

Efficient Deep CNN-Based Detection of Multi-Class Retinal Diseases with Optimized Memory Usage

**K. Subba Reddy, V. Niteesha, K. V. N. S. Manikanta Sarma,
J. Hemanth Kumar Reddy, S. Nagendra Babu, M. Sai Kumar**

*Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal- 518501, Andhra Pradesh, India.
Email: mrsubbareddy@yahoo.com*

Artificial neural networks (ANN), deep learning, recurrent neural networks (RNN), Alex Net, and ResNet can be considered as a complete report way in the distinguishing proof and classification of significant issues. Especially retinal ailments, CNN and its form, some of the time known as U-Net Division, have changed the finding of clinical illnesses. U-Net consumes a ton of memory and central processor as element extraction is so confounded while sending the entire component guide to the matching decoder. Besides abstaining from pooling list reuse is consolidating it with the unsampled decoder include map. In this review, we propose a “convolutional neural network (CNN)” model with viable memory use for multi-class characterization issues. Having 32 characterizations of retinal diseases, the proposed model has been tried utilizing a standard benchmark dataset of Eye Net. Exploratory examination demonstrates that the proposed worldview further develops memory the executives and precision more than others. Utilizing shifting quantities of ages and time utilization by each step, the correlation has been done by and large relying upon accuracy, recall, and precision. On the Eye-net data, the proposed strategy got sensible accuracy.

Keywords: Classification, CNN, deep learning, EyeNet, retina, U-Net.

1. Introduction

Influencing individuals of any age, retinal diseases comprise a significant wellbeing concern universally. Essentially significant for the natural eye, the retina comprises of photosensitive tissue that changes light into brain motivations that are then shipped off the cerebrum for visual handling. Among the few retinal diseases, “diabetic macular edema (DME), optic circle drusen, and age-related macular degeneration (AMD)” are normal and cause vision misfortune through abnormalities in discernment [1].

Especially in industrialized countries like the US, AMD is a significant wellspring of visual issues, particularly among those between the ages of 50 and 60; around 35% of people north of 80 have this condition [2][3]. Due to their differed character and at times need for the information on proficient ophthalmologists, successfully recognizing retinal diseases presents an extraordinary trouble. In any case, mechanical turns of events — particularly in the field of PC supported conclusion frameworks (computer aided design) — have opened fascinating ways for early retinal diseases treatment and location [4].

By consolidating “deep learning (DL) and machine learning (ML)”, retinal disorders can be successfully distinguished and the field of “automatic diseases recognition (ADD)” is changed. In the grouping, division, and determination of retinal diseases [5][6], best in class ML and DL models — including “recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), AlexNet, ResNet, and VGG” — have shown phenomenal capacity [5].

Information gathering and naming give one significant hindrance in applying ADDs. These challenges have been brought under consideration by scientists, who likewise stress the need areas of strength for of for approval and preparing [7]. Proposed answers for these hardships are imaginative ones. For instance, specialists have made ML-based cross breed strategies consolidating picture preprocessing using U-Net division with “Support Vector Machine (SVM)” classifier [9]. With expressed rates as high as 89.3% [10], these techniques have shown incredible symptomatic accuracy.

Despite the improvements in DL techniques, issues actually exist like high memory use associated for certain geographies like U-Net. These limitations have been noted by specialists, who are as yet exploring new plans to move past them [10]. Besides, research in this space has been enormously exceptional by drives to create careful datasets, for example, the EyeNet dataset, containing marked pictures of 32 retinal disorders [11].

At last, innovation — particularly ML and DL — has significantly assisted with distinguishing and characterize retinal diseases from the beginning, thusly giving potential solutions for the rising recurrence of such issues. In the area of ophthalmology, scientists and clinical specialists can raise analysis precision and better persistent results by utilizing imaginative methodologies and solid datasets [12][13]. Further improvement of these advancements and assurance of their overall accessibility in clinical conditions rely upon steady exploration and helpful endeavors.

We have reinforced the ordinary finding methodology for retinal-based basic infection utilizing a deep learning-based CNN model.

While utilizing less memory, the proposed CNN model creates unrivaled outcomes than present status of-craftsmanship draws near.

Much obliged by and large to CNN and its specific variety, some of the time called as U-Net Division, the grouping of clinical diseases — particularly retinal diseases — has developed radically. The multifaceted design of component extraction makes U-Net have a significant shortcoming: it consumes a ton of memory and central processor power while moving the entire element guide to the matching decoder. It additionally tries not to link to the unsampled decoder highlight map reusing pooling files. This paper presents a “convolutional neural network (CNN)” model productively involving memory utilization for multi-class characterization issues.

