Clinical Evidence and Molecular Mechanisms of Ficus Species Plants for Preventing and Managing Kidney Stones

Swati¹, Subhash Chandra², Kumud Saklani^{1*}

¹Department of Botany, School of Basic and Applied sciences, Shri Guru Ram Rai University, India

²Department of Pharmaceutical Chemistry, Shri Guru Ram Rai University, India Email: kkumud.kumud@gmail.com

After prostate pathology and urinary tract infections, kidney stones rank third in the frequency of urinary tract issues. Urine flow obstruction and severe pain are two possible side effects of kidney stones. Typically, they are treated with drugs that have a lot of potential negative effects. In many cultures, medicinal herbs provide a dependable source of natural cures. This study aimed to determine native medicinal plants used by traditional healers of Shiraz to treat kidney stones. The findings reported in the published research confirm that dietary plants and phytosterols have a confirmed function in kidney stone control and prevention. More research is needed to ensure that these ingredients are safe and effective. In terms of safety and effectiveness, they can be processed and developed to create natural remedies. One of the urinary tract system's most prevalent and ancient illnesses is kidney stones. Numerous researches on humans have indicated that diets that include more plant-based foods may help reduce kidney stones. These dietary plant-based ingredients their essential chemical constituents and their potential modes of action have all been briefly discussed in this review.

Keywords: Nephrolithiasis; Urolithiasis; Dietary Supplement; Phytochemicals.

1. Introduction

One of the most prevalent health issues affecting the urinary tract is kidney stones, which happen 50% of the time within five to ten years [1]. Nephrolithiasis, urolithiasis, or renal calculi are hard deposits that resemble pebbles and are caused by high concentrations of specific minerals and salts. It can range in size and form from micrometers to several centimeters in diameter. With rates as high as 14.8% and rising, stone formation is very

common. Within the first five years following the initial stone episode, recurrence rates can reach 50% [2]. The kidneys, ureters, and bladder can all develop urinary tract stones. Approximately 80% of kidney stones are calcium stones, with calcium oxalate and calcium phosphate making up 80% of the total. Uric acid (UA) makes up 9%, and struvite (magnesium ammonium phosphate hexahydrate, which is caused by bacterial infections that have the enzyme urease) makes up 10%. The remaining 1% is made up of cysteine, drug stones, and ammonium acid urate [3]. Among urinary diseases, it is the third most prevalent condition [4]. According to reports, 10–12% of persons in developed nations will experience a urinary stone at some point in their lives (10% of males and 3% of women) [5]. According to reports, this disease impacted over 40% of the global population in 2000 in high-risk regions (Asian countries specially India and Saudi Arabia), and by 2050, this number is predicted to rise to 50% [6]. Southern China, India, and Pakistan are the nations that make up Asia's "stone belt." There are reports that this condition affects about 15% of the Indian population [7].

2. Literature Search Methodology

From 2005 to December 2017, herbal plants and their bioactive substances utilized for urolithiasis management and prevention were found utilizing online resources like Scopus, Science Direct, and PubMed. The keywords were dietary plant, dietary herb, phytochemical, fruits, or vegetables, kidney stone, urolithiasis, nephrolithiasis, renal calculi, renal stone, or antilithiatic. The publications that were retrieved were divided into three categories: clinical, in vitro, and in vivo. The included studies were assessed in terms of the plant's phytochemical content, potential for usage as a dietary agent, the type of kidney stone that the dietary agent effectively treats, and underlying mechanisms of action.

Dietary approaches to kidney stone prevention

Recent human studies indicate that diets rich in fruits and vegetables may help prevent urolithiasis [8]. Diet may be one of the primary risk factors for renal illnesses, based on epidemiological research [9]. Increased water and liquid intake is the most straightforward and crucial lifestyle modification to prevent stone disease. A sufficient amount of fluid lowers urine saturation and dilutes calcium oxalate crystallization promoters. Consuming a lot of protein improves urinary calcium excretion through bone reabsorption while lowering urine pH and citrate levels. The primary phosphate found in natural sources is phytotate, and eating it is linked to the creation of insoluble compounds with calcium in the stomach. These complexes can reduce the risk of urolithiasis and inhibit the production of crystals in the urine [10]. A natural diet that increases alkali load can increase urine citrate, which significantly reduces the risk of kidney stones.[11].

Phytoconstituents that prevent kidney stones

The use of traditional medicine and herbal therapies to prevent and treat a large range of disorders has grown significantly in recent years [12]. Since ancient times, people have recognized medicinal plants as a rich source of therapeutic chemicals that can help avoid a wide range of illnesses. These plants are highly respected worldwide [13]. The potential of several medicinal plants and phytochemical ingredients to prevent and treat kidney stones has been assessed [14]. Most of the remedies used in traditional medicinal systems, such as

Ayurveda, were plant-based. According to reports, these plant products effectively and without causing any negative side effects reduce the recurrence rate of renal calculi [15].

