
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

3Nanotechnology Perceptions 20 No. S15 (2024) 3537-3559

AI Framework for Diabetes Detection

via Health Records

Saurabh Kumar1, Dr. Ritu Sindhu2

1Ph.D scholar, Lingaya’s Vidyapeeth, Sharma8saurabh@gmail.com

2Professor Lingaya’s Vidyapeeth, Ritu.sindhu2628@gmail.com

The prediction of diabetes is a crucial task in healthcare, with significant implications for early

diagnosis and intervention. This study compares six commonly used classification algorithms—k-

Nearest Neighbors (KNN), Naive Bayes, Decision Tree, Random Forest, Support Vector Machine

(SVM), and Logistic Regression on a publicly available diabetes dataset. We evaluate the models

based on accuracy, precision, recall, F1-score, and confusion matrix to determine the most effective

algorithm for predicting diabetes outcome. Our findings indicate that Random Forest and Decision

Tree outperform other classifiers in terms of accuracy and generalization.

Keywords: Machine learning; Classification; Diabetes.

1. Introduction

Diabetes is one of the most prevalent chronic diseases worldwide, affecting millions of

individuals. Early detection and timely intervention are crucial for effective management,

reducing complications and improving the quality of life for patients. Machine learning (ML)

algorithms have shown promising potential in predicting the likelihood of diabetes onset based

on various health-related features such as glucose levels, BMI, age, and family history.

This study aims to compare the performance of six classification models— k-Nearest

Neighbors (KNN), Naive Bayes, Decision Tree, Random Forest, Support Vector Machine

(SVM), and Logistic Regression on diabetes dataset. By comparing these models, we intend

to identify the most suitable classifier for predicting diabetes outcomes in terms of accuracy,

precision, recall, F1-score, and overall generalization performance.

2. Related Work

The application of machine learning in healthcare, specifically for the prediction of diabetes,

has been widely explored. Several studies have focused on applying various classification

algorithms to predict diabetes based on demographic, clinical, and laboratory data.

A study by Ali et al. (2020) demonstrated that the k-Nearest Neighbors (KNN) algorithm could

effectively classify diabetes outcomes. KNN works by assigning a class label based on the

majority class among the nearest neighbors of a data point. While KNN is simple and intuitive,

http://www.nano-ntp.com/

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3538

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

its performance often depends on the choice of distance metric and the number of neighbors

used.

Priya et al. (2020) applied Naive Bayes classification to predict diabetes from a dataset of

medical features. The authors showed that Naive Bayes, being a probabilistic classifier,

performs well when the features are conditionally independent. It is especially useful when

dealing with noisy data but may underperform if the independence assumption is violated.

The decision tree algorithm is a popular model for classification due to its interpretability and

simplicity. However, it can suffer from overfitting when the data is noisy. Permana et al.

(2021) showed that decision trees can be a robust tool for diabetes classification, but

combining multiple trees into an ensemble (i.e., Random Forest) leads to improved accuracy

and generalization.

Support Vector Machines (SVM) have gained attention for their ability to handle high-

dimensional data and their strong theoretical foundations. Studies like Kumari et al. (2013)

have demonstrated that SVMs with non-linear kernels outperform traditional classifiers in

binary classification tasks like diabetes prediction.

Logistic regression is one of the simplest classification models, commonly used for binary

classification tasks. In Rajendra and Latifi (2021), logistic regression was applied to predict

diabetes and found to perform reasonably well when combined with regularization to avoid

overfitting.

Other works like Zheng et al. (2017) used Na¨ıve Bayes, Decision Tree and Random Forest to

predict type 2 diabetes. Work of Pang et al. (2024) used BiLSTM-CRF, XGBoost, and Logistic

Regression models to predict Diabetes. The work of Rashid et al. (2022) use 1-D convolutional

RNN with LSTM layer with predict type 2 diabetes. Work of Nguyen et al. (2019) used deep

learning to detect type 2 diabetes. Further work of Chaki et al. (2022) used KNN and SVM to

classify patients as diabetic. Work of HL et al. (2023) used random forest to predict diabetes

in canadian patients. The work of Patil et al. (2024) used SVM to classify patients diabetes.

Work of Roy et al. (n.d.) used Structure Equation Modelling to monitor diabetes. Further work

of Kenner et al. (2021) used machine learning to predict pancreatic cancer. The work of Menon

et al. (2023) used advanced- spatial-vector-based Random Forest to classify diabetes health

records. Work of Boudjemadi et al. (2021) used logistic regression to predict type 2 diabetes.

The work of Khalifa and Albadawy (2024) use predictive modeling to classify patients as

diabetic. Work of Ellahham (2020) highlights the prevalence of support vector machine,

artificial neural network, Adaboost, logistic regression, decision tree, and random forest in

predicting diabetes. THe work of Rigla et al. (2018) used decision trees, artificial neural

networks and support vector machines predict type 2 diabetes.

While these algorithms have been widely applied in the healthcare domain, there is limited

research directly comparing their performance on the same diabetes dataset. This paper aims

to fill this gap by conducting a comprehensive evaluation of six classification algorithms and

providing a comparative analysis of their strengths and weaknesses.

3539 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

3. Methodology

3.1 Dataset Description

The dataset used in this study is the Diabetes Database Diabetes Dataset (2024), which

contains information about 2768 patients. The dataset includes 8 features (e.g., pregnancies,

glucose, blood pressure, skin thickness, insulin, BMI, age, and diabetes pedigree function, age)

and a binary target variable, ‘Outcome‘, where ‘1‘ indicates the presence of diabetes and ‘0‘

indicates the absence.

3.2 Data Preprocessing and Analysis

• Handling Missing Values: Missing data in the dataset was handled by replacing

missing values with the median of the respective feature.

• Feature Scaling: To improve the performance of models sensitive to the scale of data

(e.g., KNN, SVM), the features were standardized, which centers the data around zero with a

unit variance.‘

• Data Split: The dataset was randomly split into 80% for training and 20% for testing.