2. Literature Survey

Retinal diseases' recurrence and impact on visual perception make serious issues for world medical services frameworks. The analysis and arrangement of these disorders has showed guarantee from late improvements in "machine learning (ML) and deep learning (DL)" strategies. The target of this writing survey is to give a rundown of significant examinations in this field along with an accentuation on a few procedures and methods utilized for retinal diseases programmed ID.

Utilizing brought down deep learning highlights, Arunkumar and Karthigaikumar (2017) recommended a procedure for multi-retinal disease classification. Decreasing the dimensionality of deep learning highlights assists with limiting computational burden while in any case safeguarding order accuracy [3]. This technique settles the trouble of successfully handling enormous measures of retinal pictures.

Retinal picture examination for "age-related macular degeneration (AMD)" has progressed thanks to a limited extent to experiences presented by Kanagasingam et al. 2014. Underscoring the need of these apparatuses in early distinguishing proof and the executives of AMD, their review covered a few strategies and improvements in picture handling and examination [7].

Yang et al. (2018) set forth a crossover machine learning model for retinal disease auto-grouping. High demonstrative accuracy [10] was gotten by incorporating U-Net division for picture preprocessing with a "support Vector Machine (SVM)" classifier. This mixture technique shows how well different methodologies for sickness arrangement join.

With "optical coherence tomography (OCT)" pictures, Perdomo et al. (2019) utilized a deep learning strategy to group diabetes-related retinal diseases. Their methodology showed great precision in assorted retinal diseases associated with diabetes [14].

Retinal ailments were researched by Mahendran et al. (2020) applying a few ML procedures. Their examination evaluated the adequacy of a few calculations in retinal picture order and underlined the chance of these methodologies in supporting ophthalmologists with illness conclusion [15].

Utilizing OCT pictures, Subramanian et al. (2022) fostered a Bayesian enhancement deep learning network-based finding approach for retinal disorders. Their technique advanced the plan of the deep learning network utilizing Bayesian improvement, subsequently raising the demonstrative precision [18].

Retinal disorders were ordered by Das et al. (2019) through an transfer learning strategy. Especially in circumstances with negligible marked information, their procedure exhibited successful sickness order by utilizing skill from pre-prepared deep learning models [25].

Utilizing a better CLAHE channel and move "convolutional neural network (CNN)", Sheet et al. (2022) introduced a strategy for retinal disease discovery. To increment disease analysis accuracy [37], their technique coordinated deep learning models with picture improving strategies.

EyeDeep-Net, a deep neural network plan for multi-class determination of retinal diseases, was first introduced by Sengar et al. (2023). Their methodology showed solid exactness in various retinal diseases ID, accordingly supporting better clinical decision-production [38].

At long last, lately, programmed retinal diseases recognition with ML and DL techniques has made incredible progression. Proposed to deal with the intricacy of retinal picture investigation are a few strategies including cross breed models, deep learning structures, and diagnosis learning techniques. In ophthalmology, these advancements could assist with upgrading early diagnosis, treatment arranging, and patient results. Further improvement of these methodologies and simplicity of their incorporation into clinical practice rely upon steady examination and collaboration.

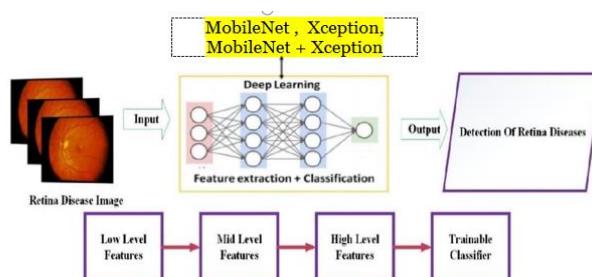
3. Methodology

i) Proposed Work:

using the EyeNet dataset, the proposed technique multi-groups retinal diseases using “convolutional neural network (CNN)” models — all the more particularly, MobileNet and Xception. Aside from CNN, we examine to further develop execution involving MobileNet and Xception related. The system tries to augment memory use while safeguarding extraordinary grouping accuracy. Utilizing these state of the art deep learning plans, the proposed framework tries to improve ebb and flow retinal diseases finding strategies. Considered measures including precision, recall, accuracy, and time consumption all through a few ages, the assessment of the proposed framework contrasts and other customary methodologies such “MobileNet, Xception, CNN, UNet (CNN) SVM, and MobileNet + Xception”. By utilization of this strategy, the framework plans to achieve excellent execution in unequivocally perceiving and grouping different retinal disorders, thusly empowering advancements in ophthalmic diagnosis and treatment.

ii) System Architecture:

Among “convolutional neural network (CNN)” models, including MobileNet, Xception, and their mix, the system architecture comprises. These models run input retinal photographs from the EyeNet dataset through multi-class retinal diseases arrangement. Prepared on marked information, the models are customized to decrease memory use while yet augmenting order accuracy. Preprocessing is important for the plan; CNN layers highlight extraction; order follows from To assess any model, calculation of assessment measurements including accuracy, recall, and precision helps. Through this plan, the framework looks to offer exact and successful retinal disease diagnosis, thus supporting early distinguishing proof and therapy.