Ficus species provide urolithiasis defense

The Moraceae family, which includes the genus Ficus has about 850 species of trees, shrubs, vines, and epiphytes [16]. Throughout the world, a number of Ficus species are traditionally employed in a broad range of ethnomedical treatments. Research on Ficus has mostly concentrated on its edible components (fruits), with aerial roots and bark coming in second and third, respectively. Seldom are the leaves examined in comparison to other sections. The genus Ficus's therapeutic qualities have been thoroughly examined through pharmacological research as well as ethnobotanical field surveys [17] such as research on antibacterial [18], antidiabetic activity [19], hepatoprotective, antipyreti, anti-inflammatory, antispasmodic, antiplatelet, antihelmintic, anticancer, antiurolithiasis, anti-HIV activity and anti-diarrheal [20 & 21].

Pharmacological applications of Ficus species.

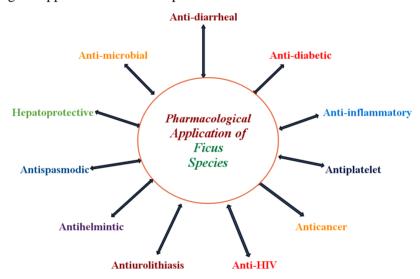


Table 1: Distribution and traditional uses of some Ficus species in Uttarakhand.

Species	Distribution	Uses as diet	Ethno- medicine		
Ficus	Kumaon, Chakrata,	Fruits edible, Wood used	latex used in diabetes		
benghalensis	Chamoli, Tons Valley:	to make tentpoles, boats,			
Ficus carica	Garhwal regions, mostly	Fruits eaten fresh or dried,	latex used in		
	grown in garden Or homeyard.	making jams, pickles, Cookies	anthelmintic and used to destroy warts.		
Ficus	Garhwal and Kumaon	Shade tree			
drupacea					
Ficus	Garhwal and	Unripe fruits use in Curries.			
hispida	Kumaon regions, mostly	Ripe fruits edible and also			
	Found in moist and	making in jam, pickles,			
	Shady places, old walls.	bark strong fibres.			
Ficus	Garhwal and Kumaon	Fruits edible,	digestive disorder		
palmata	Regions				
Ficus pumila	Garhwal and Kumaon	Non-edible,	fruits and leaves, used bleeding,		
	Regions, sub-Himalayan		swelling,		
	tract,		haemorrhoids, intestinal disorders,		

Nanotechnology Perceptions Vol. 20 No.6 (2024)

				f	fevers, etc.			
Ficus	Garhwal	and Kumaon	Wood used for making	1	Bark	and	figs used in	treat
religiosa	Region.		charcoal.	l	bronchitis and skin			
	_				Diseas	es [59].		

Table 2: Plant's which have antiurolithiasis activity

Plant/Family	Common name	Phytochemical	Part of plant	Study type	Assay	Activity	Referen ces
Ficus palmata/ Moraceae	Bedu	carbohydrates, steroids, saponins, flavonoids, tannins and phenols	Fruits/Aer ial parts	in vitro/vi tro	hydroethanolic extract,aggregati on assays, DPPH	Antiurolithiasis, Antimicrobial, Antidiabetic, Thrombolytic, anticancer Activities,	[22, 23]
Ficus carica/ Moraceae	Fig	Flavonoids, Vitam in C, Saponins, tannins, steroids and flavonoids.	Leaves, Fruits	In vivo	By using equine extract in mate-wister rats, serum analysis, and serum parameter evaluation, freeradical scavenging activity.	Anti- urolithiasis, Anti- inflammatory, Antioxidant.	[24,25, 26]
Ficus pseudop almata/Morac eae	Philippine fig.	lupeol and ethyl acetate,	leaves	Invivo/ In - vitro	Screening for Triterpenes, Free radical scavenging activity, Animalstudy, Urine analysis	Anti- urolithiasis, anti-oxidant Antibacterial	[27,28]
Ficus religiosa/ Moraceae	Weeping fig, Peepal		Leaves	in vitro	growth of CHPD crystals, Fourier transform infrared spectroscopy, thermogravimetr ic analysis etc	Anti-urolithiasis	[29]
Ficus religiosa/ Moraceae			Seeds, Root, Bark, fruit, leaves	In vitro/ In vivo	In vitro free radical scavenging activity, GC-MS analysis, Statistical analysis	Anti- urolithiasis, stomatitis, ulcers, and other inflammatory conditions like, gout anticancer. Antidiabetic. Analgesic. Anticonvulsant. Antimicrobial.	[30, 31,32,33 ,34, 35,36]
Ficus tikoua Bur. Moraceae	Wild mellon		Whole plant	In vivo	Microscopic analysis of urine,	Anti-urolithiasis	[37]
Sonchus arvensis Asteraceae	Perennial sowthistle, Field sowthistle.		Leaves	In vivo/in vitro		Anti- urolithiasis, Antimalarial, Plasmodium falciparum	[38,39]
Artocarpus altilis (PARK) Moraceae	Breadfruits		Leaves	in vitro	Atomic absorption spectrophotomet ry.	Anti-urolithiasis	[40]