We first visualize the univariate distribution of numerical variable in Figure 1 Then we

visualize the correlation of numerical variable in Figure 2

3.3 Models

We implemented and compared the following models:

• k-Nearest Neighbors (KNN): k-Nearest Neighbors (k-NN) is one of the simplest and

most widely used machine learning algorithms for classification and regression tasks. It

belongs to the family of instance- based learning algorithms, which means that the model

doesn’t explicitly learn a discriminative function during the training phase. Instead, the model

memorizes the training dataset and makes predictions based on the stored data during the

testing or prediction phase. The core idea behind k-NN is to classify or predict the output for

a new data point based on the majority label (in classification) or the average label (in

regression) of its ’k’ nearest neighbors in the feature space. This makes k-NN particularly

intuitive and easy to understand, but it also means that its performance heavily depends on the

distance metric used and the value of ’k’.

The definition of k-NN begins with the concept of a feature space, where each data point is

represented as a vector in an n-dimensional space. Suppose we have a training dataset D =

{(xi, yi)}N , where xi ∈ Rn is the feature vector for the i-th instance, and yi is the corresponding

label or target value. The goal is to predict the label or value y for a new query point xq based

on its proximity to the training data points in the feature space.

The primary mathematical foundation behind k-NN is the distance metric used to compute the

proximity between the query point and each of the training points. The most commonly used

distance measure is the Euclidean distance, although other distance metrics, such as Manhattan

distance or Minkowski distance, can also be employed depending on the problem and domain.

The Euclidean distance between two points xi and xq in an n-dimensional space is given by:

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3540

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Figure 1: Univariate Distribution of Numerical variables.

where xij and xqj represent the j-th feature of the points xi and xq , respectively. This distance

metric quantifies how far two points are from each other, with smaller values indicating closer

proximity.

The training procedure in k-NN is essentially trivial in terms of model fitting. Unlike other

machine learning algorithms, k-NN does not require optimization of model parameters or

explicit learning from the training data. Instead, during training, the algorithm simply stores

the entire dataset, which is why it is often referred to as a lazy learner. There is no need for

3541 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

any explicit training procedure in the traditional sense—data points are simply indexed for

quick retrieval when making predictions. The only hyperparameter that needs to be determined

is the value of k, which specifies how many nearest neighbors will be considered for making

a prediction.

Once the training data has been stored, the prediction mechanism in k-NN involves two main

steps: identi- fying the k nearest neighbors and then aggregating their labels or target values

to make a final prediction. Let us focus on the classification task first. Given a query point xq

, the algorithm computes the distances between xq and all training points xi. These distances

are then sorted, and the k training points with the smallest distances to xq are selected. Once

the nearest neighbors are identified, the next step is to make the prediction. In classification,

the most common approach is to perform a majority vote among the labels of the k-nearest

neighbors. The predicted label yˆq for the query point xq is given by:

Figure 2: Correlation of Numerical variables.

yˆq = mode {yi : xi ∈ nearest neighbors of xq }

where the mode function returns the most frequent label among the k-nearest neighbors. In the

case of a tie, several strategies can be used, such as choosing the label with the smallest

distance or randomly selecting one of the tied labels.

For regression tasks, the mechanism for predicting the output is slightly different. Instead of

using a majority vote, the algorithm computes the mean or weighted average of the target

values of the k-nearest neighbors. Let yi be the target value associated with the training point

xi. The predicted value yˆq for the query point xq is then given by:

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3542

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

If weighted k-NN is used, where closer neighbors have more influence, the prediction is

adjusted by weighting the contributions of each neighbor by the inverse of their distance.

Specifically, the weighted prediction can be written as:

where d(xi, xq) is the distance between the query point xq and the i-th neighbor. This weighted

version of k-NN ensures that closer neighbors contribute more significantly to the prediction,

which can often lead to better results, especially in cases where the data is noisy or non-linear.

In both classification and regression tasks, one important aspect of the k-NN algorithm is the

choice of k, which can greatly affect model performance. A small value of k (e.g., k = 1) makes

the model very sensitive to noise in the data, as the prediction is based only on the nearest

neighbor, which might not be representative of the overall data distribution. On the other hand,

a large value of k results in smoother decision boundaries, but it can also lead to over-

smoothing, where the model fails to capture important patterns in the data. Therefore, selecting

an optimal value of k is crucial, and it is often determined through techniques such as cross-

validation or grid search.

Additionally, the choice of distance metric plays an important role in the performance of k-

NN. While Euclidean distance is the default in many applications, it assumes that all features

are on the same scale and equally important. In cases where features have different units or

varying ranges, the distance metric may need to be normalized or standardized. For example,

if xi and xq contain features with different magnitudes, such as age in years and income in

thousands of dollars, it is often beneficial to scale the features before calculating the Euclidean

distance. One common approach is to use z-score normalization, where each feature xj is

standardized by subtracting its mean and dividing by its standard deviation:

x′ =
xj − µj

j σj

where µj is the mean and σj is the standard deviation of the j-th feature. After standardization,

the Euclidean distance can be calculated as:

Alternatively, one might use other distance metrics such as Manhattan distance:

or Minkowski distance, which generalizes both Euclidean and Manhattan distances:

3543 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

where p is a parameter that, when set to 2, results in the Euclidean distance, and when set to

1, results in the Manhattan distance.

One of the major advantages of k-NN is its non-parametric nature. It makes no assumption

about the underlying distribution of the data, which makes it highly flexible and able to model

complex, non-linear decision boundaries. However, this also means that the model can suffer

from the “curse of dimensionality” in high-dimensional spaces. As the number of features

increases, the distance between data points becomes more similar, and the algorithm’s ability

to differentiate between neighbors diminishes. To mitigate this, di- mensionality reduction

techniques such as Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor

Embedding (t-SNE) are sometimes employed before applying k-NN to high-dimensional data.