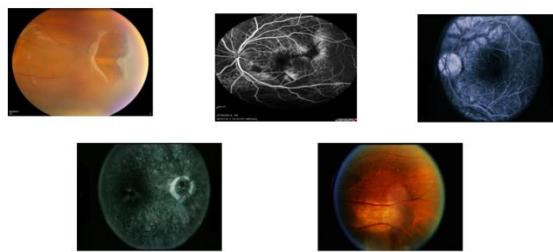
“Fig 1 Proposed Architecture”

iii) Dataset Collection:

Yang et al's. [10] organized EyeNet dataset marks a significant advancement in the field of retinal disease classification due to its careful person. EyeNet gives a marked assortment of 32 various types of retinal diseases, dissimilar to past datasets like Gaze or Drive, which generally give few characterizations. More wide and precise clinical information portrayal from this dataset lets more strong model preparation and assessment conceivable.

Retinal pictures in the EyeNet Expert Dataset are organized by reasonable marks matching different retinal diseases. Preparing and testing “convolutional neural network (CNN)” models focusing on multi-class arrangement issues generally depend on these pictures. Accessibility of the dataset on GitHub ensures openness and repeatability for scientists and experts anxious to explore and approve their calculations for retinal disease detection and order.

This dataset permits specialists to make and evaluate deep learning and machine learning models for independent retinal diseases identification and characterization, subsequently propelling clinical imaging and medical services innovations. For the creation and approval of calculations intended to improve the conclusion and the board of retinal diseases in clinical conditions, the EyeNet dataset offers a precious device.



“Fig 1 Dataset images”

iv) Image Processing:

Planning information for machine learning models relies basically upon picture handling, particularly in positions including picture grouping like retinal disease detection. ImageDataGenerator is a Keras instrument that allows one successfully to expand picture information, consequently working on the variety and nature of the dataset. A few picture handling techniques can be utilized with ImageDataGenerator in the system of retinal disease order using the EyeNet dataset to build the speculation and strength of the model.

1. Re-scaling the Image:

Re-scaling is normalizing pixel values inside a given reach — typically somewhere in the range of 0 and 1. This strategy ensures homogeneous pixel forces in all photographs, hence settling the preparation cycle and speeding up combination. Re-scaling is urgent to keep away from issues with various pixel power ranges across pictures, accordingly impacting model execution.

2. Shear Transformation:

Shear change is a contortion of pictures delivered by moving pixels along an assigned axis.

This strategy reproduces has a significant impact on in context or direction, thusly adding variety in the dataset. Shear change can reproduce the impacts of little head movements or changes in imaging plots for retinal pictures, subsequently reinforcing the model to oblige such changes in real-world conditions.

3. Zooming the Image:

Zooming basically changes the size of the picture by amplifying or diminishing areas of it. Generally found in clinical imaging conditions, changes in picture goal or concentrate can be reenacted by this expansion approach. Arbitrary zooming in or out of retinal pictures assists the model with perceiving examples and attributes across a few scales, consequently further developing grouping execution.

4. Horizontal Flip:

A perfect representation is created when an image is horizontal flipped — that is, along the upward axis. Through spatial changes invariant to even reflection, this expansion strategy further develops the summing up limit of the model across a few directions. By recreating varieties in quiet stance during imaging activities, even flips help to ensure that the model areas of strength for stays such changes.

5. Reshaping the Image:

Reshaping the picture is either editing or scaling it to a given aspect. This strategy ensures consistent picture size, hence empowering successful clump handling during model preparation. Reshaping is particularly vital while working with datasets including pictures of various aspects since it normalizes input sizes among all examples, consequently improving on the model engineering and preparing strategy.

Through ImageDataGenerator, specialists can effectively improve the EyeNet dataset by utilizing these picture handling techniques, consequently enlarging it with numerous variations of retinal pictures. Machine learning algorithms are taken care of this advanced dataset so they might areas of strength for foster discriminative highlights for exact retinal disease characterization. Besides, increase opens the model to a bigger range of information dissemination, thus lessening the overfitting risk and consequently improving its presentation on test information not known to it.

