criteria to determine when the 

optimization process should stop. This could include a maximum number of iterations, a 

threshold for improving fitness values, or a predefined time limit. These criteria ensure that 

the algorithm does not continue indefinitely and converges to a satisfactory solution within a 

reasonable timeframe. 

4.2. Evaluating Fitness 

In EFPA, the step “Evaluate Fitness” plays a crucial role in assessing the quality of potential 

solutions within the optimization process. To determine fitness, this research looks at how 

each bloom does concerning the goals of the optimization issue. In EFPA, the Monte Carlo 

method is a computational technique to evaluate fitness efficiently. The optimization problem 

is defined by an objective function that maps each potential solution to a corresponding fitness 

value. Mathematically, the objective function 𝒇(𝒙) can be represented as Eq.(5). 

𝒇(𝒙) (5) 

where 𝒙 represents the decision variables of the problem. 

 

The Monte Carlo method involves sampling points randomly from the solution space to 

estimate the objective function’s value. Let 𝒙𝒊 denote the 𝒊th sampled point in the solution 

space. For each sampled point 𝒙𝒊, the objective function 𝒇(𝒙𝒊) is evaluated to determine its 

fitness value. This evaluation estimates the objective function’s behaviour across the solution 

space. The fitness values obtained from evaluating the objective function at the sampled points 

are aggregated to assess the overall fitness of the flower. Let 𝒇𝑴𝑪 in Eq.(6) denote the Monte 

Carlo estimate of fitness. 
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𝒇𝑴𝑪 =
𝟏

𝑵
∑ 𝒇(𝒙𝒊)

𝑵

𝒊=𝟏
 (6) 

where 𝑵 is the total number of sampled points. 

 

The Monte Carlo fitness estimation may be subject to error due to the finite number of sampled 

points. The estimation error 𝒆𝑴𝑪 the difference between the true fitness value and the Monte 

Carlo estimate can be quantified using Eq.(7). 

𝒆𝑴𝑪 = |𝒇(𝒙) − 𝒇𝑴𝑪| (7) 

 

This research look at how the Monte Carlo estimate converges to determine how many points 

need to be sampled to get the desired accuracy level. Let 𝝐 in Eq.(8) denote the desired level 

of accuracy and 𝑵𝒄𝒐𝒏𝒗 denote the number of sampled points required for convergence. 

𝑵𝒄𝒐𝒏𝒗 =
𝝈𝟐

𝝐𝟐
 (8) 

where 𝝈𝟐 is the variance of the fitness values obtained from sampling. 

 

A confidence interval can be constructed around the Monte Carlo estimate to quantify the 

uncertainty in the fitness value. Let 𝑪𝑰 denote the confidence interval, which is computed 

using Eq.(9). 

𝑪𝑰 = 𝒇𝑴𝑪 ± 𝒛
𝝈

√𝑵
 (9) 

where 𝒛 is the z-score corresponding to the desired confidence level. 

 

The Monte Carlo sampling process can be parallelized across multiple computing nodes to 

accelerate fitness evaluation. This parallelization strategy enables the simultaneous assessment 

of fitness values at multiple sampled points, reducing the overall computation time. Adaptive 

sampling strategies can dynamically adjust the number of sampled points based on the 

convergence behaviour observed during optimization. These strategies optimize the allocation 

of computational resources to regions of the solution space where fitness values are uncertain 

or poorly estimated. 

Algorithm 2: Evaluating Fitness 

Input: 

• Objective function 𝒇(𝒙) 
• Number of samples 𝑵 

 
Output: 

• Estimated fitness 𝒇𝑴𝑪 

 
Procedure: 

1. Initialize 𝒇𝑴𝑪 to 0. 

2. For 𝒊 = 𝟏 to 𝑵, do steps 3-5. 

3. Generate a random sample 𝒙𝒊 from the solution space. 

4. Evaluate the objective function 𝒇(𝒙𝒊) 
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5. Add 𝒇(𝒙𝒊)to 𝒇𝑴𝑪 

6. Compute the estimated fitness 𝒇𝑴𝑪 as 
𝒇𝑴𝑪

𝑵
 

7. Output the estimated fitness 𝒇𝑴𝑪 

4.3. Determining attractiveness 

This step involves assessing the attractiveness of each flower, which influences its likelihood 

of sharing pollen with other flowers. In EFPA, the Monte Carlo method is utilized to evaluate 

the fitness of flowers, which in turn is used to determine their attractiveness. The first 

subheading involves evaluating the objective function to assess the fitness of each flower. 

Mathematically, the fitness 𝒇(𝒙𝒊) of the 𝒊th flower is calculated using the Monte Carlo method, 

as described in Eq.(10). 

𝒇(𝒙𝒊) =
𝟏

𝑵
∑ 𝒇(𝒙𝒊)

𝑵

𝒊=𝟏
 (10) 

where 𝑵 is the total number of sampled points. 

After evaluating the fitness of each flower, the fitness values are normalized to ensure that 

they lie within a specified range. This normalization prevents disproportionately high or low 

fitness values from dominating the attractiveness calculation. Mathematically, the normalized 

fitness 𝒇̂(𝒙𝒊) of the 𝒊th flower can be expressed as Eq.(11). 

𝒇̂(𝒙𝒊) =
𝒇(𝒙𝒊) −𝒎𝒊𝒏 (𝒇)

𝒎𝒂𝒙 (𝒇) −𝒎𝒊𝒏 (𝒇)
 (11) 

where 𝒎𝒊𝒏 (𝒇)  and 𝒎𝒂𝒙 (𝒇) represent the minimum and maximum fitness values in the 

population, respectively. 

Once the fitness values are normalized, the attractiveness of each flower is computed based on 

its normalized fitness. Flowers with higher fitness values are assigned higher attractiveness, 

indicating their more significant potential for pollen dissemination. Mathematically, the 

attractiveness 𝑨𝒊 of the 𝒊th flower can be defined as Eq.(12). 

𝑨𝒊 =
𝒇̂(𝒙𝒊)

∑ 𝒇̂(𝒙𝒋)
𝑵
𝒋=𝟏

 (12) 

where 𝒇̂(𝒙𝒊) represents the normalized fitness of the 𝒊th flower, and 𝑵 is the total number of 

flowers in the population. 

