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Non-technical losses (NTL) in power distribution systems, including electricity theft, device 

failures, and maintenance issues, represent a significant challenge for electric utility companies, 

especially in emerging economies. This study presents a predictive model that uses advanced 

business intelligence (BI) and machine learning techniques, specifically ARIMA and XGBoost 

models, to detect non-technical losses in electric metering systems in northern Lima. The 

methodology employed includes data extraction, transformation, and loading (ETL) from various 

sources, such as the National Open Data Platform and electric utility registries. After a series of 

preprocessing steps involving anomaly detection, feature engineering, and cross-validation, the 

model optimizes its accuracy in predicting irregular consumption patterns, energy theft indicators, 

and other NTL. The results obtained demonstrate that the combination of ARIMA and XGBoost is 

effective in identifying atypical consumption patterns, contributing to improving both the reliability 

of the electric system and its economic efficiency. Furthermore, the model respects data governance 

policies under Legislative Decree 1412, ensuring quality and security of information. The solution 

is scalable and can be adapted to other similar contexts, offering a useful tool for energy distribution 

companies in the early detection of consumption irregularities. Thus, it presents an effective 

alternative to reduce non-technical losses through advanced analysis, improving energy 

management in areas with distribution challenges.  

 

 

1. Introduction 

Energy theft refers to the deliberate or illegal use of electrical energy by various means, the 

main cause is the theft of electricity that represents approximately 80% of the total loss. In 

addition, non-technical (NTL) losses include electricity theft, device installation errors, lack 

of maintenance, and counting errors. In addition, they can be caused by a wide variety of 

causes such as altered meter readings through unauthorized access to the database, incorrect 

calculations of non-technical losses, container fraud, faulty metering, theft of electricity 

through distribution lines, non-payment by customers, billing errors, and so on [1, 2].  

It is estimated that the world loses about $89.3 billion to electricity theft annually, with 
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emerging nations accounting for $58.7 billion." [3]. For example, in Latin America and the 

Caribbean, NTLs accounted for approximately 15% of the total energy generated in 2018. 

However, this percentage varied between 5% and 30% depending on the country, due to the 

strong correlation with social, economic, political and technical variables [4]. In the particular 

case of Metropolitan Lima, statistics reveal an alarming incidence of NTLs, especially in the 

residential sector, where they reach a worrying 69%. This data not only reflects a vulnerability 

in the electricity distribution system, but also has a significant economic impact. According to 

data from Enel Peru, it is estimated that these losses have represented a loss of close to 490 

million soles in the last five years due to energy theft [5]. 

In this context, an approach based on the use of data from smart meters and auxiliary databases 

as raw material for a supervised machine (XGBoost) is the best learning algorithm to perform 

the predictive model [6]. Likewise, [7] indicates that the prediction of electrical energy NTL 

using Business Intelligence (BI) is useful when proposing a detector based on deep learning 

and together to detect false readings in real time in advanced metering smart grids. Through 

the analysis of energy consumption data in real time and the use of deep learning models, it 

seeks to improve the accuracy in the detection of false readings, which contributes to 

predicting and preventing electrical energy NTLs more effectively through technologies such 

as BI.  

However, the arguments mentioned in the articles on how to predict with a higher rate of 

effectiveness depend on how the solution is proposed, the aspects mentioned give a vision of 

what tools can be used in the future and how the implementation of Business Intelligence helps 

it to be successful. 

In view of this, the present work suggests proposing a predictive model, starting with a data 

processing phase that includes ETL (Extract, Transform and Load) using Python to extract 

data from multiple sources, followed by an exploratory data analysis (EDA). This EDA, partly 

automated by AWS Glue, takes care of data preparation and cleansing, removing outliers and 

normalizing data if necessary. In addition, the pre-processed data is stored in Amazon S3 and 

used to train machine learning algorithms, optimized using hyperparameterization. The results 

generated can be presented in binary format or with detailed information, depending on the 

richness of the available data, and are continuously evaluated and adjusted to improve the 

accuracy of the model. 

Below is the breakdown of the rest of the text in the article. Section one will cover the 

introduction to this project. The contributions that helped the research work will be presented 

in section two. In section three, the design of the architecture of the model will be evidenced. 

Likewise, in section four the experiments and results of this work will be reflected, section 

five presents the discussion. The conclusions are evidenced in section six and will end with 

acknowledgements.  