To work on the quality and variety of picture datasets for retinal disease order, picture handling utilizing strategies including re-scaling, shear change, zooming, even flipping, and reshaping is overall rather significant. ImageDataGenerator permits specialists to make major areas of strength for more generalizable ML models by including these strategies, subsequently opening the way for improved diagnosis accuracy and patient consideration in ophthalmology.

vi) Algorithms:

A few algorithms, including “MobileNet, Xception, CNN, UNet (CNN) SVM, and MobileNet + Xception”, are regularly utilized with regards to retinal disease order involving the EyeNet dataset due their viability in picture characterization errands and explicit benefits in the task.

1. MobileNet:

Lightweight convolutional neural network engineering implied for compelling execution on *Nanotechnology Perceptions* Vol. 20 No.7 (2024)

versatile and inserted gadgets is MobileNet. Depthwise distinguishable convolutions make up it; they radically cut computational intricacy and boundary count while yet saving serious accuracy. MobileNet is utilized in the undertaking due to its negligible memory impression and fast derivation speed, which fit for circumstances with restricted assets as edge gadgets or mobile applications.

2. Xception:

Reached out from the Origin design, Xception is recognized by skip associations and depthwise distinguishable convolutions. By productively catching nearby and worldwide viewpoints, it accomplishes present day execution on a few picture characterization benchmarks. deep engineering of Xception empowers it to learn various leveled portrayals of retinal pictures, in this way gathering complex subtleties and examples crucial for exact disease arrangement. Its extraordinary presentation makes it an extraordinary assistance in the venture focusing on wonderful order accuracy.

3. CNN (Convolutional Neural Network):

A fundamental deep learning architecture frequently applied for picture characterization issues is CNN. Its few layers of convolutional, pooling, and completely associated layers license progressive element extraction from input pictures. CNNs are brilliant in learning spatial ordered progressions of highlights, which qualifies them for the examination of confounded visual information including retinal pictures. CNN goes about as a gauge model for correlation and benchmarking against further developed designs such MobileNet and Xception in the venture.

4. UNet (CNN) SVM:

Especially in clinical picture examination, UNet is a convolutional neural network architecture implied for issues including biomedical picture division. It includes a symmetric growing way for pixel-wise grouping or division and a contracting way for highlight extraction. UNet can at the same time in all actuality do picture division and grouping tasks working together with “SVM (Backing Vector Machine)”. The review makes benefit of UNet (CNN) SVM in light of its ability to exactly pinpoint and characterize retinal sores or abnormalities, subsequently offering significant data for disease conclusion and observing.

5. MobileNet + Xception:

Joining a few neural network architectures , for example, MobileNet and Xception can create synergistic benefits by using the qualities of each model and in this way limiting their weaknesses. MobileNet + Xception combination looks to further develop characterization execution in the undertaking by ensembling certain elements advanced by the two models. By joining supplementing data procured from retinal pictures, this strategy can increment model versatility, speculation, and speculation as well as broad accuracy.

By and large, every strategy in the task has unique advantages took care of the specific standards and restrictions of retinal disease characterization. While CNN gives a pattern model, UNet (CNN) SVM coordinates division and grouping, MobileNet and Xception center productivity and execution; MobileNet + Xception combination utilizes gathering learning for most extreme exactness. Involving these calculations in show will empower scientists to make

solid and proficient answers for robotized retinal disease diagnosis and classification, subsequently upgrading patient consideration and treatment results.

4. EXPERIMENTAL RESULTS

Accuracy: The limit of a test to accurately isolate the patient from the sound cases characterizes its accuracy. Computing the extent of true positive and true negative in completely broke down cases will assist us with extending the exactness of a test. Numerically, this is said as:

$$\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

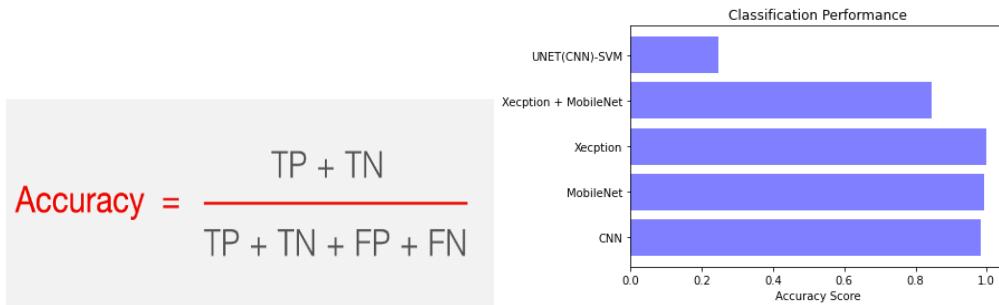
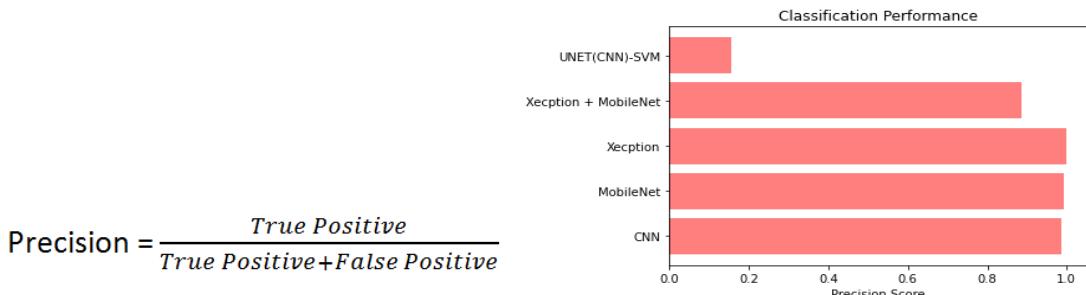