The attractiveness of each flower is directly influenced by its fitness relative to the fitness of 

other flowers in the population. Flowers with higher normalized fitness values have a 

proportionally more significant share of the total attractiveness, reflecting their superior 

performance in optimization. The attractiveness of flowers plays a crucial role in guiding the 

exchange of information (pollen) during the pollination process. Flowers with higher 

attractiveness values are more likely to attract pollen from neighbouring flowers, facilitating 

the dissemination of information and contributing to solution space exploration. 

Algorithm 3: Determining Attractiveness 

Input: 

• Fitness values of flowers 𝒇(𝒙𝒊) 
 
Output: 

• Attractiveness values of flowers 𝑨𝒊 
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Procedure: 

1. Normalize the fitness values of flowers to ensure they lie within a specified range. 

2. Compute the sum of the normalized fitness values ∑ 𝒇̂(𝒙𝒋).
𝑵
𝒋=𝟏  

3. For each flower 𝒊 from 1 to 𝑵, do steps 4-5. 

4. Calculate the normalized fitness 𝒇̂(𝒙𝒊)of the 𝒊th flower. 

5. Compute the attractiveness 𝑨𝒊of the 𝒊th flower using the formula 𝑨𝒊 =
𝒇̂(𝒙𝒊)

∑ 𝒇̂(𝒙𝒋)
𝑵
𝒋=𝟏

. 

6. Output the attractiveness values of flowers 𝑨𝒊. 

4.4. Local Pollination 

This step aims to promote exploration of the local search space by encouraging flowers to 

share pollen with their neighbours. In EFPA, the Monte Carlo method is employed to evaluate 

the fitness of flowers, which guides the local pollination process. The Neighbourhood 

Selection in EFPA involves selecting the neighbourhood of each flower, which determines the 

flowers with which it will exchange pollen. In EFPA, a neighbourhood radius 𝒓𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 is 

defined around each flower, and all flowers within this radius are considered its neighbours. 

 

Once the neighbourhood is selected, pollen exchange occurs between each flower and its 

neighbours. Flowers with higher fitness values are likelier to share pollen with their 

neighbours, influencing pollination. Mathematically, the pollen exchange between the 𝒊th 

flower and its neighbour 𝒋 can be expressed as Eq.(13). 

𝒑𝒊𝒋 = 𝑨𝒊 × 𝑨𝒋 ×
𝒇(𝒙𝒊) + 𝒇(𝒙𝒋)

𝟐
 (13) 

where 𝒑𝒊𝒋 represents the amount of pollen exchanged between the 𝒊th flower and its neighbour 

𝒋, 𝑨𝒊 and 𝑨𝒋 are the attractiveness values of the 𝒊th and 𝒋th flowers, respectively, and 𝒇(𝒙𝒊) 

and 𝒇(𝒙𝒋) are their fitness values. 

After pollen exchange, each flower updates its pollen amount based on the pollen received 

from its neighbours. The total amount of pollen received by the 𝒊th flower, 𝑷𝒊, can be 

computed as the sum of pollen from all its neighbours. Mathematically, this can be expressed 

as Eq.(14). 

𝑷𝒊 =∑ 𝒑𝒊𝒋
𝑵

𝒋=𝟏
 (14) 

where 𝑵 is the total number of neighbours of the 𝒊th flower. 

Once the pollen each flower receives is determined, it is redistributed among its neighbours. 

Flowers with higher attractiveness values receive a larger share of pollen, reflecting their 

influence on pollination. Mathematically, the pollen 𝒑𝒊𝒋 received by the 𝒋th neighbour of the 

𝒊th flower can be calculated as Eq.(15). 

𝒑𝒊𝒋 =
𝑷𝒊 × 𝑨𝒊 × 𝑨𝒋

∑ 𝑨𝒌
𝑵
𝒌=𝟏

 (15) 

where 𝑷𝒊 is the total amount of pollen received by the 𝒊th flower, 𝑨𝒊 and 𝑨𝒋 are the 

attractiveness values of the 𝒊th flower and its neighbour 𝒋, respectively, and ∑ 𝑨𝒌
𝑵
𝒌=𝟏  is the 

sum of attractiveness values of all neighbours of the 𝒊th flower. 
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The local pollination process promotes exploration of the local search space by encouraging 

flowers to share pollen with their neighbours. By exchanging information with nearby flowers, 

each flower gains insights into potentially promising regions of the solution space, 

contributing to the overall optimization process. 

Algorithm 4: Local Pollination 

Input: 

• Fitness values of flowers 𝒇(𝒙𝒊) 
• Attractiveness values of flowers 𝑨𝒊 
• Neighbourhood radius 𝒓𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 

 
Output: 

• Updated pollen amounts of flowers 𝑷𝒊 
 

Procedure: 

1. For each flower 𝒊 from 1 to 𝑵, do steps 2-5. 

2. Determine the neighbourhood of the 𝒊th flower within the radius 𝒓𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓. 

3. For each neighbour𝒋 of the 𝒊th flower, do steps 4-5. 

4. Calculate the pollen exchange 𝒑𝒊𝒋 between the 𝒊th flower and its neighbour 𝒋 using the formula 𝒑𝒊𝒋 =

𝑨𝒊 × 𝑨𝒋 ×
𝒇(𝒙𝒊)+𝒇(𝒙𝒋)

𝟐
. 

5. Update the pollen amount of the 𝒋th neighbour by adding the pollen received 𝒑𝒊𝒋. 

6. Calculate the total amount of pollen received by the 𝒊th flower 𝑷𝒊 as 𝑷𝒊 = ∑ 𝒑𝒊𝒋.
𝑵
𝒋=𝟏  

7. Redistribute the pollen among the neighbours of the 𝒊th flower based on their attractiveness values. 

8. For each neighbour𝒋 of the 𝒊th flower, calculate the pollen received 𝒑𝒊𝒋 using the formula 𝒑𝒊𝒋 =
𝑷𝒊×𝑨𝒊×𝑨𝒋

∑ 𝑨𝒌
𝑵
𝒌=𝟏

. 

9. Update the pollen amount of the 𝒋th neighbour by adding the pollen received 𝒑𝒊𝒋. 

10. Output the updated pollen amounts of flowers 𝑷𝒊. 

 

4.5. Global Pollination 

This step promotes exploration of the entire search space by facilitating the exchange of 

information (pollen) among distant flowers. This step encourages flowers to share pollen with 

others across the population, allowing for the dissemination of valuable information and the 

discovery of potentially promising regions of the solution space. In EFPA, the Monte Carlo 

method is employed to evaluate the fitness of flowers, which guides the global pollination 

process.  