 

2. RELATED WORKS 

An easy Studies on learning models for NTL detection in electric meters reveal a common 

focus on optimizing deep learning techniques and advanced classification models. The studies 

reviewed agree on using deep architectures and optimization algorithms to improve both 
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accuracy and computational efficiency in anomaly detection. Among them, the article by [8] 

that develops the EMB-YOLO model stands out, which focuses on lightness and speed when 

reducing parameters, while [9] uses XGBoost together with anomaly detectors in smart homes, 

achieving an accuracy of 98.91% in the detection of electricity theft. Both articles highlight 

the relevance of adjusting models to specific consumption contexts and data environments, 

focusing on computational efficiency and accuracy in different scenarios. 

Likewise, the articles highlight the importance of integrating preprocessing methods and 

feature selection techniques to improve the performance of learning models in detecting non-

technical losses. [10] incorporates Principal Component Analysis (PCA) to power the 

XGBoost model, which strengthens the accuracy and efficiency of the detection system. 

Similarly, [11] they employ pattern-matching techniques in conjunction with near-neighbor 

methods, which allow anomaly scores to be obtained based on specific consumption behaviors. 

These approaches highlight the relevance of advanced preprocessing methods to manage large 

volumes of data and improve the ability of models to identify irregular consumption patterns. 

That is why the use of advanced classification assemblies and models stands out as a trend to 

address the detection of losses in electrical networks. [12] employ an ADASYN and assembly-

based reinforcement classification model, achieving outstanding ROC-AUC and PR-AUC 

values compared to other models. This approach is particularly useful in scenarios where there 

is a significant imbalance of data, a common challenge in detecting non-technical losses. This 

group of studies underscores the effectiveness of assembly models and advanced classification 

techniques in overcoming accuracy and data balancing challenges, providing a comprehensive 

perspective on the most appropriate approaches to loss detection in electrical metering 

systems. 

On the other hand, other studies show a common focus on optimizing and using energy data 

to improve the effectiveness of these models. The articles reviewed agree on the importance 

of analyzing consumption patterns and using advanced techniques such as reservoir 

computing, neural networks and regression models. For example, [13] it features the 

SpeCluRC-NTL model, which uses energy data from smart meters and time series to detect 

fraudulent behavior in smart grids, enabling simplification and efficiency in classification. 

Similarly, [14] it leverages convolutional neural networks and LSTM to process large volumes 

of consumer data and achieve high accuracy in fraud detection, confirming the effectiveness 

of deep learning in this type of analysis. 

Another common aspect is the use of explanatory techniques and feature selection methods, 

which improve the interpretability and accuracy of predictive models. [15] implements 

methods such as SHAP and LIME, which provide detailed explanations of the variables that 

affect non-technical loss detection, making the models more transparent and easier to interpret. 

[16], on the other hand, uses a model selection technique to establish regulatory goals in 

distribution companies in Brazil, identifying external variables such as population density and 

poverty, which reinforces the focus on the adaptability of the models to contexts. Specific 

energy data. These studies agree on the usefulness of explainability and statistical analysis 

methods to strengthen models and improve their applicability in the energy sector. 

Finally, the articles coincide in highlighting the need to process energy data in time and 

frequency domains to capture specific consumption patterns and optimize predictive models. 
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[17] It employs features in both domains along with feature selection and hyperparameter 

optimization techniques, resulting in high accuracy in detecting electricity theft. The inclusion 

of consumption variables in time series is evidenced as an effective practice to capture relevant 

variations in consumer behavior, improving the robustness of the models in the identification 

of fraudulent patterns and non-technical losses. Together, these studies underscore the 

relevance of leveraging energy data holistically to improve the detection of irregularities in 

consumption and optimize predictive models in smart grid environments. 

 

3. SYSTEM DESING 

A. Architecture 

The proposed predictive model begins with comprehensive data processing, including Extract, 

Transform, and Load (ETL) for the generation of predictions. The data is extracted from 

various sources such as the Open Data Portal and electricity company registries, using Python 

scripts. After extraction, an exploratory data analysis (EDA) is performed to understand its 

structure and detect inconsistencies. 

The EDA process is divided into two stages: one automated by AWS Glue, which prepares 

and integrates data, and another manual, where information is cleaned by removing outliers 

and normalizing data. The hyperparameters of the machine learning algorithms are then 

adjusted to optimize their performance. 

The preprocessed data is stored in Amazon S3 and is used to train predictive models that can 

perform regressions, classifications, or clusters. The results are presented in binary form or 

with details on non-technical energy losses (NTLs), depending on the information available. 