Fig 3 Accuracy comparison graph

Precision: Precision measures among the Fig. 5 Review examination diagram ones assigned as up-sides the small amount of accurately grouped occasions or tests. The equation to decide the Precision then is:

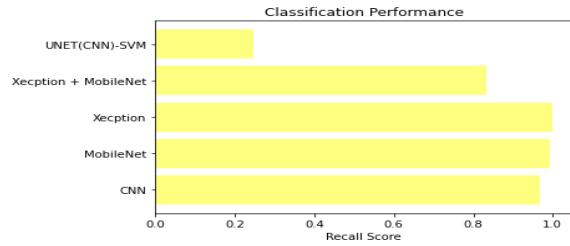
$$\text{Precision} = \text{True positives} / (\text{True positives} + \text{False positives}) = \text{TP}/(\text{TP} + \text{FP})$$



“Fig 4 Precision comparison graph”

Recall: In machine learning, recall is a measurement checking a model's ability to track down all relevant cases of a given class. It offers data on the fulfillment of a model concerning precisely anticipated positive perceptions to the generally speaking actual positives.

$$Recall = \frac{TP}{TP + FN}$$

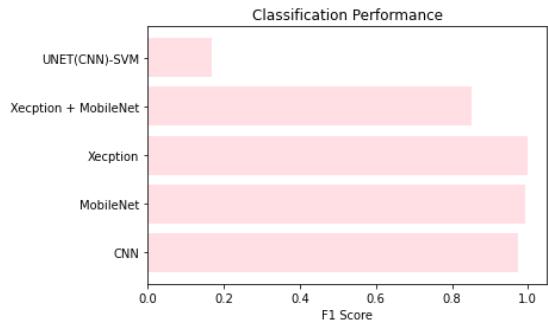


“Fig 5 Recall comparison graph”

F1-Score: In machine learning, F1 score is a measurement of model rightness. It mixes a model's recall and precision scores. Across the entire dataset, the accuracy measure counts the times a model created a right forecast.

$$F1 \text{ Score} = \frac{2}{\left(\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}} \right)}$$

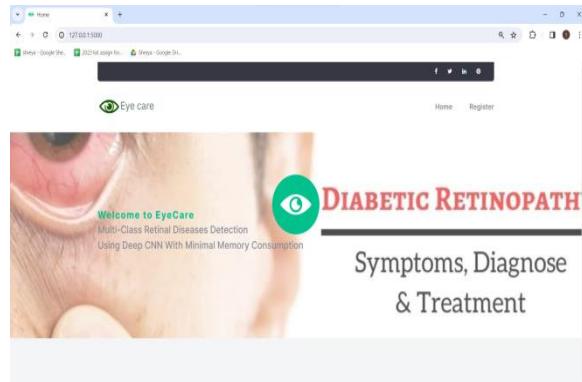
$$F1 \text{ Score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$



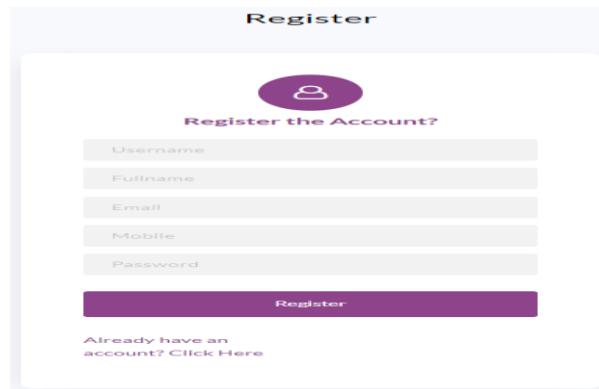
“Fig 6 F1-Score comparison graph”