Despite its simplicity, k-NN has several limitations. The most notable one is its computational

cost, especially during the prediction phase. Since the algorithm has to compute the distance

between the query point and all points in the training dataset, its time complexity for prediction

is O(N), where N is the number of training samples. This can be prohibitively slow for large

datasets, especially in high-dimensional spaces. To address this issue, various optimization

techniques have been proposed, such as using data structures like k-d trees or ball trees, which

allow for faster nearest neighbor searches by partitioning the feature space and reducing the

number of comparisons.

Another limitation is that k-NN is sensitive to the quality of the data. If the dataset contains

irrelevant features, noisy data, or outliers, the algorithm’s performance can degrade

significantly. In such cases, preprocessing steps such as feature selection, outlier detection,

and noise filtering can help improve the model’s robustness and accuracy.

• Naive Bayes: Naive Bayes is a family of probabilistic algorithms based on applying

Bayes’ theorem with strong (naive) independence assumptions between the features. It is

particularly popular in classification tasks, especially when the data can be modeled well with

the assumption that each feature is conditionally independent given the class label. Despite its

simplicity, Naive Bayes can perform surprisingly well, espe- cially in cases with high-

dimensional data or when the feature independence assumption is approximately true.

The underlying mathematical model of Naive Bayes is grounded in Bayes’ theorem, which is

a fundamental result in probability theory that describes how to update the probability of a

hypothesis (in this case, the class label) based on observed evidence (features). Given a dataset

with n features, denoted as x = (x1, x2, . . . , xn), the goal of Naive Bayes is to predict the class

label y for a new observation based on these features. Bayes’ theorem provides a way to

compute the posterior probability of the class y given the features x:

Here, P (y | x) is the posterior probability, P (x | y) is the likelihood, P (y) is the prior probability

of the class y, and P (x) is the marginal likelihood of the features. The term P (x) is constant

for all classes and does not affect the relative ranking of the classes, so it is typically ignored

in the classification process. This simplification leads to the core of Naive Bayes, which

involves maximizing the likelihood of the class given the data:

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3544

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

P (y | x) ∝ P (x | y)P (y)

Now, the likelihood term P (x | y) is where the Naive Bayes assumption of feature

independence comes into play. Naive Bayes assumes that the features x1, x2, . . . , xn are

conditionally independent given the class label y. Therefore, the joint likelihood P (x | y) can

be factored into the product of individual likelihoods for each feature:

Substituting this factorization back into the Bayes’ theorem formula, we get:

This equation expresses the posterior probability of the class y given the feature vector x. In

practice, we compute the posterior probabilities for each possible class y and choose the class

that maximizes this probability:

The next step is determining how to estimate the terms P (y) and P (xi | y). The prior probability

P (y) represents the relative frequency of the class label y in the training data, and it can be

estimated by simply counting the occurrences of each class in the dataset:

where count(y) is the number of instances in the training set with class label y, and N is the

total number of instances in the training set.

The likelihood term P (xi | y) represents the conditional probability of feature xi given the class

y. To esti- mate this probability, we typically rely on different methods depending on the type

of data. For continuous features, we often assume that the feature values follow a normal

(Gaussian) distribution, so the likelihood can be modeled as:

where µy and σ2 are the mean and variance of the feature xi for the class y, respectively. These

parameters are typically estimated from the training data by calculating the sample mean and

sample variance for each feature within each class.

For categorical features, the likelihood P (xi | y) is estimated by the relative frequency of the

value xi occurring for class y. If the feature xi can take on k different values, then:

3545 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

where count(xi = v, y) is the number of instances where feature xi takes the value v and the

class label is

y, and count(y) is the total number of instances in class y.

The process of training a Naive Bayes classifier involves estimating these parameters from the

training data: the prior probabilities P (y) and the conditional probabilities P (xi | y) for each

feature xi. The training procedure is straightforward, as it merely involves counting

occurrences in the data. After training, the model is ready to predict the class label for new,

unseen instances.

To predict the class label for a new observation x = (x1, x2, . . . , xn), we calculate the posterior

probability for each possible class y using the formula:

and then choose the class that maximizes this posterior probability. In practice, it is often more

convenient to work with the logarithms of probabilities to avoid numerical underflow when

multiplying many small probabilities. Taking the logarithm of both sides:

The predicted class yˆ is then:

One key feature of Naive Bayes is its simplicity and efficiency. Because the conditional

independence assumption significantly reduces the complexity of the model, the training

procedure is very fast, and it can handle large datasets with high-dimensional features.

Moreover, the Naive Bayes model is computationally inexpensive during both training and

prediction. This makes it particularly useful in applications such as text classification, spam

filtering, and sentiment analysis, where the feature space is often large and sparse.

Despite its simplicity, Naive Bayes has some important limitations. The most significant is the

strong inde- pendence assumption, which is rarely true in real-world datasets. If the features

are highly correlated, the performance of Naive Bayes can suffer. However, in many practical

situations, even when the independence assumption is violated, Naive Bayes can still provide

competitive performance. Additionally, Naive Bayes does not handle feature interactions well,

as it assumes that each feature contributes independently to the class label.

An extension of Naive Bayes, known as the Multinomial Naive Bayes, is commonly used in

text classification tasks, where the features are typically word counts or term frequencies. In

this variant, the likelihood term P (xi | y) is modeled as a multinomial distribution, which is

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3546

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

appropriate for count data. The Multinomial Naive Bayes classifier has become particularly

popular in natural language processing (NLP) tasks such as spam detection, sentiment analysis,

and document classification.

Despite the simplifying assumptions and limitations, Naive Bayes remains a powerful tool for

classification, particularly when computational resources are limited or when the problem

involves high-dimensional data. It is often used as a baseline model in machine learning, with

more complex models being compared to its performance. Furthermore, Naive Bayes’

probabilistic nature provides a natural way to quantify uncertainty in predictions, which can

be useful in decision-making contexts where probabilities rather than hard classifications are

required.