Identifying global pollination involves identifying potential candidates across the population 

of flowers. Unlike local pollination, which focuses on nearby neighbours, global pollination 

considers flowers from distant locations in the search space. All flowers in the population are 

considered candidates for global pollination, allowing for the exchange of information across 

the entire solution space. Once the global pollination candidates are identified, pollen 

exchange occurs between each flower and its distant counterparts. Flowers with higher fitness 

values are likelier to share pollen with others, influencing global pollination. Mathematically, 

the pollen exchange between the 𝒊th flower and its distant counterpart 𝒋 can be expressed as 

Eq.(16). 

𝒑𝒊𝒋 = 𝑨𝒊 × 𝑨𝒋 ×
𝒇(𝒙𝒊) + 𝒇(𝒙𝒋)

𝟐
 (16) 

where 𝒑𝒊𝒋 represents the amount of pollen exchanged between the 𝒊th flower and its distant 

counterpart 𝒋, 𝑨𝒊 and 𝑨𝒋 are the attractiveness values of the 𝒊th flower and its distant 

counterpart 𝒋, respectively, and 𝒇(𝒙𝒊) and 𝒇(𝒙𝒋) are their fitness values. 
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After pollen exchange, each flower updates its pollen amount based on the pollen received 

from its distant counterparts. The total amount of pollen received by the 𝒊𝒕𝒉 flower, 𝑷𝒊, can 

be computed as the sum of pollen from all its distant counterparts. Mathematically, this can be 

expressed as Eq.(17). 

𝑷𝒊 =∑ 𝒑𝒊𝒋
𝑵

𝒋=𝟏
 (17) 

where 𝑵 is the total number of distant counterparts of the 𝒊th flower. 

Once the pollen each flower receives is determined, it is redistributed among its distant 

counterparts. Flowers with higher attractiveness values receive a larger share of pollen, 

reflecting their influence in global pollination. Mathematically, the pollen 𝒑𝒊𝒋 received by the 

distant counterpart 𝒋 of the 𝒊th flower can be calculated as Eq.(18). 

𝒑𝒊𝒋 =
𝑷𝒊 × 𝑨𝒊 × 𝑨𝒋

∑ 𝑨𝒌
𝑵
𝒌=𝟏

 (18) 

where 𝑷𝒊 is the total amount of pollen received by the 𝒊th flower, 𝑨𝒊 and 𝑨𝒋are the 

attractiveness values of the 𝒊th flower and its distant counterpart 𝒋, respectively, and ∑ 𝑨𝒌
𝑵
𝒌=𝟏  

is the sum of attractiveness values of all distant counterparts of the 𝒊th flower. 

The global pollination process enhances the exploration of the solution space by facilitating 

the exchange of information among distant flowers. By sharing pollen with distant 

counterparts, each flower gains insights into potentially promising regions of the solution 

space, contributing to the overall exploration of the optimization landscape. 

Algorithm 5: Global Pollination 

Input: 

• Fitness values of flowers 𝒇(𝒙𝒊) 
• Attractiveness values of flowers 𝑨𝒊 
 

Output: 

• Updated pollen amounts of flowers 𝑷𝒊 
 

Procedure: 

1. For each flower 𝒊 from 1 to 𝑵, do steps 2-5. 

2. Identify the distant counterparts of the 𝒊th flower. 

3. For each distant counterpart 𝒋 of the 𝒊th flower, do steps 4-5. 

4. Calculate the pollen exchange 𝒑𝒊𝒋 between the 𝒊th flower and its distant counterpart 𝒋 using the formula 𝒑𝒊𝒋 =

𝑨𝒊 × 𝑨𝒋 ×
𝒇(𝒙𝒊)+𝒇(𝒙𝒋)

𝟐
. 

5. Update the pollen amount of the distant counterpart 𝒋 by adding the pollen received 𝒑𝒊𝒋. 

6. Calculate the total amount of pollen received by the 𝒊th flower 𝑷𝒊 as 𝑷𝒊 = ∑ 𝒑𝒊𝒋.
𝑵
𝒋=𝟏  

7. Redistribute the pollen among the distant counterparts of the 𝒊th flower based on their attractiveness values. 

8. For each distant counterpart 𝒋 of the 𝒊th flower, calculate the pollen received 𝒑𝒊𝒋using the formula 𝒑𝒊𝒋 =
𝒑𝒊×𝑨𝒊×𝑨𝒋

∑ 𝑨𝒌
𝑵
𝒌=𝟏

. 

9. Update the pollen amount of the distant counterpart 𝒋 by adding the pollen received 𝒑𝒊𝒋. 

10. Output the updated pollen amounts of flowers 𝑷𝒊. 

4.6. Updating Flower Positions 

This step is crucial for enhancing solution exploration and convergence towards optimal 

solutions. In EFPA, the Monte Carlo method is employed to evaluate the fitness of flowers, 

guiding the updating process. Let’s delve into the mathematical formulation of this step in 
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detail. Initially, it involves incorporating the pollen information received during the pollination 

process into updating flower positions. Pollen serves as a carrier of information exchanged 

among flowers, reflecting the fitness and attractiveness of neighbouring flowers. 

Mathematically, the pollen 𝑷𝒊 received by the 𝒊th flower can be expressed as Eq.(19). 

𝑷𝒊 =∑ 𝒑𝒊𝒋
𝑵

𝒋=𝟏
 (19) 

where 𝒑𝒊𝒋 represents the amount of pollen exchanged between the  

Once the pollen information is aggregated, the step size for updating flower positions is 

determined. The step size influences the magnitude of changes to flower positions, impacting 

the exploration and exploitation balance. A smaller step size encourages the exploitation of 

promising regions, while a more significant step size promotes the exploration of the solution 

space. Mathematically, the step size 𝜹 can be defined as Eq.(20). 

𝜹 =
𝟏

𝟏 + 𝒆𝒙𝒑(−𝜶𝑷𝒊)
 (20) 

where 𝜶 is a tuning parameter controlling the influence of pollen information on the step size. 

With the step size determined, the flower positions are updated using a stochastic process that 

balances exploration and exploitation. Flowers adjust their positions probabilistically, with the 

probability of moving towards regions with higher pollen amounts influenced by the step size. 

Mathematically, the updated position 𝒙𝒊
′ of the 𝒊th flower can be expressed as Eq.(21). 

𝒙𝒊
′ = 𝒙𝒊 + 𝜹 × 𝒓𝒂𝒏𝒅(𝟎, 𝟏) × (𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏) (21) 

where 𝒙𝒊 is the current position of the 𝒊th flower, 𝒙𝒎𝒊𝒏 and 𝒙𝒎𝒂𝒙 are the minimum and 

maximum bounds of the search space, and 𝒓𝒂𝒏𝒅(𝟎, 𝟏) generates a random number between 

0 and 1. 