Amaranthus viridis Amaranthace ae	Blood Amaranthu s		Root	In vivo	Collection and Analysis of Urine, Serum Analysis, Statistical Analysis.	Anti-urolithiasis	[41]
Raphanus sativus\ Brassicaceae	Radish	Tannins, flavonoids and Saponins.	Leaves	In vivo	aggregation assays, hydroethanolic extract, FT-IR, HPLC Chromatography	Anti-urolithiasis	[22]
Nyctanthes arbor-tristis\ Oleaceae	Night - flowering jasmine, coral jasmine or parijaat.	saponins, tannins, flavonoids and polyphenolic compounds	Leaves	In vivo	hydroethanolic extract, aggregation assays, FT-IR, HPLC Chromatography	Anti-urolithiasis	[22]
Solanum virginianum\ Solanaceae	Thorny nightshade , wild tomato etc.		whole plants	In vivo	Pharmacological screening for anti urolithiatic activity,	Anti-urolithiasis	[42]
Andrographis paniculata\ Acanthaceae	Kalmegh, king of bitters, bhui-neem etc.	Alkaloid, saponin, tannin, and flavonoid	Whole plant	In vitro	(FTIR) spectroscopy,	Anti-urolithiasis	[43]
Dolichos biflorus\ Fabaceae	Horsegram , kulthi.	carbohydrate, steroid, tannins, phenol, protein, amino acid, alkaloids, glycosides, flavonoids and saponins	Seeds	In vitro	LC-MS analysis, Molecular docking, Statistical analysis.	Anti-urolithiasis	[44]
Solanum nigrum Solanaceae	Black nightshade , Blackberry		Fruits	In vivo	Estimation of biochemical parameters, Statistical analysis	Anti-urolithiasis	[45]
Coriandrum sativum L.\ Umbelliferae	Coriander	glycosides, alkaloids flavonoids, saponins, phenols, steroids, tannins, and triterpenoids	Seeds	in vitro	nucleation, aggregation, and inhibition. Spectrophotomet ry and microscopic inspection	Anti-urolithiasis	[46]
Phyllanthus amarus\ phyllanthacea e	Stonebeak er, bhuiavla.et c	Alkaloids	Leaves	In vivo	use of the turbidity method and the calcium oxalate dissolution method,	Anti-urolithiasis	[47]
Citrus limon\ Rutaceace	Citrus	Alakaloids, saponin, flavonoids, phenolic acid.	Fruit's peel	In vivo	(GC–MS) analysis, Urinary investigations, Serum investigations, Tissue investigations,	Anti-urolithiasis	[48]

					Histopathologica l examinations, mmunohistoche mical analyses.		
Bergenia ciliata\ Saxifragaceae	Hairy Bergenia, Pakhanabh ed, Pashanbhe da	alkaloids, flavonoids saponins, terpenoids, and tannins	Rhizomes	In vivo	Nucleation assay, Aggregation assay,	Anti-urolithiasis	[49]
Bergenia ligulate\ saxifragaceae	Paashaanb hed, prashanbh eda		Rhizomes	In vitro\In vivo	EG+ aluminium chloride-induced	Anti-urolithiasis	[50]
Anacardium occidentale\ anacardiacea e	Cashew nut	phenol, alkaloid, saponin, tannin, and terpenoid	leaves extracts	In vitro	Nucleation assay, Staytisticalanaly sis, phytochemical screening.	Anti-urolithiasis	[51]
Costusarabicu s L.\ Costaceae	Spiral ginger		Whole plant	In-vitro	Calcium oxalate monohydrate, crystals induced in MDCK cells	Anti-urolithiasis	[52]
Hypericum perforatum L.\ Hypericaceae	Goat weed, klamathwe ed		leaves	In vivo	Ethylene glycol and ammonium chloride- induced stone in rats	Anti-urolithiasis	[53]
Cinnamomum zeylanicum Bl ume\ Lauraceae	Cinnamon,	flavonoid, alkaloids, triterpenes, magnesium, saponins, phenolics, tannin, resin, citrate and citric acid,	Bark	In vitro	Phytochemical analysis and HPTLC	Anti-urolithiasis	[54]
Carica papaya∖ Caricaceae	Papaya,		ripen fruits	In vivo	Ethylene glycol induced urolithiatic rats, Serum analysis, Statistical analysis	Anti-urolithiasis	[55]
Lepidagathisp rostrata\ Acanthaceae	Pashanbhe d	Flavonoids and polyphenols	whole plant	In vitro	Nucleation assay, Aggregation assay, DPPH radical scavenging assay, Statistical analysis	Anti-urolithiasis	[56]
Hylocereus undatus Linn.\ Cactaceae	Dragon fruit,	flavonoids,Terpen oid,alkaloids, saponins, tannins and phenols	Fruit	In vitro	Phytochemical Analysis, Synthesis of Zinc Nanoparticles, Struvite Crystal Growth, FT-IR spectroscopy.	Anti-urolithiasis	[57]

Ficus palmata

The antiurolithiatic potential of the hydroethanolic extract of Ficus palmata fruit was investigated by an in vitro method using nucleation, growth, and aggregation assays along with microscopic analysis of calcium oxalate crystals. The calcium oxalate crystals' number and size were reduced, and their nucleation, growth, and aggregation were inhibited by the plant extract. The study showed that the extract had a noteworthy anti-crystallization effect on calcium oxalate crystals, which might be translated into excellent antiurolithiatic activity. The extracts also influence different stages of the urinary stone production process. Cystone and the extract both showed a concentration-dependent increase in the decrease in calcium oxalate crystallization [22].