• Decision Tree: A Decision Tree is a non-linear predictive model used for both

classification and regression tasks. It builds a flowchart-like structure where each internal node

represents a decision based on the value of a feature, each branch represents the outcome of

that decision, and each leaf node represents a class label or a predicted value. The primary goal

of a decision tree is to partition the data into subsets that are as pure as possible, based on a

chosen criterion, which helps in making predictions or classifications. The process of

constructing a Decision Tree involves two key phases: training the model, where the tree is

built by recursively splitting the data, and using the model for prediction, where the tree is

traversed to make decisions based on new input data.

Mathematically, the decision tree building process relies on concepts from information theory,

such as entropy and Gini impurity, as criteria to select which feature and threshold to split on.

For classification tasks, the entropy is defined as:

where H(S) is the entropy of a set S, and pi represents the proportion of elements in set S that

belong to class i. The entropy measures the impurity of a set: the higher the entropy, the more

mixed the set is in terms of class distribution. When building the tree, the algorithm looks for

the feature that splits the data in such a way that the resulting subsets have lower entropy,

indicating a purer classification.

The Gini impurity is another criterion used to measure the impurity of a dataset, and is defined

as:

where G(S) is the Gini impurity of set S and pi is the proportion of elements in set S that

belong to class i. Like entropy, a lower Gini score means a purer node. The Decision Tree

algorithm evaluates the Gini index across all possible splits and chooses the one that results

in the lowest Gini impurity for the subsets. During the tree-building process, the goal is to

choose the best feature and threshold to split the data at each node. For each possible feature

and its associated threshold, the algorithm calculates the reduction in

3547 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

impurity, which is a measure of how much the data is better partitioned. The ”best” split is the

one that minimizes this impurity, which can be calculated for both entropy and Gini impurity

using the following formulas:

where S is the dataset at a given node, Si is a subset of S formed by splitting on a particular

feature, and |S| and |Si| are the sizes of the dataset and the subset, respectively. This formula

quantifies how much the uncertainty (entropy) is reduced after the split. A higher information

gain indicates a better feature split. Once the tree is trained, it can be used for prediction. In

the case of classification, prediction is performed by passing a test instance down the tree.

Starting at the root, the instance is evaluated against the decision rule at each node, and the

appropriate branch is followed until a leaf node is reached. The prediction is determined by

the majority class of the instances in that leaf. If yi is the class label associated with the i-th

leaf, and ni is the number of instances assigned to this leaf, the predicted class for a new

instance x is the class that has the most instances in the leaf:

In the case of regression, where the goal is to predict a continuous value, the prediction at a

leaf node is typically the mean of the target variable in that leaf. If y1, y2, . . . , ym are the

values of the target variable for the instances in a particular leaf, the predicted value yˆ(x) is

the average:

The tree-building process typically uses recursive binary splitting, where each node is split

into two child nodes based on a threshold for a particular feature. At each step, the decision

tree algorithm evaluates all features and thresholds to determine the best split by calculating

the impurity measures (either entropy or Gini index) and selecting the one that minimizes the

overall impurity. The recursive process continues until a stopping criterion is met, such as a

maximum tree depth, a minimum number of samples in a node, or a minimum impurity

threshold. Another important aspect of training decision trees is the prevention of overfitting.

Decision trees have a tendency to grow very deep, capturing even small variations in the data,

which can result in high variance and poor generalization to unseen data. Techniques like

pruning are employed to address this issue. Pruning involves removing branches from the tree

after it has been fully grown to reduce complexity and prevent overfitting. One common

approach to pruning is to use a post- pruning strategy, where the tree is grown fully and then

pruned by removing nodes that do not contribute significantly to improving the model’s

performance, often using a validation set to guide the process.

The Decision Tree algorithm, while simple and interpretable, can struggle with some issues.

One issue is that it tends to be sensitive to small changes in the data, especially when the tree

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3548

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

is deep, which leads to instability. This instability can be mitigated by using ensemble methods

such as Random Forests or Gradient Boosting Machines, where multiple trees are trained on

different subsets of the data and their predictions are combined to reduce variance and bias. In

the case of Random Forests, each tree is trained on a random subset of the features and data

points, and the final prediction is made by averaging the predictions of all the trees in the forest

(for regression) or using a majority vote (for classification).

The training procedure for a decision tree typically involves the following steps:

1. Splitting the data: The data is split recursively based on the features and their

respective thresholds.

2. Choosing the best feature: At each node, the algorithm evaluates all possible features

and thresh- olds and selects the one that best separates the data.

3. Stopping criterion: The process stops when a stopping condition is met, such as when

the tree reaches a maximum depth, when a node contains too few samples to justify a split, or

when further splits do not reduce the impurity significantly.

The prediction mechanism for a decision tree is straightforward. Given a test sample, the

algorithm begins at the root node and proceeds down the tree by evaluating the feature values

at each node. At each decision node, the algorithm selects the appropriate branch depending

on the feature value, and this process continues until a leaf node is reached. The prediction is

then made based on the class or value associated with that leaf node, depending on whether

the model is used for classification or regression.

In summary, the Decision Tree model is an interpretable, powerful tool for predictive

modeling that is particularly useful when there are non-linear relationships in the data. It uses

recursive partitioning to build a tree structure that maps input features to an output decision.

The tree is trained by recursively splitting the data based on the feature that minimizes

impurity, and it is used for prediction by traversing the tree to a leaf node. Though effective,

decision trees are prone to overfitting, especially with deep trees, but techniques like pruning

and ensemble methods such as Random Forests and Gradient Boosting can mitigate this

problem, improving their performance and robustness. Despite these challenges, Decision

Trees remain a fundamental building block in machine learning and data science, providing

both accuracy and interpretability in many practical applications.