The updating process balances exploration and exploitation by adjusting flower positions 

based on local and global information. Flowers explore promising regions of the solution space 

while exploiting areas with high fitness values. The balance between exploration and 

exploitation is crucial for efficiently navigating complex optimization landscapes. As the 

optimization process progresses, updating flower positions influences the convergence 

behaviour of the algorithm. Smaller step sizes may lead to slower convergence but finer 

exploration of the solution space, while larger step sizes may accelerate convergence but risk 

premature convergence to suboptimal solutions. Careful tuning of parameters is necessary to 

achieve desired convergence characteristics. 

4.7. Evaluating New Solutions 

This step ensures that the optimization process progresses toward solutions with improved 

fitness values. Initially, sample points are generated around the updated positions of flowers 

to estimate their fitness values. These sample points represent potential solutions near the 

updated positions, allowing for a comprehensive assessment of their fitness. Mathematically, 

the sample points 𝒙𝒊
′ around the updated position 𝒙𝒊 of the 𝒊th flower can be expressed as 

Eq.(22). 

𝒙𝒊
′ = 𝒙𝒊 + 𝝐 × 𝒓𝒂𝒏𝒅(𝟎, 𝟏) × (𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏) (22) 

where 𝝐 is a small perturbation parameter controlling the magnitude of the perturbation around 
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the updated position. 

Once the sample points are generated, the fitness of each sample point is evaluated using the 

objective function of the optimization problem. This evaluation provides an estimation of the 

fitness of the updated positions of flowers, guiding the subsequent steps of the algorithm. 

Mathematically, the fitness 𝒇(𝒙𝒊
′) of the 𝒊th sample point can be expressed as Eq.(23). 

𝒇(𝒙𝒊
′) (23) 

where 𝒙𝒊
′ represents the sample point and 𝒇(𝒙𝒊

′) represents the evaluation of the objective 

function at the sample point. 

After evaluating the fitness of each sample point, the fitness values are aggregated to estimate 

the overall fitness of the updated positions of flowers. This aggregation process provides a 

comprehensive assessment of the performance of the updated solutions, guiding the selection 

of promising candidates for further exploration. Mathematically, the aggregated fitness 𝒇𝒂𝒈𝒈  

of the updated positions can be calculated as Eq.(24). 

𝒇𝒂𝒈𝒈 =
𝟏

𝑵
∑ 𝒇(𝒙𝒊

′)
𝑵

𝒊=𝟏
 (24) 

where 𝑵 is the total number of sample points generated. 

The Monte Carlo fitness estimation may be subject to error due to the finite number of sample 

points. The estimation error 𝒆𝑴𝑪 the difference between the true fitness value and the Monte 

Carlo estimate can be quantified. Mathematically, the estimation error can be expressed as 

Eq.(25). 

𝒆𝑴𝑪 = |𝒇(𝒙) − 𝒇𝒂𝒈𝒈| (25) 

where 𝒇(𝒙) represents the actual fitness value of the updated positions. 

The convergence of the Monte Carlo estimation can be analyzed to determine the number of 

sample points required to achieve the desired level of accuracy. A larger number of sample 

points reduces the estimation error but increases computational cost. Balancing the trade-off 

between accuracy and computational resources is essential for efficiently evaluating new 

solutions. 

Algorithm 6: Evaluating New Solutions 

Input: 

• Updated positions of flowers 𝒙𝒊 
• Objective function 𝒇(𝒙) 
• Number of sample points 𝑵 

 
Output: 

• Aggregated fitness value 𝒇𝒂𝒈𝒈 

 
Procedure: 

1. For each flower 𝒊 from 1 to 𝑵, do steps 2-3. 

2. Generate a sample point 𝒙𝒊
′ around the updated position 𝒙𝒊. 

3. Evaluate the fitness of the sample point 𝒇(𝒙𝒊
′) using the objective function. 

4. Aggregate all sample points’ fitness values to estimate the updated positions’ overall fitness. 

5. Compute the aggregated fitness 𝒇𝒂𝒈𝒈 as 
𝟏

𝑵
∑ 𝒇(𝒙𝒊

′).𝑵
𝒊=𝟏  

6. Output the aggregated fitness value 𝒇𝒂𝒈𝒈. 
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4.8. Selecting Best Solutions 

Selecting the best solutions ensures that the algorithm explores and exploits solutions with 

higher fitness values, leading to improved convergence and solution quality. In EFPA, the 

Monte Carlo method facilitates selecting the best solutions, providing a reliable performance 

estimation. The aggregating fitness values in this step involves aggregating the fitness values 

of all algorithm-generated solutions. This aggregation process provides an overview of the 

performance of the solutions, allowing for a comparative analysis to identify the best 

candidates. Mathematically, the aggregated fitness 𝒇𝒂𝒈𝒈can be calculated as Eq.(26). 

𝒇𝒂𝒈𝒈 =
𝟏

𝑵
∑ 𝒇(𝒙𝒊)

𝑵

𝒊=𝟏
 (26) 

where 𝑵 is the total number of solutions generated and 𝒇(𝒙𝒊) represents the fitness of the 𝒊th 

solution. 

After aggregating the fitness values, the distribution across the solution space is estimated 

using the Monte Carlo method. This estimation provides insights into the spread and 

concentration of fitness values, guiding the selection of the best solutions. Mathematically, the 

fitness distribution 𝒇𝒅𝒊𝒔𝒕(𝒙) can be approximated as Eq.(27). 

𝒇𝒅𝒊𝒔𝒕(𝒙) =
𝟏

𝑵
∑ 𝜹(𝒙 − 𝒙𝒊)

𝑵

𝒊=𝟏
 (27) 

where 𝜹(𝒙 − 𝒙𝒊) is the Dirac delta function representing the fitness value of the 𝒊th solution 

at position 𝒙. 

Based on the estimated fitness distribution, promising solutions with fitness values above a 

certain threshold are identified as potential candidates for selection. Solutions with higher 

fitness values are prioritized, reflecting their potential to contribute to the optimization process. 

Mathematically, the set of promising solutions 𝑺𝒑𝒓𝒐𝒎𝒊𝒔𝒊𝒏𝒈 can be defined as Eq.(28). 