The model's iterative approach, which includes cross-validation and continuous parameter 

adjustment, ensures accurate and effective results for the detection of non-technical losses in 

the affected area's power grid. 

FIG. 1 PROPOSED SOLUTION 
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Fig. 1 shows the processing of the proposed solution 

B. Methodology 

1)  Dataset:  The data that will be used in the predictive model comes from two main sources: 

the Open Data Portal and the websites of electricity distribution companies [5]. The Open Data 

Portal, which is a state-run website, publishes historical consumption data for all electricity 

companies in Peru [18]. Since state entities are governed by Legislative Decree 1412 [19], 

which promotes data governance and digital security, it is ensured that the data used is up-to-

date, reliable, and with an adequate level of governance, which strengthens the quality of 

predictive analytics. 

The dataset is divided into test, training, and validation sets. For validation, production data 

provided by OSINERGMIN and/or electricity distribution companies is used. This validation 

process ensures that the model predicts accurately in real-world environments. As for the 

training and testing set, historical data from the Open Data Portal and records of electricity 

distribution companies are used. This process includes the extraction, transformation and 

loading (ETL) of the data, followed by the preparation and cleaning of the data, ensuring the 

integrity and quality of the information. As for the validation set, once the model has been 

trained and tested with the historical data, the validation is performed in a real production 

environment. The validation data comes from the stakeholders (OSINERGMIN or the 

electricity distribution companies), where the predictions generated by the model are applied 

to real situations of electricity consumption. This approach ensures that the model is robust 

and that predictions accurately reflect anomalies or potential energy theft. 

The fact of using data regulated under Legislative Decree 1412 [19], guarantees that the project 

handles data with a high standard of security and quality. This regulatory framework promotes 

interoperability, data governance, and digital security, ensuring that the project aligns with 

data governance principles and that the data used is reliable and valid for predictive analytics. 

In this way, the data provided by OSINERGMIN are strategically divided between the training 

and test sets, while the validation is carried out in real environments, maximizing the accuracy 

and reliability of the predictions of the non-technical energy loss model. 

2)  Model: The predictive model developed in this project uses a combination of ARIMA and 

XGBoost to detect non-technical energy losses in electric meters. ARIMA is a time series 

model that allows the identification of seasonal patterns and trends in energy consumption, 

being ideal for detecting anomalies related to regular changes over time. On the other hand, 

XGBoost is a boosting-based model that handles large volumes of data and complex 

relationships between variables, allowing it to detect atypical patterns in energy consumption, 

related to possible fraud. The combination of these two models guarantees a robust and 

accurate prediction, which facilitates the identification of energy thefts. 

Likewise, the preprocessing of the data is a key step in the predictive model for the detection 

of non-technical energy losses. A thorough cleaning of historical consumption data is 

performed. This cleanup includes the removal of duplicate values, the detection and correction 

of outliers that could distort the analysis, and the imputation of missing values using 

techniques such as mean or linear interpolation. 

In addition, the data are normalized to ensure consistency in the scales of the variables used. 
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For time series, smoothing techniques are used to remove noise and ensure data quality before 

being processed by the ARIMA model. No data augmentation is performed, as the data is 

divided into training, validation, and testing sets uniformly, without mixing examples between 

these sets. This ensures the integrity of the analysis in the validation and testing stages. 

On the other hand, in the XGBoost model, feature extraction is a crucial step in improving the 

accuracy of predictions. The most relevant characteristics are selected for the detection of 

possible energy theft, including variables such as the tariff applied and past consumption of 

the supply. Coding techniques are applied to transform categorical characteristics, such as 

tariff type or energy use, into numerical values, which can be interpreted by the machine 

learning model. 

During this phase, the importance of each feature is evaluated using feature selection 

techniques, which allows irrelevant or redundant variables that do not provide predictive value 

to be eliminated. This process ensures that the model is trained on only the most relevant data, 

optimizing its performance and accuracy. 

3)  Training: To train the predictive models, an approach based on the use of historical energy 

consumption data is employed. The ARIMA model [10] is trained on time series data to 

capture seasonal patterns in energy consumption, while XGBoost is trained using a set of 

characteristics including geographic location, supply type, tariff, and other relevant factors that 

influence consumption. 

That is why the algorithms to be presented are defined: 

• ARIMA: It was trained by configuring the differentiation (d), autoregression (p) and 

moving average (q) parameters that best fit the time series of energy consumption. The 

selection of these parameters was made using the AIC (Akaike Information Criterion) 

methodology to select the best model. 