• Random Forest: Random Forest (RF) is a powerful and widely used ensemble learning

technique primarily utilized for classification and regression tasks. It belongs to the family of

decision tree-based algorithms, but what distinguishes it is its use of multiple decision trees to

form a ”forest” of decision trees, which work together to produce a more robust and accurate

prediction. In this model, the randomness comes from two sources: the random sampling of

data points (bootstrapping) and the random selection of features at each split in a tree. By

combining the results from many individual decision trees, Random Forest can significantly

reduce overfitting and increase predictive accuracy compared to a single decision tree.

The mathematical foundation of a Random Forest begins with the construction of decision

trees, which are non-linear models that recursively partition the feature space based on the

values of input features. For a given dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi

represents the feature vector and yi represents the target variable (for classification, the target

3549 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

is discrete, while for regression, the target is continuous), a decision tree is constructed by

recursively splitting the data based on feature values that minimize an impurity measure, such

as Gini index for classification or mean squared error for regression.

For classification tasks, the Gini index is often used as the impurity measure at each split. The

Gini index for a node t is defined as:

where pk is the proportion of samples in the node t that belong to class k, and K is the total

number of classes. The decision tree algorithm aims to minimize the Gini index at each node.

For regression tasks, the commonly used impurity measure is the mean squared error (MSE),

which for a node t is defined as:

where yˆt is the mean of the target values in node t, and |t| is the number of samples in node t.

The goal is to split the dataset at each node such that the resulting sub-nodes have the smallest

possible Gini index or MSE.

In Random Forest, the model is not defined by a single decision tree but by an ensemble of

trees. The construction of each tree in the forest involves two sources of randomness. The first

source is bootstrapping, where the training data is randomly sampled with replacement to form

a training set for each tree. As a result, some data points may appear multiple times in the

training set for a particular tree, while others may not appear at all. This technique helps to

ensure that the trees are diverse, reducing the risk of overfitting that may arise from having a

highly correlated set of trees.

The second source of randomness in Random Forest comes from the selection of features at

each split in a decision tree. Instead of considering all features for each split, only a random

subset of features is considered at each node. This ensures that individual trees are

decorrelated, leading to a more diverse ensemble. Let m

denote the number of features, and at each split, a random subset of √m features is selected for

evaluation.

This randomization introduces variability in the construction of the trees, further reducing

overfitting and improving generalization.

Once all the trees in the forest are built, each tree is used to make a prediction. For classification

tasks, the prediction of the Random Forest model is made by aggregating the predictions of

each individual tree through a majority voting scheme. Specifically, for a given test sample x,

the prediction from the Random Forest is the class that receives the most votes across all trees:

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3550

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

where yˆi(x) is the prediction of the i-th tree, and T is the total number of trees in the forest.

This process ensures that the Random Forest model benefits from the collective knowledge of

many individual trees, thereby improving predictive accuracy and robustness.

For regression tasks, the prediction is typically made by averaging the predictions from all the

trees:

where yˆi(x) is the predicted value for x from the i-th tree, and T is the total number of trees.

This averaging procedure ensures that the Random Forest is less sensitive to individual tree

errors, leading to a more stable and accurate prediction.

Training a Random Forest involves several key steps. First, for each tree, a bootstrapped

sample of the training data is selected. This sample is used to grow a decision tree by

recursively splitting the data at each node based on the selected feature subset. The tree

continues to grow until a stopping criterion is met, such as reaching a maximum depth or

having a minimum number of samples at a node. Second, after all trees are trained, predictions

are made by aggregating the individual tree predictions using majority voting or averaging,

depending on the task at hand.

In terms of computational complexity, Random Forest is more resource-intensive compared

to individual decision trees due to the need to train multiple trees. However, the parallel nature

of the algorithm allows for efficient implementation on modern hardware. The training time

scales linearly with the number of trees and the number of data points. More trees generally

improve the performance of the model but come at the cost of increased computational burden.

Random Forest has several desirable properties. First, it is less prone to overfitting compared

to a single decision tree, thanks to the averaging effect of the ensemble. Even if individual

trees overfit the data, their errors tend to cancel out when combined in the Random Forest.

This property makes it particularly suitable for high-dimensional and noisy datasets. Second,

Random Forest is highly interpretable in terms of feature importance. Since each tree is built

by considering different random subsets of features, the algorithm can provide insights into

which features contribute most to the predictions. The importance of a feature can be assessed

by measuring how much the prediction accuracy of the Random Forest decreases when that

feature is excluded from the training process. This can be quantified using metrics such as the

Gini importance or permutation importance, which rank features according to their

contribution to the model’s predictive power.

Another strength of Random Forest is its ability to handle missing data. During the

construction of each tree, if a feature is missing for a particular sample, the algorithm can still

use the available features to make a prediction. Moreover, Random Forest is robust to outliers,

since the averaging mechanism and the majority voting process reduce the impact of extreme

values on the final prediction.

Despite its strengths, Random Forest has some limitations. The model tends to be less

interpretable compared to simpler models like decision trees or linear regression, especially

when the number of trees is large. While the model itself is an ensemble of simple decision

3551 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

trees, the aggregation of so many trees can make it harder to extract insights about the decision-

making process. Additionally, the model can be memory-intensive, particularly when working

with large datasets or a large number of trees, as each tree requires storage for its structure and

parameters.

Another limitation is the potential for computational inefficiency, especially in real-time

prediction scenarios. While Random Forest can be parallelized, the need to evaluate many

trees for each prediction can be slow, particularly for large datasets. This issue is particularly

relevant in applications requiring low-latency predictions, such as real-time recommendation

systems or online fraud detection.

In practice, Random Forest has been successfully applied in a wide range of domains. In

bioinformatics, for instance, it has been used for gene expression analysis and protein function

prediction. In finance, Random Forest models are employed for credit scoring and risk

analysis, while in computer vision, they are used for image classification and object detection

tasks. Its versatility, ease of use, and robust performance on a variety of tasks have made it

one of the most popular machine learning algorithms.