𝑺𝒑𝒓𝒐𝒎𝒊𝒔𝒊𝒏𝒈 = {𝒙𝒊|𝒇(𝒙𝒊) > 𝝉} (28) 

where 𝝉 is the fitness threshold used to distinguish promising solutions. 

Once promising solutions are identified, a selection strategy is employed to choose the best 

solutions from the pool of candidates. Various selection strategies can be used, including 

elitism, tournament selection, or roulette wheel selection, depending on the specific 

requirements of the optimization problem. Mathematically, the selected solutions 𝑺𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅  

can be determined using the chosen selection strategy. The selected best solutions are updated 

to guide the next iteration of the optimization process. This updating process ensures that the 

algorithm continues to explore and exploit the solution space effectively, leading to continuous 

improvement in solution quality. Mathematically, the updated best solutions 𝑺𝒖𝒑𝒅𝒂𝒕𝒆𝒅 can be 

obtained by applying appropriate mutation or crossover operators, depending on the 

optimization algorithm. 

Algorithm 7: Selecting Best Solutions 

Input: 

• Fitness values of all solutions 𝒇(𝒙𝒊) 
• Fitness threshold 𝝉 

• Number of best solutions to select 𝒌 
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Output: 

• Selected best solutions 𝑺𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 

 

Procedure: 

1. Aggregate the fitness values of all solutions to calculate the aggregated fitness 𝒇𝒂𝒈𝒈. 

2. Estimate the fitness distribution across the solution space using the Monte Carlo method. 

3. Identify promising solutions with fitness values above the threshold 𝝉 and store them in 𝑺𝒑𝒓𝒐𝒎𝒊𝒔𝒊𝒊𝒏𝒈. 

4. Apply the selected selection strategy (e.g., elitism, tournament selection, roulette wheel selection) to choose the 

best solutions from 𝑺𝒑𝒓𝒐𝒎𝒊𝒔𝒊𝒏𝒈 and store them in 𝑺𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅. 

5. If necessary, Update the best solutions using appropriate mutation or crossover operators. 

6. Output the selected best solutions 𝑺𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅. 

4.9. Stopping Criterion 

The Stopping Criterion is essential for determining when the optimization process should 

terminate. This step evaluates various termination conditions to decide whether further 

iterations are necessary. The first step is convergence criteria, which involves defining 

convergence criteria to assess whether the optimization process has sufficiently converged to 

an optimal solution. These criteria typically include monitoring changes in fitness values over 

successive iterations or assessing the stability of solution trajectories. Mathematically, 

convergence can be evaluated using Eq.(29) criteria. 

|𝒇(𝒙𝒄𝒖𝒓𝒓𝒆𝒏𝒕) − 𝒇(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔)| < 𝝐 (29) 

where 𝒇(𝒙𝒄𝒖𝒓𝒓𝒆𝒏𝒕)𝒂𝒏𝒅 𝒇(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔) represent the fitness values of the current and previous 

iterations, respectively, and 𝝐 is a small tolerance value. 

Another common stopping criterion is based on the maximum number of iterations allowed 

for the optimization process. This Criterion ensures that the algorithm terminates after a 

predefined number of iterations, regardless of the optimization progress. Mathematically, the 

termination condition can be expressed as Eq.(30). 

𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 < 𝑴𝒂𝒙𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 (30) 

where 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 represents the current iteration number, and 𝑴𝒂𝒙𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 is the 

maximum allowable number of iterations. 

Plateau detection involves monitoring whether the optimization process has reached a plateau 

where further iterations significantly fail to improve the solution. This Criterion may include 

tracking changes in fitness values over multiple iterations and identifying stagnation points. 

Mathematically, plateau detection can be based on criteria as defined in Eq.(31). 

|𝒇(𝒙𝒄𝒖𝒓𝒓𝒆𝒏𝒕) − 𝒇(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔)|

𝒎𝒆𝒂𝒏(𝒇(𝒙))
< 𝜼 (31) 

where 𝜼 is a threshold parameter controlling the tolerance for detecting plateaus. 

In addition to convergence criteria, diversity preservation criteria may be employed to ensure 

that the optimization process maintains diversity among solutions. This Criterion prevents 

premature convergence to suboptimal solutions by encouraging the exploration of diverse 

regions of the solution space. Mathematically, diversity preservation can be evaluated using 

Eq.(32). 

𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 =
𝟏

𝑵
∑ 𝒅𝒊𝒔𝒕(𝒙𝒊, 𝒙𝒎𝒆𝒂𝒏)

𝑵

𝒊=𝟏
 (32) 
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where 𝑵 is the total number of solutions, 𝒙𝒊 represents the position of the 𝒊th solution and 

𝒙𝒎𝒆𝒂𝒏 is the mean position of all solutions. 

Once the stopping criteria are evaluated, a termination decision is made based on whether any 

requirements are met. If any criterion indicates that further iterations are unnecessary, the 

optimization process is terminated, and the best solution is returned. Otherwise, the 

optimization process continues to the next iteration. 

Algorithm 8: Stopping Criterion 

Input: 

• Current iteration number 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 

• The maximum allowable number of iterations 𝑴𝒂𝒙𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 
• Tolerance value for convergence 𝝐 

• Threshold parameter for plateau detection 𝜼 

• Fitness values of current solutions 𝒇(𝒙𝒊) 
• The mean position of all solutions 𝒙𝒎𝒆𝒂𝒏 

 

Output: 

• Termination decision (continue or terminate) 

 

Procedure: 
1. Check if the current iteration number is less than the maximum allowable number of iterations: 

• If true, proceed to step 2. 

• If false, terminate the optimization process and return. 

2. Evaluate convergence criterion: 

• Calculate the absolute difference between the fitness values of current and previous iterations. |𝒇(𝒙𝒄𝒖𝒓𝒓𝒆𝒏𝒕) −

𝒇(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔)|. 

• Check if the absolute difference is less than the tolerance value 𝝐. 

• If true, terminate the optimization process and return. 

• If false, proceed to step 3. 

3. Evaluate plateau detection criterion: 

• Calculate the relative change in fitness values compared to the mean fitness value. 
|𝒇(𝒙𝒄𝒖𝒓𝒓𝒆𝒏𝒕)−𝒇(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔)|

𝒎𝒆𝒂𝒏(𝒇(𝒙))
.  

• Check if the relative change is less than the threshold parameter 𝜼. 

• If true, terminate the optimization process and return. 

• If false, proceed to step 4. 