ML Model	Accuracy	Precision	Recall	F1_Score
CNN	0.984	0.988	0.969	0.975
Extension Mobile Net	0.992	0.992	0.992	0.992
Extension Xception	1.000	1.000	1.000	1.000
Extension Xception + MobileNet	0.844	0.885	0.833	0.851
UNET (CNN) + SVM	0.245	0.155	0.885	0.167

“Fig 7 Comparison table of performance evaluation metrics of all algorithms”

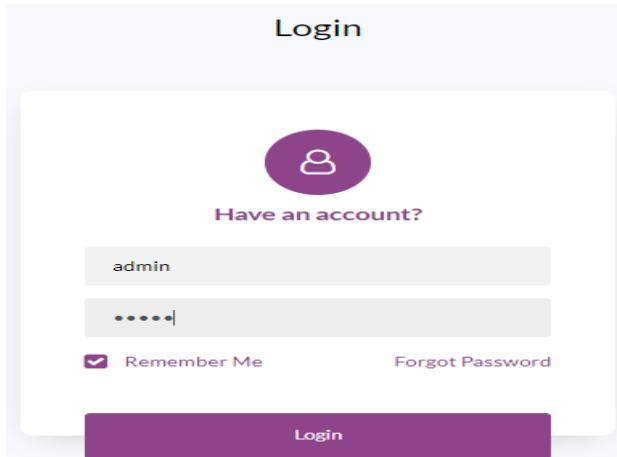


“Fig 8 Home page”



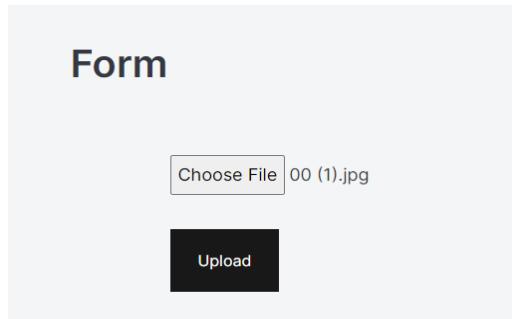
The image shows a registration form titled "Register". At the top is a purple circular icon with a white user symbol. Below it is the text "Register the Account?". The form contains five input fields: "Username", "Fullname", "Email", "Mobile", and "Password". A large purple "Register" button is at the bottom. Below the button is a link: "Already have an account? Click Here".

“Fig 9 Register page”



The image shows a login form titled "Login". At the top is a purple circular icon with a white user symbol. Below it is the text "Have an account?". The form has two input fields: one for "Username" containing "admin" and one for "Password" containing "*****". Below the fields are two buttons: "Remember Me" with a checked checkbox and "Forgot Password". A large purple "Login" button is at the bottom.

“Fig 10 Login page”



The image shows a form titled "Form". It contains a "Choose File" input field with the text "00 (1).jpg" and a black "Upload" button.

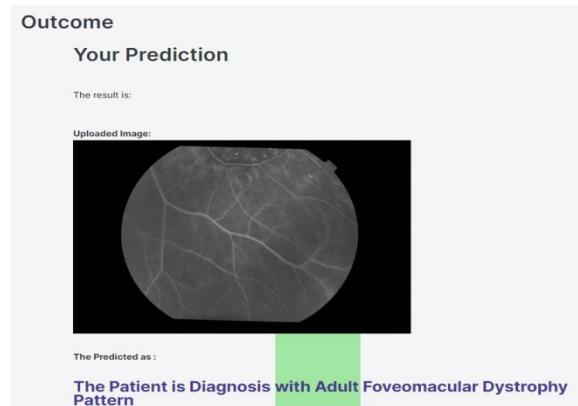
“Fig 11 Upload input image”

“Fig 12 Predict result for given input”

Form

1 (1).jpg

“Fig13.Upload-another-input”



“Fig 14 Final outcome for given input image”

Similarly we can try other cases.

5. Conclusion

Eventually, utilizing cutting edge convolutional neural network (CNN) models like MobileNet and Xception, the proposed approach denotes a significant advancement in the field of retinal disease classification. The framework shows its precision in characterizing different retinal disease through the EyeNet dataset, which has a total assortment of retinal pictures labeled with 32 unique sickness classes. With regards to precision, recall, accuracy, and time consumption, the correlation of the proposed framework against different ordinary methodologies including “MobileNet, Xception, CNN, UNet (CNN) SVM, and MobileNet + Xception shows its better presentation. Especially, MobileNet and Xception” produce the best accuracy rate across every one of the models and other contrasting methodologies. Stressing memory economy while protecting high grouping accuracy, the recommended approach is a feasible method for further developing momentum retinal disease diagnosis procedures. Exact ID and characterization of retinal diseases will serve to extraordinarily advance ophthalmic determination and treatment, consequently upgrading patient results and nature of care.