In summary, Random Forest is a versatile and powerful ensemble learning technique that

aggregates the predictions of multiple decision trees to improve predictive accuracy and reduce

overfitting. By incorporat- ing randomness in both the data sampling and feature selection

processes, Random Forest creates a diverse set of decision trees that work together to provide

more reliable and generalizable predictions. Despite its relatively high computational cost, the

model’s ability to handle complex, high-dimensional datasets and its robustness to overfitting

and outliers make it an invaluable tool in the machine learning practitioner’s toolkit. Its wide

range of applications and solid performance across a variety of domains further cement its

position as one of the most popular and effective machine learning algorithms in use today.

• Support Vector Machine (SVM): Support Vector Machines (SVMs) are a class of

supervised machine learning algorithms that are widely used for classification and regression

tasks. The primary goal of an SVM is to find a hyperplane that best separates data points of

different classes in a feature space. SVMs are particularly known for their effectiveness in

high-dimensional spaces and are robust to overfitting, especially when the number of

dimensions is larger than the number of samples. The fundamental idea behind SVMs is to

define a decision boundary, or hyperplane, that maximizes the margin between the two classes

of data points. This margin is defined as the distance between the hyperplane and the closest

data points from either class, which are referred to as the support vectors. The larger this

margin, the better the generalization ability of the classifier. Mathematically, the SVM tries to

solve an optimization problem where the objective is to maximize the margin subject to certain

constraints.

Let’s assume that the data consists of n data points {(xi, yi)}n , where xi ∈ Rd are the feature

vectors, and yi ∈ {−1, +1} is the class label. The goal of the SVM is to find a hyperplane

characterized by the equation:

where w ∈ Rd is the weight vector that is orthogonal to the hyperplane, and b ∈ R is the bias

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3552

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

term that determines the offset of the hyperplane. The decision rule for classifying a new data

point x is given by:

A correct classification occurs if the sign of f (x) matches the true label y. The SVM aims to

maximize the margin between the two classes, which is defined as the distance between the

hyperplane and the closest data points. For a given data point xi, the margin is given by:

The optimization problem now becomes finding w and b such that the margin is maximized

while ensuring that all data points are correctly classified. The constraint for the classification

is that each data point xi should lie on the correct side of the hyperplane. For yi = +1, the

constraint is:

For yi = −1, the constraint is:

wT xi + b ≤ −1

These constraints ensure that all points are classified correctly with a margin of at least 1.

Therefore, the SVM optimization problem becomes a constrained optimization problem where

the objective is to maximize the margin, subject to the constraints for all i:

min
1

w 2
w,b 2

subject to the constraints:

This is a convex optimization problem, and the solution to this problem provides the optimal

hyperplane that maximizes the margin. To solve this optimization problem, one typically uses

the method of Lagrange multipliers, which leads to the dual formulation of the problem. The

dual form of the optimization problem allows for an efficient solution, particularly when the

number of features is much larger than the number of data points.

In the dual formulation, we introduce Lagrange multipliers αi ≥ 0 for each constraint, leading

to the following Lagrangian:

To find the saddle point of this Lagrangian, we take the partial derivatives of L(w, b, α) with

respect to w and b and set them to zero:

3553 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Substituting these conditions into the Lagrangian, we obtain the dual optimization problem:

subject to the constraints:

Solving this dual problem gives the optimal values of the Lagrange multipliers αi, which can

then be used to compute the optimal weight vector w. The decision boundary is fully

determined by the support vectors, which are the points where αi > 0. The bias term b can be

computed by using the support vectors:

For any support vector xi, this formula will give the same value of b. Once the optimal w and

b are obtained, the classifier is ready to make predictions.

In the case of non-linearly separable data, SVM can be extended by using a kernel trick to map

the data into a higher-dimensional feature space where a linear hyperplane can separate the

classes. The kernel function K(xi, xj) computes the inner product between two data points in

the higher-dimensional space, and the optimization problem is rewritten in terms of the kernel

function. The kernel function is typically chosen to be a Radial Basis Function (RBF) kernel,

polynomial kernel, or linear kernel, depending on the nature of the data. The SVM

optimization problem in the kernelized form is:

subject to:

This approach allows SVMs to handle complex, non-linear decision boundaries. The use of

the kernel trick makes SVM a powerful tool for many practical machine learning tasks,

especially when the data is not linearly separable in its original feature space.

Once the model is trained, the prediction mechanism involves computing the decision function

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3554

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

for a new data point x. For the linear case, the decision function is:

For the kernelized case, the decision function is:

This decision function computes the sign of a weighted sum of the kernel values between the

new point x and each of the support vectors, along with the bias term b. If the result is positive,

the data point is classified into the positive class; otherwise, it is classified into the negative

class.

Training an SVM typically involves solving a convex optimization problem, which can be

computationally expensive, especially when the number of data points is large. However,

various techniques such as Sequen- tial Minimal Optimization (SMO) have been developed to

efficiently solve the SVM optimization problem. Moreover, for large-scale datasets,

approximations like the stochastic gradient descent (SGD) algorithm can be used to train

SVMs more efficiently.

In summary, the Support Vector Machine is a powerful machine learning model that works by

finding a hyperplane that separates the classes of data with the maximum margin. The model

is defined by a weight vector and a bias term, and it is trained by solving a constrained

optimization problem. In the case of non-linearly separable data, the kernel trick is used to

map the data into a higher-dimensional space, where a linear decision boundary can effectively

separate the classes.

• Logistic Regression: Logistic Regression is a fundamental statistical and machine

learning technique used primarily for binary classification tasks. It models the relationship

between a set of independent variables (features) and a binary dependent variable (label) by

estimating probabilities that a given input point belongs to a particular class. Despite its name,

logistic regression is a classification algorithm rather than a regression algorithm because it

predicts categorical outcomes. The core idea behind logistic regression is to model the

probability of a binary outcome using a logistic function, also known as the sigmoid function.