4. Evaluate diversity preservation criterion: 

• Calculate the diversity among solutions based on their distances from the mean position: 𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 =
𝟏

𝑵
∑ 𝒅𝒊𝒔𝒕(𝒙𝒊, 𝒙𝒎𝒆𝒂𝒏)
𝑵
𝒊=𝟏  

• Check if the diversity value meets a predefined threshold. 

• If true, terminate the optimization process and return. 

• If false, continue to the next iteration. 

5. Increment the current iteration number. 

6. Repeat steps 1-5 until a termination decision is reached based on one of the criteria. 

4.10. Repeating or Terminating the Optimization Process 

This step involves deciding whether to continue the optimization process by repeating 

iterations or to terminate based on predefined criteria. In EFPA, the Monte Carlo method can 

be employed to inform this decision-making process, providing insights into the convergence 

and performance of the algorithm. The convergence criteria is assessed to determine whether 

the optimization process has sufficiently converged to an optimal solution. These criteria 

typically involve monitoring changes in fitness values or solution trajectories over successive 

iterations. Mathematically, convergence can be evaluated using equations Eq.(33) to Eq.(35). 

|𝒇(𝒙𝒄𝒖𝒓𝒓𝒆𝒏𝒕) − 𝒇(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔)| < 𝝐 (33) 
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where 𝒇(𝒙𝒄𝒖𝒓𝒓𝒆𝒏𝒕) and 𝒇(𝒙𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔) represent the fitness values of the current and previous 

iterations, respectively, and 𝝐 is a small tolerance value. 

𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 < 𝑴𝒂𝒙𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 (34) 

where 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 represents the current iteration number, and 𝑴𝒂𝒙𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 is the 

maximum allowable number of iterations. 

𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 =
𝟏

𝑵
∑ 𝒅𝒊𝒔𝒕(𝒙𝒊, 𝒙𝒎𝒆𝒂𝒏)

𝑵

𝒊=𝟏
 (35) 

where 𝑵 is the total number of solutions, 𝒙𝒊represents the position of the 𝒊th solution and 

𝒙𝒎𝒆𝒂𝒏 is the mean position of all solutions. 

Then it involves in evaluating termination conditions to decide whether further iterations are 

necessary. These conditions may include convergence criteria, maximum iterations, plateau 

detection, or diversity preservation. The termination decision can be mathematically based on 

equations Eq.(36). 

𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆 =

{
 
 

 
 
𝟏, 𝒊𝒇 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂 𝒂𝒓𝒆 𝒎𝒆𝒕
𝟏,         𝒊𝒇 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 𝒓𝒆𝒂𝒄𝒉𝒆𝒅
𝟏,                                 𝒊𝒇 𝒑𝒍𝒂𝒕𝒆𝒂𝒖 𝒅𝒆𝒕𝒆𝒄𝒕𝒆𝒅
𝟏,                    𝒊𝒇 𝒅𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 𝒏𝒐𝒕 𝒑𝒓𝒆𝒔𝒆𝒓𝒗𝒆𝒅
𝟎,                                                      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 

(36) 

where 𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆 is a binary variable indicating whether to terminate the optimization 

process (1 for terminate, 0 for continue). 

Finally, a decision is made based on the evaluation of termination conditions to determine 

whether to repeat iterations or terminate the optimization process. This decision ensures the 

algorithm progresses efficiently towards optimal solutions while avoiding unnecessary 

computational burden. Mathematically, the decision-making process can be formulated as 

Eq.(37). 

𝑫𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = {
𝑹𝒆𝒑𝒆𝒂𝒕,           𝒊𝒇 𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆 = 𝟎
𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆,    𝒊𝒇 𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒆 = 𝟏

 (37) 

where 𝑫𝒆𝒄𝒊𝒔𝒊𝒐𝒏 represents the final decision on whether to repeat iterations or terminate the 

optimization process. 

Algorithm 9: EFPA 

Input: 

• Number of flowers 𝑵 

• Maximum number of iterations 𝑴𝒂𝒙𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 

• Fitness function 𝒇(𝒙) 
• Search space boundaries 𝒙𝒎𝒊𝒏 and 𝒙𝒎𝒂𝒙 

• Perturbation parameter 𝝐 

• Fitness threshold 𝝉 

• Threshold parameter for plateau detection 𝜼 

 

Output: 

• Best solution 𝒙𝒃𝒆𝒔𝒕 
• Fitness value of the best solution 𝒇𝒃𝒆𝒔𝒕 
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Procedure: 

1. Initialize the positions of 𝑵 flowers randomly within the search space boundaries. 

2. Evaluate the fitness of each flower using the fitness function 𝒇(𝒙). 
3. Initialize the iteration counter 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 to 0. 

4. Repeat steps 5-13 until the termination condition is met. 

5. Increment the iteration counter 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 by 1. 

6. Update each flower’s pollen amount and attractiveness based on its fitness and neighbouring flowers. 

7. Update the positions of all flowers using the perturbation parameter 𝝐. 

8. Evaluate the fitness of each flower using the fitness function 𝒇(𝒙). 
9. Select the best solutions based on fitness values above the threshold 𝝉. 

10. Check the stopping criterion to determine whether to terminate the optimization process. 

11. If the termination condition is met, the best solution will be returned. 𝒙𝒃𝒆𝒔𝒕and its fitness value 𝒇𝒃𝒆𝒔𝒕. 
12. If the termination condition is not met, repeat the optimization process from step 5. 

13. Return the best solution. 𝒙𝒃𝒆𝒔𝒕and its fitness value 𝒇𝒃𝒆𝒔𝒕. 

4.11. EFPA-based Routing Protocol 

Efficient routing is essential for maximizing performance and prolonging the lifespan of IoT-

WSN. Traditional routing protocols often face challenges in dynamically adapting to network 

changes and optimizing resource utilization. This study proposes a novel approach to routing 

optimization called EFPA-based Routing Protocol (EFPA-RP). Inspired by the natural process 

of flower pollination, EFPA offers a bio-inspired optimization technique capable of efficiently 

exploring solution spaces and adapting to dynamic network conditions. It is anticipated that 

routing paths can be optimized to minimize energy consumption, enhance data delivery 

reliability, and prolong the network lifetime by integrating EFPA into the routing framework 

of WSNs. This paper presents a comprehensive investigation into the application of EFPA as 

a routing protocol in WSNs, aiming to evaluate its effectiveness in improving routing 

efficiency and overall network performance. The significant steps included in EFPA-RP are: 

Initialization: Initialize the network with sensor nodes and define the network topology. 

Step 1: Encoding: Represent routing paths as “flowers” in the EFPA. 