Ficus carica

In Asian cultures, Ficus carica has long been used as a medicine. The present work aimed to investigate how Ficus carica fruit affects ethylene glycol urolithiasis in albino Wistar rats. The preliminary phytochemical investigation was carried out with an aqueous extract of Ficus carica (FCAE) for BHAH identification. This study proved that F. carica has a regulating effect on Calculi formation, thereby indicating its positive role in treating Urolithiasis. Wister rats weighing between 200 and 300 grams were chosen for this investigation, and they were acclimated to the animal house for seven days. There were five groups of male Wistar rats, each with six rats. To induce urolithiasis, 0.75% v/v of ethylene glycol is added to drinking water and fed to all groups except the control group until day 28. The test groups were given FCAE (once daily by oral route) from day 15 to day 28. Cysteine was administered as a standard medication (750 mg/kg body weight) to group III. After the drug and fruit extract therapy ended, serum and urine samples were collected and analyzed to identify several parameters. Serum biochemical parameters like creatinine, urea, uric acid, and calcium were significantly reduced in animals treated with FCAE at a dose of 400 mg/kg. Reduction of these parameters indicates that FCAE has a potential anti-urolithiatic effect. This study investigates the anti-urolithiasis effect of F. carica extract, which showed promising results in improving renal functions by reducing elevated levels of creatinine, uric acid, and calcium. The extract also showed potential protective action against renal calculi and inflammatory infiltration, with more potent anti-urolithiatic activity in ethylene glycol-induced urolithiasis rat models [24].

Ficus psedopalmata

This study investigates the antiurolithiatic and antioxidant potential of Ficus pseudopalma Blanco. The crude dichloromethane (DCM) leaf extract was fractioned by silica gel column chromatography. Ethyl acetate fraction showed an IC50 of 0.2586 mg/mL against OH radical and 5.289 mg/mL against H202. 42 rats were used for this experiment and six rats were randomized and assigned per experimental group. Induction of urolithiasis was done by daily oral administration of 0.75% ethylene glycol and 1% ammonium chloride from Day 1-5, followed by daily oral administration of 0.75% ethylene glycol alone from Day 6-28. All experimental groups received urolithiatic induction for 28 days except for the vehicle control. The effect of Ficus pseudopalmata crude DCM extract was evaluated in two treatment designs: preventive and therapeutic regimens. Preventive groups received stone induction with simultaneous treatment with extract on Days 1-28. Therapeutic groups received stone induction on Day 1, and the administration of extract started on Day 15. The experimental

groups for the antiurolithiatic study were as follows: Group 1 – Vehicle control, Group 2 – Induction control, Group 3 – 1000 mg/kg dose of F. pseudopalma crude DCM extract (Preventive), Group 4 – 500 mg/kg dose of F. pseudopalma crude DCM extract (Preventive), Group 5 – 1000 mg/kg dose of F. pseudopalma crude DCM extract (Therapeutic), Group 6 – 500 mg/kg dose of F. pseudopalma crude DCM extract and lastly Group 7 – 10 mg/kg dose of Lupeol (Therapeutic- Positive control) [27].

Ficus religiosa L has been shown to have numerous biological activities such as wound healing, antibacterial, anticonvulsant, antidiabetic, and anti-inflammatory. The present study investigated the inhibitory action of an aqueous extract of Ficus religiosa leaves on the method: of growth of CHPD crystals. This technique provides a much-simplified method to understand the growth of urinary crystals in vitro. The putative activity of plant extracts as inhibitors of CHPD crystal formation was investigated. The various concentrations (50, 75, and 100 g) of the plant extract were dissolved in respective 50, 75, and 100 ml of distilled water to give 50, 75, and 100 % solution at the time of the experiment. The first Liesegang ring was observed within 12 min of pouring the solution. In total, 18 Liesegang rings were observed over time. Elongated platelet-shaped CHPD crystals grew within the rings. The crystals were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscope,y and powder x-ray diffraction methods, and confirmed to be CHPD. The results of the decreased optical density with the increase in concentration of the extract of F. religiosa indicate decreased nucleation of CHPD crystals [29].