The model’s formulation involves a weighted sum of the input features, passed through a

logistic function to constrain the output to the range between 0 and 1. Mathematically, the

logistic regression model can be expressed as:

Here, P (y = 1 x) represents the probability that the output y is 1 (i.e., belonging to the positive

class), given the input vector x. The vector w contains the model’s weights, and the term wT

x is the dot product between the weight vector and the input feature vector. The logistic

function σ(z) = 1 , applied to this linear combination of inputs, squashes the result into the

range [0, 1], making it interpretable as a probability.

3555 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

The training procedure for logistic regression involves finding the optimal set of weights w

that minimizes a cost function. The most commonly used cost function in logistic regression

is the log-likelihood function, which measures how well the model predicts the observed data.

For a dataset with N instances, the log-likelihood for logistic regression is defined as:

In this equation, yi denotes the true label for the i-th instance, and xi is the corresponding

feature vector. The log-likelihood function essentially sums the logarithms of the predicted

probabilities for each instance, penalizing the model more heavily for making incorrect

predictions. The objective in logistic regression is to maximize the log-likelihood function,

which is equivalent to minimizing the negative log-likelihood, also known as the cross-entropy

loss function. In practice, the optimization process involves using methods like gradient

descent to update the weights iteratively to minimize the cost.

The gradient of the log-likelihood with respect to the weights w is computed to guide the

weight update during training. The gradient for the j-th weight is given by:

where xij is the j-th feature of the i-th input instance. The term (yi − P (yi = 1|xi)) represents

the error between the true label and the predicted probability for the i-th instance. This error is

multiplied by the corresponding feature value xij to form the gradient component for the

weight wj . Once the gradients are computed, the weights are updated using an optimization

algorithm like gradient descent. The weight update rule for gradient descent is:

where η is the learning rate, a hyperparameter that controls the step size of each update. This

iterative process is repeated until the weights converge to values that minimize the negative

log-likelihood or until a predefined number of iterations is reached.

In practice, gradient descent may be replaced by more sophisticated optimization methods,

such as stochas- tic gradient descent (SGD), which updates the weights after evaluating each

individual sample or a small mini-batch of samples. This can significantly speed up the training

process, especially for large datasets. Another alternative is the use of second-order methods

like Newton’s method, which leverages the Hessian matrix (the matrix of second-order partial

derivatives of the cost function) to more efficiently find the optimal solution. However, these

methods are computationally expensive and may not scale well for large datasets.

Once the weights have been learned during the training phase, the model can be used to make

predictions on new, unseen data. The prediction process in logistic regression involves

calculating the probability that an instance belongs to the positive class (i.e., y = 1). For a given

test instance with feature vector x, the model computes the linear combination of the input

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3556

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

features, wT x, and passes it through the logistic function to obtain the predicted probability:

If this predicted probability is greater than a certain threshold (typically 0.5), the model

classifies the instance as belonging to the positive class (i.e., yˆ = 1), otherwise, it classifies it

as belonging to the negative class (i.e., yˆ = 0):

This decision rule effectively translates the probability output from the logistic regression

model into a binary class prediction. In cases where the threshold needs to be adjusted (for

example, when dealing with imbalanced datasets), the threshold can be set to a value other

than 0.5, depending on the desired trade-off between precision and recall.

The logistic regression model assumes that the relationship between the features and the log-

odds of the outcome is linear. Specifically, it assumes that the log-odds of the probability P (y

= 1|x) are a linear function of the input features, i.e.,

This equation is the logit function, and the model is named after it. The logit function maps

the probability P (y = 1|x) into the entire real line, which makes the linear model suitable for

predicting probabilities. The assumption of a linear relationship between the input features and

the log-odds is a simplification, and while it often works well in practice, it may not hold in

more complex scenarios. Extensions of logistic regression, such as polynomial logistic

regression or the use of regularization techniques like L1 (Lasso) or L2 (Ridge) regularization,

can help address these limitations and prevent overfitting by controlling the complexity of the

model.

Regularization plays a crucial role in preventing overfitting, especially when the number of

features is large relative to the number of data points. In the case of L2 regularization (Ridge),

the cost function becomes:

where λ is the regularization parameter that controls the trade-off between fitting the data and

penalizing large weights. The gradient of this regularized cost function with respect to the

weights is:

3557 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

The regularization term −λ Σd w2 helps to shrink the weights, preventing the model from

overfitting the training data by making it less sensitive to small fluctuations in the input

features.

In summary, logistic regression is a powerful and interpretable model for binary classification

tasks, based on the principle of modeling probabilities with the logistic function. Its simplicity,

efficiency, and flexibility make it a popular choice in many practical machine learning

applications. The training procedure involves maximizing the log-likelihood (or minimizing

the cross-entropy loss) to learn the optimal set of weights. Optimization methods like gradient

descent are used to iteratively update the weights, and regularization techniques like L2

regularization help prevent overfitting. Despite its simplicity, logistic regression forms the

foundation for more complex models and is often a good starting point in a machine learning

pipeline.

3.3.1 Evaluation Metrics

We evaluated the performance of each model using the following metrics:

• Accuracy: The percentage of correct predictions out of total predictions.

• Precision, Recall, F1-score: These metrics provide a more detailed evaluation,

especially in imbalanced datasets.

• Confusion Matrix: To visualize the true positives, true negatives, false positives, and

false negatives.

4. Experiments and Results

4.1 Experimental Setup

For each algorithm, we trained the model on the scaled training data and evaluated its

performance on the scaled test data. Hyperparameters such as the number of neighbors for

KNN is set to 5, the depth of the decision tree is arbitrary, regularization parameters for logistic

regression were set to 1 and for SVM kernel was set to radial basis function.