• XGBoost: The model was trained by adjusting hyperparameters such as tree depth, 

learning rate, and number of iterations (n_estimators). The XGBoost model was trained by 

cross-validation to avoid overfitting, and L2 regularization was used to control the complexity 

of the model. 

The data were also divided into three sets: 

• Training (80%): Used to adjust model parameters. 

• Validation (10%): Used to tune hyperparameters. 

• Test (10%): Used to evaluate the final performance of the model. 

4)  Evaluation and Statistical Analysis: To evaluate the performance of the models, the 

following key metrics were used in the Energy Theft Detection Classification task.  

TABLE I METRICS 
Metric Description Formula 

Accuracy The proportion of correct predictions over the total 

predictions made. Evaluate the overall performance of 
the model. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision The ratio of correct positive predictions (true positives) 

among all the positive predictions made. It measures 
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how many of the thefts detected are actually thefts. 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall The proportion of true positives over the total number of 

actual positive cases. Evaluate the model's ability to 

detect theft. 

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score It is the harmonic mean between accuracy and 

sensitivity, useful when there is an imbalance in the data, 

as is the case with energy theft. 

 

2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

AUC-ROC It measures the performance of the model at different 
decision thresholds, assessing the ability to distinguish 

between theft and non-theft based on its rate of true 

positives and false positives. 

 

AUC = ∫01TPR(FPR)d(FPR) 

Table I shows the metrics to evaluate the performance of the model 

This table specifies the formulas and acronyms TP (True Positives), TN (True Negatives), FP 

(False Positives), FN (False Negatives), TPR (True Positive Rate) and FPR (False Positive 

Rate). When analyzing the different characteristics of the ARIMA model, we find functions 

that complement XGboost, which allows us to have a greater overview of the predictions to 

be generated. The parameters of the ARIMA model are also shown: 

TABLE II ARIMA METRICS 
Metric Description 

Student's t test It was used when the prediction results followed a normal distribution, 

to compare the models in terms of accuracy. 

Wilcoxon Test It was used to assess the difference in performance between models 
when data were not normally distributed, considering paired outcomes 

in predictions. 

DeLong Test It was used to compare the ROC curves of the models and determine 
which one had a better performance in the classification of energy thefts. 

P-valor (p-value) In all cases, the results showed that XGBoost had a better overall 

performance in detecting power theft (p < 0.05), proving that it is a 

superior model in terms of accuracy and recall. 

Table II shows the metrics of the ARIMA model, which are useful for forecasting future values 

in a time series based on past values.  
 

4. RESULTS 

FIG. 2 LINE CHART OF TRANSFORMED DATA 

 

Fig. 2 Time series showing the downward trend in energy consumption after applying 

transformations, indicating possible non-technical losses 
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Figure 2 shows the time series of energy consumption after the transformations necessary to 

stabilize the mean and variance, which is essential for the applicability of the ARIMA model. 

A clear downward trend is observed from values close to 80 to approximately 10 in the period 

analyzed. This marked decrease is atypical in a series of energy consumption, where a constant 

average would be expected under normal conditions. This downward trend suggests the 

possibility of non-technical losses (NTLs), such as energy theft, and reinforces the hypothesis 

that there are external factors that affect consumption behavior. 

FIG. 3 LINE CHART OF TRANSFORMED DATA 

 

Fig. 3 The correlation gradually decreases with lags, indicating short-term dependence in 

energy consumption data 

This graph shows that the autocorrelation function (ACF) shows a gradual decrease in 

correlation as lags increase, which is characteristic of a time series with short-term 

dependence. 

This behavior indicates that consumption values in recent periods influence subsequent values, 

which validates the use of time series models such as ARIMA. In the context of non-technical 

losses, this dependence suggests that anomalies in a specific period can have persistent effects 

over time, allowing the model to capture patterns and deviations from expected consumption. 

FIG. 4 BOX-COX PLOT 

 

Fig. 4 Box-Cox transformation, stabilizing the variance of the energy consumption series by 

reducing heteroscedasticity, optimizing the detection of anomalous patterns 



3587 Dayanna Pérez et al. Non-Technical Loss Detection in Electric Meter...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

Figure 4 shows the Box-Cox transformation, which was applied to reduce heteroskedasticity 

in the consumption series, as can be seen in the graph. 

The standard deviation decreases as the moving average increases, indicating that the 

transformation managed to stabilize the variance in the series. Variance stabilization is critical 

for linear time-series models, as it prevents extreme values or variations in magnitude from 

affecting model predictions. This optimizes the accuracy in the detection of anomalous 

patterns, making it easier to identify possible energy thefts by comparing atypical consumption 

patterns. 