Ficus religiosa seeds. F. religiosa seeds were extracted by Soxhlet extraction using a variety of solvents in ascending order of polarity. Antioxidant potential was assessed for each extract. The most powerful antioxidant, F. religiosa seed extract, was analyzed using GC–MS profiling to assess the phytoconstituents. In silico ADMET analysis was performed to assess these compounds' pharmacokinetics and drug-likeness characteristics. Using the Autodock Vina tool, multitarget-based virtual screening tests were conducted to understand the binding potential of the best ADMET-evaluated phytochemicals found in the F. religiosa seed extract against the various protein targets (matrix metalloproteinases (MMP-2, MMP-9), and human calcium-sensing receptor and antioxidant enzymes (glutathione S-transferase (GST), glutathione-disulfide reductase (GR), glutathione peroxidase (GPX), and superoxide dismutase (SOD)) involved in urolithiasis [30].

Phytochemicals that Prevent Urolithiasis

Several current researches have demonstrated the potential of dietary treatments as a means of protection of the kidney, either in conjunction with or independently of genetic or hereditary variables. It is possible to treat urolithiasis, reduce the chance of kidney stones coming back, and influence the growth and creation of crystals by incorporating nutritional plants and their phytochemicals into the regular diet or as dietary supplements. There are very few clinical trials for S. crispus and O. stamineus. The majority of research on these plants was done either in vitro (in a lab) or in vivo (in experimental animal models). It might not accurately depict the mechanisms and effects of O. stamineus and S. crispus on kidney stones in humans. Plant extracts have been the primary focus of most studies. This study's shortcomings include the fact that it treats kidney stones by rising

3. Discussion

Dietary plant-based ingredients such as fruits, vegetables, and food additives are significant for maintaining human health and prohibiting diseases like kidney stones. This review shows several dietary plants' effectiveness, pharmacological mechanisms, and phytochemicals in managing or preventing kidney stones. According to the most recent research, extensive in vitro and animal studies have been conducted to assess the potential of dietary plants and their phytochemicals as nutritional supplements to avoid the development of urolithiasis. These studies have shown that dietary plants have the potential to prevent and treat kidney stones, and further research is needed to determine their efficacy in humans. However, there are many clinical investigations into the effectiveness of dietary and herbal remedies in kidney stone treatment. Among the plants whose effectiveness has been verified by clinical trials are Ficus benghalensis, Ficus carica, Ficus drupacea, Ficus hispida, Ficus palmata, and Ficus religiosa. Catechin, epicatechin, EGCG, diosmin, rutin, quercetin, hyperoside, and curcumin are among the nutraceuticals (mostly dietary polyphenols) that may be suggested as effective dietary supplements for urolithiasis prevention. However, Fig. 1 describes the various medicinal applications of Ficus species in our investigation. Research studies have been performed both in vitro and in vivo to investigate the effects of Ficus species, a plant used in traditional medicine to treat urolithiasis. Still to be determined, these plants might be useful in preventing recurrence.

4. Conclusion

The review attempts to highlight the Ficus species of different plants and how their phytonutrients can assist in preventing and curing urolithiasis. Since patients frequently ask for instructions for a beneficial dietary regimen and natural dietary recommendations for patients at risk of kidney stones are inadequate, doctors must possess evidence-based knowledge about the effectiveness, pharmacological mechanisms, and adverse effects of administering a protective dietary regimen. More research utilizing clinical trials is required to verify these dietary treatments' safety and effectiveness in kidney stone patients. Additional preclinical and human research is required to identify the bioactive phytonutrients of these dietary plants in urolithiasis and the molecular and cellular mechanisms.

Conflicts of interest:

The authors declare no conflicts of interest.

Sources of funding

Not applicable

Ethical statement

Not applicable.

Author Contributions:

Swati, KK, and SC designed the structure of the paper and drafted the manuscript. Swati performed a literature search and contributed to writing the manuscript. KS and SC reviewed and revised the manuscript. All authors had full access to the final version of the manuscript *Nanotechnology Perceptions* Vol. 20 No.6 (2024)

and gave their approval before publishing.

Acknowledgments:

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

- Zakaria, N.H., Majid, F.A.A., Helmi, N.A.N.M., 2023. Medicinal potentials of Strobilanthes crispus (L.) and Orthosiphon stamineus Benth. in the management of kidney stones: A review and bibliometric analysis. Journal of Herbal Medicine, 42, pp.100773. https://doi.org/10.1016/j.hermed.2023.100773
- 2. Khan, S.R., Pearle, M.S., Robertson, W.G., Gambaro, G., Canales, B.K., Doizi, S., Tiselius, H.G., 2016. Kidney stones. Nature Reviews Disease Primers, 2(1), pp.1-23.
- 3. Evan, A.P., 2010. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatric Nephrology, 25, pp.831-841.
- Alelign, T., Petros, 2018. Kidney stone disease: an update on current concepts. Advances in Urology. https://doi.org/10.1155/2018/3068365
- 5. Gindi, S., Methra, T., Chandu, B.R., Boyina, R., Dasari, V., 2013. Antiurolithiatic and in vitro antioxidant activity of leaves of Ageratum conyzoides in rat. World Journal of Pharmaceutical and Pharmaceutical Sciences, 2, pp.636–649.
- López, M., Hoppe, B., 2010. History, epidemiology, and regional diversities of urolithiasis. Pediatric Nephrology, 25(1), pp.49-59. https://doi.org/10.1007/s00467-008-0960-5 [PubMed Central: PMC2778769]
- Khullar, M., Sharma, S.K., Singh, S.K., et al., 2004. Morphological and immunological characteristics of nanobacteria from human renal stones of a north Indian population. Urology Research, 32(3), pp.190-195. https://doi.org/10.1007/s00240-4-0400-3
- 8. Meschi, T., Nouvenne, A., Ticinesi, A., Prati, B., Guerra, A., Allegri, F., Pigna, F., Soldati, L., Vezzoli, G., Gambaro, G., 2012. Dietary habits in women with recurrent idiopathic calcium nephrolithiasis. Journal of Translational Medicine, 10, p.63. [CrossRef] [PubMed]
- 9. Meschi, T., Maggiore, U., Fiaccadori, E., Schianchi, T., Bosi, S., Adorni, G., Ridolo, E., Guerra, A., Allegri, F., Novarini, A., 2004. The effect of fruits and vegetables on urinary stone risk factors. Kidney International, 66, pp.2402–2410. [CrossRef] [PubMed]
- 10. Kumar, V., Sinha, A.K., Makkar, H.P., Becker, K., 2010. Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120, pp.945–959. [CrossRef]
- 11. Nirumand, M.C., Hajialyani, M., Rahimi, R., Farzaei, M.H., Zingue, S., Nabavi, S.M. & Bishayee, A., 2018. Dietary plants for the prevention and management of kidney stones: preclinical and clinical evidence and molecular mechanisms. International Journal of Molecular Sciences, 19(3), p.765.
- 12. Farzaei, M.H., Abdollahi, M., Rahimi, R., 2015. Role of dietary polyphenols in the management of peptic ulcer. World Journal of Gastroenterology, 21, p.6499. [CrossRef] [PubMed]
- 13. Alok, S., Jain, S.K., Verma, A., Kumar, M., Sabharwal, M., 2013. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: A review. Asian Pacific Journal of Tropical Disease, 3, pp.496–504. [CrossRef]
- Lien, E.J.-C., Lien, L.L.-M., Wang, R., Wang, J., 2012. Phytochemical analysis of medicinal plants with kidney protective activities. Chinese Journal of Integrative Medicine, 18, pp.790–800. [CrossRef] [PubMed]
- 15. Makasana, A., Ranpariya, V., Desai, D., Mendpara, J., Parekh, V., 2014. Evaluation for the anti-urolithiatic activity of Launaea procumbens against ethylene glycol-induced renal calculi in rats. Toxicology Reports, 1, pp.46–52. [CrossRef] [PubMed]
- 16. Deepa, P., Sowndhararajan, K., Kim, S., Park, S.J., 2018. A role of Ficus species in the management of diabetes mellitus: A review. Journal of Ethnopharmacology, 215, pp.210-232.
- 17. Shi, Y., Mon, A.M., Fu, Y., Zhang, Y., Wang, C., Yang, X., Wang, Y., 2018. The genus Ficus (Moraceae) used in diet: Its plant diversity, distribution, traditional uses and ethnopharmacological importance. Journal of Ethnopharmacology, 226, pp.185-196.
- 18. Salehi, B., Prakash Mishra, A., Nigam, M., Karazhan, N., Shukla, I., Kiełtyka-Dadasiewicz, A., Sharifi-Nanotechnology Perceptions Vol. 20 No.6 (2024)