4.2 Results

The performance of the models is summarized in the following table:

Table 1: Performance comparison of the classification models
Model Accuracy Precision Recall F1-Score

k-Nearest Neighbors 0.83 0.81 0.81 0.81

Naive Bayes 0.76 0.74 0.72 0.81

Decision Tree 0.96 0.96 0.95 0.96

Random Forest 0.98 0.99 0.98 0.98

Support Vector Machine 0.82 0.81 0.78 0.79

Logistic Regression 0.77 0.76 0.71 0.72

The Figure 6 and Figure 10 shows confusion matrix of the models:

 AI Framework for Diabetes Detection via… Saurabh Kumar et al. 3558

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Figure 6: Confusion Matrices of first three classifiers

Figure 10: Confusion Matrices of last three classifiers

5. Conclusion

In this study, we compared six classification algorithms for predicting diabetes based on a set

of medical features. Random Forest emerged as the best-performing model in terms of

accuracy, precision, recall, and F1-score. It effectively handled the non-linearity in the data

and provided robust predictions. Decision Tree also demonstrated strong performance,

particularly in terms of precision, while KNN Regression and Support Vector Machine showed

moderate results. Naive Bayes and Logistic Regression were the worst performers.

References
1. Ali, A., Alrubei, M., Hassan, L. M., Al-Ja’afari, M., & Abdulwahed, S. (2020). Diabetes classification

based on knn. IIUM Engineering Journal , 21 (1), 175–181.

2. Boudjemadi, R., Jamila, M., Lunn, J., & Aljumaili, W. (2021). The implementation of ai in health and

medicine: Electronic health records web based on integration of logistic regression model for diabetes

type 2 prediction. In 2021 14th international conference on developments in esystems engineering

(dese) (pp. 168–173).

3559 Saurabh Kumar et al. AI Framework for Diabetes Detection via...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

3. Chaki, J., Ganesh, S. T., Cidham, S., & Theertan, S. A. (2022). Machine learning and artificial

intelligence based diabetes mellitus detection and self-management: A systematic review. Journal of

King Saud University-Computer and Information Sciences, 34 (6), 3204–3225.

4. Diabetes dataset. (2024). https://www.kaggle.com/datasets/loayosama/healthcare-dataset.

(Accessed: 2024-12-03)

5. Ellahham, S. (2020). Artificial intelligence: the future for diabetes care. The American journal of

medicine, 133 (8), 895–900.

6. HL, G., Ravi, V., Almeshari, M., Alzamil, Y., et al. (2023). Electronic health record (ehr) sys- tem

development for study on ehr data-based early prediction of diabetes using machine learning

algorithms. The Open Bioinformatics Journal , 16 (1).

7. Kenner, B. J., Abrams, N. D., Chari, S. T., Field, B. F., Goldberg, A. E., Hoos, W. A., . . . others

(2021). Early detection of pancreatic cancer: applying artificial intelligence to electronic health

records. Pancreas, 50 (7), 916–922.

8. Khalifa, M., & Albadawy, M. (2024). Artificial intelligence for diabetes: Enhancing prevention,

diagnosis, and effective management. Computer Methods and Programs in Biomedicine Update,

100141.

9. Kumari, V. A., Chitra, R., et al. (2013). Classification of diabetes disease using support vector

machine. International Journal of Engineering Research and Applications, 3 (2), 1797–1801.

10. Menon, S. P., Shukla, P. K., Sethi, P., Alasiry, A., Marzougui, M., Alouane, M. T.-H., & Khan, A.

(2023). An intelligent diabetic patient tracking system based on machine learning for e-health

applications. Sensors, 23 (6), 3004.

11. Nguyen, B. P., Pham, H. N., Tran, H., Nghiem, N., Nguyen, Q. H., Do, T. T., . . . Simpson, C. R.

(2019). Predicting the onset of type 2 diabetes using wide and deep learning with electronic health

records. Computer methods and programs in biomedicine, 182 , 105055.

12. Pang, H., Zhou, L., Dong, Y., Chen, P., Gu, D., Lyu, T., & Zhang, H. (2024). Electronic health

records-based data-driven diabetes knowledge unveiling and risk prognosis. arXiv preprint

arXiv:2412.03961 .

13. Patil, A. R., Mane, S. C., Patil, M. A., Gangurde, N. A., Rahate, P. G., & Dhanke, J. A. (2024).

Artificial intelligence and machine learning techniques for diabetes healthcare: A review. Journal of

Chemical Health Risks, 1058–1063.

14. Permana, B., Ahmad, R., Bahtiar, H., Sudianto, A., & Gunawan, I. (2021). Classification of diabetes

disease using decision tree algorithm (c4. 5). In Journal of physics: Conference series (Vol. 1869, p.

012082).

15. Priya, K. L., Kypa, M. S. C. R., Reddy, M. M. S., & Reddy, G. R. M. (2020). A novel approach to

predict diabetes by using naive bayes classifier. In 2020 4th international conference on trends in

electronics and informatics (icoei)(48184) (pp. 603–607).

16. Rajendra, P., & Latifi, S. (2021). Prediction of diabetes using logistic regression and ensemble

techniques. Computer Methods and Programs in Biomedicine Update, 1 , 100032.

17. Rashid, M. M., Askari, M. R., Chen, C., Liang, Y., Shu, K., & Cinar, A. (2022). Artificial intelligence

algorithms for treatment of diabetes. Algorithms, 15 (9), 299.

18. Rigla, M., Garc´ıa-S´aez, G., Pons, B., & Hernando, M. E. (2018). Artificial intelligence methodolo-

gies and their application to diabetes. Journal of diabetes science and technology , 12 (2), 303–310.

19. Roy, M., Vasudeva, S., & Jamwal, M. (n.d.). A conceptual framework architecture for ai-based remote

patient monitoring in diabetes (rpm-d): Gap analysis and feasibility assessment. system, 5 , 6.

20. Zheng, T., Xie, W., Xu, L., He, X., Zhang, Y., You, M., . . . Chen, Y. (2017). A machine learning-

based framework to identify type 2 diabetes through electronic health records. International journal

of medical informatics, 97 , 120–127.