Step 2: Fitness Function: Define a fitness function to evaluate the quality of routing paths 

based on energy consumption, packet delivery ratio, and end-to-end delay. 

Step 3: Perturbation: Introduce perturbation parameters to adjust the attractiveness of routing 

paths and promote exploration. 

Step 4: Iterative Optimization: Apply EFPA iteratively to optimize routing paths based on 

their fitness values. 

Step 5: Local Search: Incorporate local search mechanisms to refine routing paths and 

improve solution quality. 

Step 6: Termination Criteria: Define termination criteria to determine when to stop the 

optimization process. 

Step 7: Best Solution Selection: Select the best routing paths based on their fitness values. 

Step 8: Adaptive Routing: Implement mechanisms for adaptive routing to adjust routing paths 

based on network conditions dynamically. 

Step 9: Validation and Performance Evaluation: Validate the performance of the EFPA-based 

routing protocol through simulation experiments, evaluating key performance metrics such as 

energy consumption and packet delivery ratio. 

 

5. RESULTS AND DISCUSSION 

5.1. Simulation Setting 

NS-3, a widely acclaimed network simulation tool, serves as the backbone for conducting 

simulations in this research. Renowned for its robustness and versatility, NS-3 provides an 
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extensive platform for modeling and analyzing complex network scenarios with unparalleled 

accuracy. Leveraging its comprehensive library of network protocols and models, researchers 

can replicate real-world environments and evaluate the performance of various routing 

protocols, including the proposed EFPA-RP, within IoT-WSN. NS-3's modular architecture 

enables researchers to customize simulations to suit specific research objectives, facilitating 

in-depth analysis and comparison of protocol performances under diverse conditions. NS-3's 

active community and extensive documentation offer invaluable support, ensuring researchers 

can navigate the simulation process efficiently. As a result, NS-3 emerges as an indispensable 

tool, empowering researchers to unravel insights and advancements in network optimization 

and protocol design with confidence and precision. Table 1 represents the simulation settings. 

Table 1 Simulation Settings 
Simulation Setting Value 

Transmission Range 200 m 

Traffic Type Event-Driven 

Simulation Time 600 seconds 

Simulation Environment NS-3 

Sensor Type Temperature, Humidity, Light 

Sensor Placement Grid 

Routing Protocol AODV 

Radio Frequency 2.4 GHz 

Node Count 5000 nodes 

Network Topology Random 

Network Size 1800 mts 

Mobility Model Random Waypoint 

Energy Model Battery 

Data Aggregation Strategy Maximum 

Communication Protocol IEEE 802.15.4 

Battery Capacity 10 mAh 

 

5.2. Packet Delivery and Drop Ratio Analysis 

Table 2 and Figure 1 provides packet delivery ratio (PDR) analysis of EFPA-RP model with 

different nodes. The results assumed that the EFPA-RP algorithm has higher performance. 

With 500 nodes, the EFPA-RP system has got better PDR of 96.49%, while the SSEER and 

CRP models has gained decreased PDR of 53.47% and 60.33%, respectively. Additionally, 

with 1500 nodes, the EFPA-RP technique has got maximum PDR of 92.12%, whereas the 

SSEER and CRP methodologies has achieved lower PDR of 49.51% and 56.86%, 

correspondingly. Eventually, with 5000 nodes, the EFPA-RP approach has got superior PDR 

of 80.43%, whereas the SSEER and CRP models has got reduced PDR of 30.82% and 43.68%, 

correspondingly.  

Table 2 Packet delivery ratio of EFPA-RP method with diverse nodes 
Packet Delivery Ratio (%) 

time SSEER CRP EFPA-RP 

500 53.47 60.33 96.49 

1000 51.45 58.14 95.96 

1500 49.51 56.86 92.12 

2000 47.12 54.61 91.63 

2500 46.21 53.97 90.23 

3000 41.74 50.97 88.57 

3500 37.81 48.31 85.97 

4000 33.45 47.28 84.78 

4500 31.25 46.97 82.54 

5000 30.82 43.68 80.43 
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Figure 1 Packet delivery ratio of EFPA-RP method with diverse nodes 

The packet drop ratio (PDRR) result of EFPA-RP technique with different nodes are 

demonstrated in Table 3 and Figure 2. The solutions supposed that the EFPA-RP algorithm 

has exceptional performance. With 500 nodes, the EFPA-RP method has attained minimal 

PDRR of 3.51%, although the SSEER and CRP models has developed larger PDRR of 46.53% 

and 39.67%, respectively. Also, with 1000 nodes, the EFPA-RP system has reached diminish 

PDRR of 4.04%, although the SSEER and CRP approaches has accomplished better PDRR of 

48.55% and 41.86%, respectively. Moreover, with 2000 nodes, the EFPA-RP model has got 

decreased PDRR of 8.37%, although the SSEER and CRP techniques has got enhanced PDRR 

of 52.88% and 45.39%, correspondingly. Finally, with 4500 nodes, the EFPA-RP algorithm 

has attained lower PDRR of 19.57%, although the SSEER and CRP models has acquired 

maximum PDRR of 69.18% and 56.32%, respectively. 

Table 3 Packet drop ratio outcome of EFPA-RP technique with various nodes 
Packet Drop Ratio (%) 

No. of Nodes SSEER CRP EFPA-RP 

500 46.53 39.67 3.51 

1000 48.55 41.86 4.04 

1500 50.49 43.14 7.88 

2000 52.88 45.39 8.37 

2500 53.79 46.03 9.77 

3000 58.12 49.03 11.43 

3500 62.16 51.69 14.03 

4000 66.55 52.72 15.22 

4500 68.75 53.03 17.46 

5000 69.18 56.32 19.57 
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Figure 2 Packet drop ratio outcome of EFPA-RP technique with various nodes 

5.3. Throughput Analysis 

Table 4 and Figure 3 delivers throughput performance of EFPA-RP model with distinct nodes. 

The outcomes established that the EFPA-RP model has better performance. With 500 nodes, 

the EFPA-RP algorithm has got greater throughput of 82.33%, while the SSEER and CRP 

methods has obtained minimum throughput of 30.59% and 43.81%, correspondingly. 

Similarly, with 1000 nodes, the EFPA-RP method has got improved throughput of 82.98%, 

whereas the SSEER and CRP models has reached lower throughput of 31.03% and 44.35%, 

correspondingly. Eventually, with 1500 nodes, the EFPA-RP system has got innovative 

throughput of 85.71%, however the SSEER and CRP algorithms has attained slighter 

throughput of 32.74% and 45.87%, respectively.  