- Rad, J., 2021. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytotherapy Research, 35(3), pp.1187-1217.
- 19. Jia, Q., Zhu, R., Tian, Y., Chen, B., Li, R., Li, L., Zhang, D., 2019.Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine, 58, p.152871. https://doi.org/10.1016/j.phymed.2019.152871
- 20. Badgujar, S.B., Patel, V.V., Bandivdekar, A.H., Mahajan, R.T., 2014. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharmaceutical Biology, 52(11), pp.1487-1503.
- 21. Bervinova, A.V., Palikov, V.A., Mikhailov, E.S., Palikova, Y.A., Borozdina, N.A., Kazakov, V.A., Murashev, A.N., 2022. Efficacy of Ficus tikoua Bur. extract in ethylene glycol-induced urolithiasis model in SD rats. Frontiers in Pharmacology, 13, p.974947.
- 22. Bawari, S., Tewari, D., & Negi Sah, A., 2022. Ameliorative effects of Raphanus sativus L., Nyctanthesarbor-tristis L., and Ficus palmataForssk. on calcium oxalate crystallization events of stone formation in vitro. Indian Journal of Pharmaceutical Sciences, 84(2), pp.287-299.
- 23. Al-Qahtani, J., Abbasi, A., Aati, H.Y., Al-Taweel, A., Al-Abdali, A., Aati, S., Anwar, M., 2023. Phytochemical, antimicrobial, antidiabetic, thrombolytic, anticancer activities, and in silico studies of Ficus palmataForssk. Arabian Journal of Chemistry, 16(2), p.104455
- 24. Kavitha, K., 2021. Evaluation of Ficus carica fruit extract against ethylene glycol-induced urolithiasis in albino Wistar rats. Bulletin of Environmental Pharmacology and Life Sciences, 10, pp.196-202.
- 25. Ali, B., Mujeeb, M., Aeri, V., Mir, S.R., Faiyazuddin, M., Shakeel, F., 2012. Anti-inflammatory and antioxidant activity of Ficus carica Linn. leaves. Natural Product Research, 26(5), pp.460-465.
- 26. Irum, Z.O.O.B.I.A., Khan, F.A., Parveen, F.O.U.Z.I.A., Bhatti, F.Y., Siddique, A.H., Z.Z., 2022. Ficus carica reduces serum uric acid level in hyperuricemic rats. Pakistan Journal of Medical and Health Sciences, 16(1), pp.243-246.
- 27. Acosta, C.J., Macabeo, A.P., & Santiago, L.A., 2013. Assessment of the antiurolithiatic and antioxidant properties of Ficus pseudopalma Blanco leaves (Moraceae). Current Research in Biological and Pharmaceutical Sciences, 2, p.30.
- 28. De Las Llagas, M.C., Santiago, L., & Ramos, J.D., 2014. Antibacterial activity of crude ethanolic extract and solvent fractions of Ficus pseudopalma Blanco leaves. Asian Pacific Journal of Tropical Disease, 4(5), pp.367-371.
- 29. Baskaraboopathy, A., Rajaram, M.G., Elizabeth, A.R., Eevera, T., & Jayakumar, T., 2017. An aqueous extract of the leaves of Ficus religiosa inhibits the growth of urinary calcium hydrogen phosphate dihydrate crystals An in vitro study. Journal of Alternative Complementary Integrative Medicine, 3, p.041.
- 30. Pinipay, F., Rokkam, R., Botcha, S., &Tamanam, R.R., 2023. Evaluating the anti-urolithiasis potential of Ficus religiosa seed GC-MS evaluated phytoconstituents based on their in-vitro antioxidant properties and in-silico ADMET and molecular docking studies. Clinical Phytoscience, 9(1), p.7.
- 31. Saha, S., & Goswami, G., 2010. Study of antiulcer activity of Ficus religiosa L. on experimentally induced gastric ulcers in rats. Asian Pacific Journal of Tropical Medicine, 3, pp.791–793.
- 32. Choudhari, A.S., Suryavanshi, S.A., & Kaul-Ghanekar, R., 2013. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 positive) and apoptosis in HeLa (HPV-18 positive). PLoS ONE, 8, p.70127.
- 33. Ambike, S.H., & Rao, M.R., 1967. Indian Journal of Pharmacology, 29, pp.91–92.
- 34. Sreelekshmi, R., Latha, P.G., Arafat, M.M., Shyamal, S., Shine, V.J., Anuja, G.I., Suja, 2009.
- 35. Singh, D., & Goel, R.K., 2009. Ethanopharmacology, 123, pp.330-334.
- 36. Uma, B., Prabhakar, K., & Rajendran, S., 2009. Ethnobotanical Leaflets, 13, pp.472-474.
- 37. Bervinova, A.V., Palikov, V.A., Mikhailov, E.S., Palikova, Y.A., Borozdina, N.A., Kazakov, V.A., ... &Murashev, A.N., 2022. Efficacy of Ficus tikoua Bur. extract in ethylene glycol-induced urolithiasis model in SD rats. Frontiers in Pharmacology, 13, p.974947.
- 38. Tandi, J., Sutrisna, I.N.E., Pratiwi, M., &Handayani, T.W., 2020. Potential test of nephropathy Sonchus arvensis L. leaves on male rats (Rattus norvegicus) with diabetes mellitus. Pharmacognosy Journal, 12(5).
- 39. Wahyuni, D.K., Wacharasindhu, S., Bankeeree, W., Wahyuningsih, S.P.A., Ekasari, W., Purnobasuki, H., ... &Prasongsuk, S., 2023. In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L. BMC Complementary Medicine and Therapies, 23(1).
- Putra, E.D.L., Ginting, N.A.H.I.T.M.A., Nazliniwaty, N.A.Z.L.I.N.I.W.A.T.Y., Iksen, I.K.S.E.N., Kurniawan, E.R.I.K., & Nerdy, N.E.R.D.Y., 2018. In vitro antinephrolithiasis effect of breadfruit (Artocarpus altilis (Park.) Fosberg) leaves extract by atomic absorption spectrophotometry. Asian Journal