6. Future Scope

The model can be created proceeding to integrate more disease classes, thus working on its indicative limit and versatility. Lessening memory utilization ought to be given main concern in persistent examination so the model might stay effective for continuous use. While working with clinical experts will clean and test the presentation of the model, combination with clinical imaging advancements will improve on diagnosis. This collaboration will assist the model with being more valid in clinical conditions. Eventually, the recommended approach readies the reason for computerized retinal diseases screening systems, so empowering early recognizable proof and mediation to raise patient results.

References

- [1] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks,” *Nature*, vol. 542, no. 7639, pp. 115–118, Feb. 2017.
- [2] Prabhakar V, Agarwal S, Chauhan R, Sharma S. Fast dissolving tablets: an overview. *International Journal of Pharmaceutical Sciences: Review and Research*. 2012;16(1):17.
- [3] R. Arunkumar and P. Karthigaikumar, “Multi-retinal disease classification by reduced deep learning features,” *Neural Comput. Appl.*, vol. 28, no. 2, pp. 329–334, Feb. 2017.
- [4] Vishvakarma P. Design and development of montelukast sodium fast dissolving films for better therapeutic efficacy. *Journal of the Chilean Chemical Society*. 2018 Jun;63(2):3988-93.
- [5] S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” *Ophthalmology*, vol. 121, no. 1, pp. 162–172, Jan. 2014.
- [6] R. F. Mullins, S. R. Russell, D. H. Anderson, and G. S. Hageman, “Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease,” *FASEB J.*, vol. 14, no. 7, pp. 835–846, May 2000.

[7] Y. Kanagasingam, A. Bhuiyan, M. D. Abràmoff, R. T. Smith, L. Goldschmidt, and T. Y. Wong, “Progress on retinal image analysis for age related macular degeneration,” *Prog. Retinal Eye Res.*, vol. 38, pp. 20–42, Jan. 2014.

[8] D. S. Kermany, “Identifying medical diagnoses and treatable diseases by image-based deep learning,” *Cell*, vol. 172, no. 5, pp. 1122–1131, Feb. 2018.

[9] Vishvakrama P, Sharma S. Liposomes: an overview. *Journal of Drug Delivery and Therapeutics*. 2014 Jun 24:47-55.

[10] C.-H. H. Yang, J.-H. Huang, F. Liu, F.-Y. Chiu, M. Gao, W. Lyu, M. D. I.-H. Lin, and J. Tegner, “A novel hybrid machine learning model for auto-classification of retinal diseases,” 2018, arXiv:1806.06423.

[11] M. B. Jabra, A. Koubaa, B. Benjdira, A. Ammar, and H. Hamam, “COVID19 diagnosis in chest X-rays using deep learning and majority voting,” *Appl. Sci.*, vol. 11, no. 6, p. 2884, Mar. 2021.

[12] 4. Prabhakar V, Agarwal S, Chauhan R, Sharma S. Fast dissolving tablets: an overview. *International Journal of Pharmaceutical Sciences: Review and Research*. 2012;16(1):17.

[13] W. Boulila, A. Ammar, B. Benjdira, and A. Koubaa, “Securing the classification of COVID-19 in chest X-ray images: A privacy-preserving deep learning approach,” in Proc. 2nd Int. Conf. Smart Syst. Emerg. Technol. (SMARTTECH), May 2022, pp. 220–225.

[14] O. Perdomo, H. Rios, F. J. Rodríguez, S. Otálora, F. Meriaudeau, H. Müller, and F. A. González, “Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography,” *Comput. Methods Programs Biomed.*, vol. 178, pp. 181–189, Sep. 2019.

[15] G. Mahendran, M. Periyasamy, S. Murugeswari, and N. K. Devi, “Analysis on retinal diseases using machine learning algorithms,” *Mater. Today, Proc.*, vol. 33, pp. 3102–3107, Jan. 2020.

[16] S. J. Kim, K. J. Cho, and S. Oh, “Development of machine learning models for diagnosis of glaucoma,” *PLoS ONE*, vol. 12, no. 5, May 2017, Art. no. e0177726.

[17] P. G. Subin and P. Muthukannan, “Optimized convolution neural network based multiple eye disease detection,” *Comput. Biol. Med.*, vol. 146, Jul. 2022, Art. no. 105648.

[18] M. Subramanian, M. S. Kumar, V. E. Sathishkumar, J. Prabhu, A. Karthick, S. S. Ganesh, and M. A. Meem, “Diagnosis of retinal diseases based on Bayesian optimization deep learning network using optical coherence tomography images,” *Comput. Intell. Neurosci.*, vol. 2022, pp. 1–15, Apr. 2022.