FIG. 5 LINE CHART OF TRANSFORMED DATA 

 

Fig. 5 Partial autocorrelation function, with a strong correlation at early lags and a sharp 

decline towards zero, indicating short-term dependence patterns and seasonal effects on energy 

consumption 

This figure shows the PACF, which shows a strong correlation in the first lags, with an abrupt 

drop towards zero from the third lag onwards. 

This behavior suggests that energy consumption in recent periods has a direct and significant 

influence on current consumption, but this influence decreases rapidly. This pattern is 

characteristic of time series where seasonal or recurrent short-term effects are observed. The 

presence of significant correlation in the first lags reinforces the selection of an autoregressive 

(AR) model within the ARIMA process to effectively capture these dependencies and detect 

possible consumption irregularities based on recent patterns. 

FIG. 6 POST-PARAMETERIZATION RESULTS 
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Fig. 6 Comparison of training and testing data and ARIMA-XGBoost model predictions, 

showing accurate fit and a decreasing trend in energy consumption, along with a 95% 

confidence interval. 

In this figure, the final results graph shows the comparison between the training data, the test 

data, and the predictions generated by the ARIMA-XGBoost model, along with the 95% 

confidence interval. 

The solid line represents the model's predictions and closely follows the trend observed in the 

actual test data. The model predicts a sustained downward trend in consumption, which is 

consistent with the previously transformed series. The inclusion of the confidence interval 

suggests that the model maintains a controlled margin of error and fits appropriately with the 

test data. 

This behavior of progressive reduction in consumption, although accurate according to the 

model's predictions, is unusual and constitutes a warning sign. Under normal conditions, 

energy consumption in residential and industrial sectors tends to vary around a stable average, 

especially in geographical regions with constant consumption patterns. The continued 

reduction observed in the data suggests the possibility of non-technical losses, such as energy 

theft, which can occur through meter manipulation practices or irregular connections. 

 

5. DISCUSSION  

The identification of downward patterns in energy consumption using the ARIMA model and 

its integration with the XGBoost model suggests that this approach is effective in detecting 

anomalies that could be associated with non-technical losses. The stabilization of the mean 

and variance through transformations such as Box-Cox, together with the analysis of 

autocorrelation and partial correlation (ACF and PACF), has made it possible to capture 

unusual consumption patterns that are aligned with cases of energy theft. This model has the 

potential to improve consumption monitoring by offering deeper insight into identifying 

tampering patterns in meters and irregular connections. 

Compared to conventional monitoring and detection methods, this ARIMA-XGBoost-based 

approach can handle the non-stationary nature of energy consumption data, adjusting to the 

transformations needed to stabilize the time series. Many previous methods often rely on 

simple regression or clustering models without considering short-term dependency effects, 

limiting their ability to capture patterns of manipulation in time series. In this study, the use of 

the PACF function and correlations in early lags have allowed for an effective autoregressive 

approach, especially in situations where the data present seasonality or short-term cycles. 

 

6. CONCLUSION  

To effectively leverage the performance of predictive models, data management is crucial. He 

emphasized the importance of providing explanations for model predictions, highlighting that 

a lack of explanations can pose challenges in understanding model performance. This suggests 

that incorporating explainability into the data management process can help maximize the 

potential of predictive models.  
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The implemented predictive model, using ARIMA for time series analysis and XGBoost for 

the detection of anomalous patterns, demonstrated high effectiveness in identifying irregular 

trends in energy consumption. The results indicate an atypical and continuous decrease in 

consumption, which, under normal conditions, would suggest possible non-technical losses 

such as energy theft. The model's ability to closely track actual consumption patterns and 

accurately predict future values within a robust confidence interval validates its applicability 

in power grid environments where early detection of irregularities is essential for loss 

management. 

Autocorrelation analysis and applied transformations confirm that the time series is stationary, 

allowing the model to capture seasonal patterns and anomalies with high accuracy. This 

approach is particularly useful in the context of the energy sector, where the identification of 

non-technical losses can result in significant economic savings and improved operational 

efficiency. 

In conclusion, the proposed model is not only effective in predicting and detecting anomalous 

patterns, but also offers a scalable and adaptable solution for consumption monitoring in smart 

grids. This approach lays the foundation for implementing preventive strategies and improving 

monitoring mechanisms in the detection of energy theft. 
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