- of Pharmaceutical and Clinical Sciences, 11, pp.206-209.
- 41. Asha, S., & Thirunavukkarasu, P., 2013. Antiurolithiatic activity of Amaranthus viridis on ethylene glycol induced male rat. Inventi Rapid Pharmacognosy, 13(4).
- 42. Chinnala, K.M., Shanigarm, S., &Elsani, M.M., 2013. Antiurolithiatic activity of the plant extracts of Solanum virginianum on ethylene glycol induced urolithiasis in rats. International Journal of Pharmacy and Biological Sciences, 3, pp.328.
- 43. Dulanjali, S.S., & Srikaran, R., 2020. Anti-urolithiatic activity of extract of Andrographis paniculata plant on calcium oxalate crystals: An in vitro preliminary study. Journal of Pharmaceutical Innovation, pp.1-7.
- 44. Atodariya, U., Barad, R., Upadhyay, S., & Upadhyay, U., 2013. Anti-urolithiatic activity of Dolichos biflorus seeds. Journal of Pharmacognosy and Phytochemistry, 2(2), pp.209-213.
- 45. Kushwaha, V., Sharma, M., Vishwakarma, P., Saini, M., Bhatt, S., & Saxena, K.K., 2016. Evaluation of nephroprotective and nephrocurative activity of Solanum nigrumon gentamicin induced nephrotoxicity in experimental rats. International Journal of Basic & Clinical Pharmacology, 5(1), pp.74-78.
- Raj, S., Rajan, M.S.G.S., Ramasamy, S., Goldy, R.I.R.S., Ariyamuthu, R., Sudhagar, M., ... & Gurusamy, M., 2023. An in vitro anti-urolithiasis activity of a herbal formulation: Spinacia oleracea L. and Coriandrum sativum L. Clinical Complementary Medicine and Pharmacology, p.100124.
- 47. Woottisin, S., Hossain, R.Z., Yachantha, C., Sriboonlue, P., Ogawa, Y., & Saito, S., 2011. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa, and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats. The Journal of Urology, 185(1), pp.323-328.
- 48. Sridharan, B., Michael, S.T., Arya, R., Mohana Roopan, S., Ganesh, R.N., & Viswanathan, P., 2016. Beneficial effect of Citrus limon peel aqueous methanol extract on experimentally induced urolithic rats. Pharmaceutical Biology, 54(5), pp.759-769.
- 49. Saha, S., & Verma, R.J., 2013. Inhibition of calcium oxalate crystallisation in vitro by an extract of Bergenia ciliata. Arabian Journal of Urology, 11, pp.187–192.
- 50. Aggarwal, D., Kaushal, R., Kaur, T., Bijarnia, R.K., Puri, S., & Singla, S.K., 2014. The most potent antilithiatic agent ameliorating renal dysfunction and oxidative stress from Bergenia ligulata rhizome. Journal of Ethnopharmacology, 158, pp.85–93.
- 51. Rahim, N. F. A., Muhammad, N., & Abdullah, N., 2022. Optimum extraction condition of Anacardium occidentale on antiurolithiatic activities (in-vitro). Sains Malaysiana, 51(4), pp.1099-1109.
- 52. De Cógáin, M. R., Linnes, M. P., Lee, H. J., Krambeck, A. E., de Mendonça Uchôa, J. C., Kim, S.-H., & Lieske, J. C., 2015. Aqueous extract of Costusarabicus inhibits calcium oxalate crystal growth and adhesion to renal epithelial cells. Urolithiasis, 43, pp.119–124.
- 53. Khalili, M., Jalali, M. R., & Mirzaei-Azandaryani, M., 2012. Effect of hydroalcoholic extract of Hypericum perforatum L. leaves on ethylene glycol-induced kidney calculi in rats. Urology Journal, 9, pp.472–479.
- 54. Zaki, S., Jahan, N., Kalim, M., & Islam, G., 2019. In vitro antilithiatic activity of the hydro-alcoholic extract of Cinnamomum zeylanicum Blume bark on calcium oxalate crystallization. Journal of Integrative Medicine, 17(4), pp.273-281.
- 55. Nayeem, K., Gupta, D., Nayana, H., & Joshi, R. K., 2010. Antiurolithiatic potential of the fruit extracts of Carica papaya on ethylene glycol-induced urolithiatic rats. Journal of Pharmaceutical Research, 3(11), pp.2772-2775.
- Devkar, R. A., Chaudhary, S., Adepu, S., Xavier, S. K., Chandrashekar, K. S., & Setty, M. M., 2016. Evaluation of antiurolithiatic and antioxidant potential of Lepidagathisprostrata: A Pashanbhed plant. Pharmaceutical Biology, 54(7), pp.1237-1245.
- 57. Sundarapandiyan, V., Diana, I. H., & Manjula, K., 2024. Green synthesis of zinc oxide nanoparticles in the fruit extracts of Hylocereus undatus Linn. and its antiurolithiatic activity against struvite kidney stones. Journal of Natural Remedies, pp.1505-1516.
- 58. Chandra, S., Kala, K., Negi, M. S., & Nautiyal, A., 2023. Current Medical and Drug Research.
- 59. Pramanick, D. D., 2016. Enumeration of the genus Ficus L. (Moraceae) in Uttarakhand, India. Journal of Economy and Taxonomic Botany, 40, pp.1-11.