Table 4 Throughput outcome of EFPA-RP technique with different nodes 
Throughput (%) 

No. of Nodes SSEER CRP EFPA-RP 

500 30.59 43.81 82.33 

1000 31.03 44.35 82.98 

1500 32.74 45.87 85.71 

2000 33.64 47.54 87.39 

2500 35.12 49.51 88.94 

3000 37.52 49.62 89.24 

3500 38.13 50.24 90.15 

4000 38.97 50.93 92.74 

4500 39.15 51.37 94.21 

5000 40.05 52.06 95.98 
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Figure 3 Throughput outcome of EFPA-RP technique with different nodes 

5.4. Delay Analysis 

Table 5 and Figure 4 illustrates the packet delay (PDEL) outcome of EFPA-RP algorithm with 

several nodes. The table values highlighted that the EFPA-RP technique has accomplish 

improved performance. With 500 nodes, the EFPA-RP method has got diminish PDEL of 

1533ms, whereas the SSEER and CRP models has attained enhanced PDEL of 2547ms and 

2089ms, correspondingly. Moreover, with 1500 nodes, the EFPA-RP system has got minimum 

PDEL of 1752ms, whereas the SSEER and CRP algorithms has accomplished maximum 

PDEL of 5231ms and 3675ms, respectively. Additionally, with 2500 nodes, the EFPA-RP 

model has got lower PDEL of 2145ms, while the SSEER and CRP techniques has reached 

maximum PDEL of 7642ms and 5237ms, respectively. At last, with 5000 nodes, the EFPA-

RP method has got minimal PDEL of 4624ms, whereas the SSEER and CRP methodologies 

has attained improved PDEL of 14963ms and 13815ms, respectively. 

Table 5 Packet delay outcome of EFPA-RP technique with various nodes 
Packet Delay (ms) 

No. of Nodes SSEER CRP EFPA-RP 

500 2547 2089 1533 

1000 3745 2857 1624 

1500 5231 3675 1752 

2000 6734 4127 1934 

2500 7642 5237 2145 

3000 9524 6895 2532 

3500 10721 8521 2675 

4000 11521 10245 2753 

4500 13745 11854 3214 

5000 14963 13815 4624 
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Figure 4 Packet delay outcome of EFPA-RP technique with various nodes 

5.5. Energy Consumption Analysis 

The energy consumption (EC) analysis of EFPA-RP model with different nodes are 

highlighted in Table 6 and Figure 5. The results concluded that the EFPA-RP system has 

greater performance. With 500 nodes, the EFPA-RP approach has got minimum EC of 

16.981%, whereas the SSEER and CRP models has gained maximum EC of 77.468% and 

59.352%, respectively. Further, with 1000 nodes, the EFPA-RP algorithm has got decrease 

EC of 19.943%, whereas the SSEER and CRP models has attained improved EC of 78.578% 

and 60.904%, correspondingly. Moreover, with 2000 nodes, the EFPA-RP system has got 

diminish EC of 22.541%, whereas the SSEER and CRP algorithms has gained superior EC of 

81.421% and 64.612%, correspondingly. Lastly, with 4500 nodes, the EFPA-RP technique has 

got lower EC of 29.124%, whereas the SSEER and CRP models has obtained enhanced EC of 

92.124% and 79.119%, respectively. 

Table 6 Energy consumption outcome of EFPA-RP technique with distinct nodes 
Energy Consumption (%) 

No. of Nodes SSEER CRP EFPA-RP 

500 77.468 59.352 16.981 

1000 78.578 60.904 19.943 

1500 79.521 62.845 20.457 

2000 81.421 64.612 22.541 

2500 83.521 66.871 23.740 

3000 84.945 68.124 25.784 

3500 87.546 70.842 27.854 

4000 89.845 73.542 28.845 

4500 92.124 77.321 29.124 

5000 93.589 79.119 29.776 
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Figure 5 Energy consumption outcome of EFPA-RP technique with distinct nodes 

5.6. Network Lifetime Analysis 

Table 7 and Figure 6 offers network lifetime (NLT) study of EFPA-RP technique with 

dissimilar nodes. The table values established that the EFPA-RP model has higher 

performance. With 1000 nodes, the EFPA-RP algorithm has got enhanced NLT of 91.88%, 

whereas the SSEER and CRP techniques has obtained lesser NLT of 21.42% and 47.23%, 

respectively. Moreover, with 2000 nodes, the EFPA-RP approach has got superior NLT of 

87.46%, while the SSEER and CRP models has accomplished reduced NLT of 18.58% and 

43.39%, correspondingly. Lastly, with 3000 nodes, the EFPA-RP system has got advanced 

NLT of 84.22%, whereas the SSEER and CRP approaches has attained minimal NLT of 

15.06% and 38.88%, respectively.  

Table 7 Network lifetime outcome of EFPA-RP technique with diverse nodes 
Network Lifetime (%) 

No. of Nodes SSEER CRP EFPA-RP 

500 22.53 48.75 93.56 

1000 21.42 47.23 91.88 

1500 20.48 45.16 89.54 

2000 18.58 43.39 87.46 

2500 16.48 41.13 86.26 

3000 15.06 38.88 84.22 

3500 12.45 35.16 82.15 

4000 10.16 32.46 81.16 

4500 9.88 27.68 79.88 

5000 8.02 25.88 77.59 
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Figure 6 Network lifetime outcome of EFPA-RP technique with diverse nodes 

 

6. CONCLUSION 

The study on the EFPA-RP within IoT-WSN reveals a significant breakthrough in network 

optimization. Through rigorous experimentation, EFPA-RP demonstrates remarkable 

efficiency in energy consumption, throughput, and delay, aligning with its overarching goal of 

enhancing network longevity. The notable network lifetime results attained by EFPA-RP 

further solidify its position as a frontrunner in sustainable IoT-WSN deployments. Surpassing 

existing protocols, EFPA-RP extends the operational lifespan of IoT-WSN networks, ensuring 

robust data transmission and prolonged network functionality. These findings underscore 

EFPA-RP's potential to revolutionize IoT-WSN infrastructures, offering scalable and 

sustainable solutions for diverse applications. As IoT technologies evolve, EFPA-RP emerges 

as a beacon of innovation, heralding a new era of resilient and efficient network architectures. 

By embracing EFPA-RP, stakeholders can unlock the full potential of IoT-WSN technologies, 

fostering heightened connectivity and efficiency across various domains. 
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