[19] R. Sarki, K. Ahmed, H. Wang, Y. Zhang, and K. Wang, “Convolutional neural network for multi-class classification of diabetic eye disease,” *EAI Endorsed Trans. Scalable Inf. Syst.*, vol. 9, no. 4, p. e5, 2022.

[20] D. Marín, A. Aquino, M. E. Gegundez-Arias, and J. M. Bravo, “A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features,” *IEEE Trans. Med. Imag.*, vol. 30, no. 1, pp. 146–158, Jan. 2011.

[21] X. You, Q. Peng, Y. Yuan, Y.-M. Cheung, and J. Lei, “Segmentation of retinal blood vessels using the radial projection and semi-supervised approach,” *Pattern Recognit.*, vol. 44, nos. 10–11, pp. 2314–2324, Oct. 2011.

[22] G. B. Kande, P. V. Subbaiah, and T. S. Savithri, “Unsupervised fuzzy based vessel segmentation in pathological digital fundus images,” *J. Med. Syst.*, vol. 34, no. 5, pp. 849–858, Oct. 2010.

[23] M. A. Palomera-Perez, M. E. Martinez-Perez, H. Benitez-Perez, and J. L. Ortega-Arjona, “Parallel multiscale feature extraction and region growing: Application in retinal blood vessel detection,” *IEEE Trans. Inf. Technol. Biomed.*, vol. 14, no. 2, pp. 500–506, Mar. 2010.

[24] P. Gowsalya and S. Vasanthi, “Segmentation and classification of features in retinal images,” in Proc. Int. Conf. Commun. Signal Process., Apr. 2014, pp. 1869–1873.

[25] A. Das, R. Giri, G. Chourasia, and A. A. Bala, “Classification of retinal diseases using transfer learning approach,” in Proc. Int. Conf. Commun. Electron. Syst. (ICCES), Jul. 2019, pp. 2080–2084.

- [26] R. M. Kamble, G. C. Y. Chan, O. Perdomo, M. Kokare, F. A. González, H. Müller, and F. Mériadeau, “Automated diabetic macular edema (DME) analysis using fine tuning with Inception-Resnet-v2 on OCT images,” in Proc. IEEE-EMBS Conf. Biomed. Eng. Sci. (IECBES), Dec. 2018, pp. 442–446.
- [27] D. Zhang, W. Bu, and X. Wu, “Diabetic retinopathy classification using deeply supervised ResNet,” in Proc. IEEE SmartWorld, Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput. Commun., Cloud Big Data Comput., Internet People Smart City Innov. (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2017, pp. 1–6.
- [28] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification using deep learning,” 2017, arXiv:1712.04621.
- [29] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” *J. Big Data*, vol. 6, no. 1, p. 60, Dec. 2019.
- [30] Accessed: Mar. 2, 2022. [Online]. Available: <https://github.com/huckiyang/EyeNet>
- [31] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” *Neural Comput.*, vol. 18, no. 7, pp. 1527–1554, Jul. 2006.
- [32] J. Gu, “Recent advances in convolutional neural networks,” *Pattern Recognit.*, vol. 77, pp. 354–377, May 2018.
- [33] M. Bakator and D. Radosav, “Deep learning and medical diagnosis: A review of literature,” *Multimodal Technol. Interact.*, vol. 2, no. 3, p. 47, Aug. 2018.
- [34] F. Gao, Z. Yue, J. Wang, J. Sun, E. Yang, and H. Zhou, “A novel active semisupervised convolutional neural network algorithm for SAR image recognition,” *Comput. Intell. Neurosci.*, vol. 2017, pp. 1–8, Oct. 2017.
- [35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014, arXiv:1412.6980.
- [36] L. Terry, “An in vivo investigation of choroidal vasculature in age-related macular degeneration,” Ph.D. dissertation, School Optometry Vis. Sci., Cardiff Univ., Cardiff, Wales, 2017.
- [37] S. S. M. Sheet, T.-S. Tan, M. A. As’ari, W. H. W. Hitam, and J. S. Y. Sia, “Retinal disease identification using upgraded CLAHE filter and transfer convolution neural network,” *ICT Exp.*, vol. 8, no. 1, pp. 142–150, Mar. 2022.
- [38] N. Sengar, R. C. Joshi, M. K. Dutta, and R. Burget, “EyeDeep-Net: A multi-class diagnosis of retinal diseases using deep neural network,” *Neural Comput. Appl.*, vol. 35, pp. 10551–10571, Jan. 2023.