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As technology scales down to nanometer regimes, such as 90 nm and below, leakage power
becomes a dominant component of total power dissipation in SRAM cells. This increased power
consumption poses a challenge for battery-operated and portable devices, where power efficiency
is critical. Additionally, high power dissipation can lead to thermal issues, impacting the reliability
and longevity of electronic devices. The comparative analysis highlighted that the DTMOS with
Sleep technique offers the best balance between power dissipation and propagation delay. The Stack
with Sleep technique provides the greatest power savings but at the cost of increased delay, making
it suitable for ultra-low-power applications where speed is less critical. This paper demonstrated
the effectiveness of various low-power techniques in the design of 7T SRAM cells. The
combination of variable threshold and sleep transistors emerged as the most promising approach,
offering significant power savings with minimal impact on performance.
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1. Introduction
1.1 Background

Static Random-Access Memory (SRAM) is a type of semiconductor memory widely used in
various electronic devices for its high speed and low power consumption characteristics.
SRAM cells, due to their volatile nature, retain data only when the power supply is active,
making them crucial for applications that require fast and efficient memory access such as
caches in microprocessors, mobile devices, and other high-performance computing systems.

The traditional 6-transistor (6T) SRAM cell is commonly used due to its simplicity and
reliability. However, with the continuous scaling of technology nodes, the leakage power of
SRAM cells has become a significant concern. Leakage power, which is the power consumed
by the transistor when it is in an off state, becomes more pronounced as transistors shrink in
size.
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1.2 Problem Statement

To address these challenges, various low-power techniques have been proposed to reduce
leakage power in SRAM cells. This paper focuses on the design and comparative analysis of
a 7-transistor (7T) SRAM cell incorporating several low-power techniques: sleep transistor,
variable threshold (VT), transistor stacking, VT with sleep transistor, and stack transistor with
sleep transistor. Each technique offers unique benefits in reducing power dissipation and
enhancing the overall performance of SRAM cells.

1.3 Objectives
The primary objectives of this paper are:

1. Designing 7T SRAM Cells: Implement the baseline 7T SRAM cell using conventional
MOSFETSs and then integrate the proposed low-power techniques.

2. Simulation and Analysis: Perform detailed simulations using the 90 nm Predictive
Technology Model (PTM) in LTSpiceXVII software to evaluate the performance of each
design.

3. Performance Metrics Evaluation: Analyze key performance metrics, including power
dissipation, propagation delay, Power Delay Product (PDP), and Energy Delay Product (EDP).

4. Comparative Study: Conduct a comparative study to determine the most effective low-
power technique for 7T SRAM cells in terms of power efficiency and performance.

1.4 Scope of the Paper

The scope of this paper includes:

e Designing and simulating 7T SRAM cells using five different low-power techniques.
o Evaluating the impact of these techniques on power dissipation and propagation delay.

e  Comparing the results with conventional MOSFET-based 7T SRAM cells to determine
the improvements achieved.

This paper does not cover:
e  The fabrication of the designed SRAM cells.

e The impact of these techniques on other parameters such as noise margins and cell
stability, which could be potential areas for future research.

1.5 Organization of the Paper
The paper is organized as follows:

o Literature Review: Discusses previous research and existing techniques for reducing
power consumption in SRAM cells.

e  Methodology: Details the tools, technology, and performance metrics used in the
simulation and analysis of the SRAM designs.

e Design Techniques: Describes the implementation and mathematical analysis of each
low-power technique applied to the 7T SRAM cells.
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e Simulation and Results: Presents the simulation results for each design technique,
including power dissipation and propagation delay.

o  Comparative Analysis: Compares the performance of the different low-power techniques
and discusses their effectiveness.

e Conclusion and Future Work: Summarizes the findings of the paper and suggests
directions for future research.

o References: Lists the sources referenced throughout the paper.

2. Objectives
e  To reduce dynamic and static power dissipation in 7T SRAM cells.

e To evaluate the effectiveness of Variable Threshold CMOS, Sleep Transistor, and
Transistor Stacking techniques.

e To compare the power consumption of the optimized 7T SRAM with conventional
designs.

3. Methodology

The paper follows a structured approach to design, simulate, and analyze 7T SRAM cells using
the aforementioned low-power techniques.

3.1 Tools and Technology

e  Technology Node: 90 nm Predictive Technology Model (PTM)

e  Simulation Software: LTSpiceXVII

e  Supply Voltage (Vdd): 300 mV

3.2 Performance Metrics

e Power Dissipation: The total power consumed by the SRAM cell during operation.
e  Propagation Delay: The time taken for a signal to propagate through the SRAM cell.

e Power Delay Product (PDP): The product of power dissipation and propagation delay,
indicating overall efficiency.

PDP=Pxtyg

e  Energy Delay Product (EDP): The product of energy consumed and delay, providing a
comprehensive measure of performance.

EDP=EXtpg = PXtys?
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4. Design Techniques
4.1 Basic 7T SRAM Cell

The 7T SRAM cell configuration shown in Fig.1, is an enhanced version of the traditional 6T
SRAM cell. The primary difference lies in the addition of an extra NMQOS transistor in the
ground path of the cross-coupled inverters that form the core of the SRAM cell. This additional
transistor helps to reduce voltage leakage during the read operation by cutting off the ground
path, thereby improving the cell's stability and performance.

PULSE(0 300my In 100p 100p 10n 20m)

od -

PULSE(D 300my 111 100p 100p-5n-10n)
O
MO
1
11
1ol
i
;!
NVIOS W
M2
|
PULSE({300mY- 0 1n 100p 100 5n 10n)

i
iLs

framB0m . . . . L

Fig. 1. Schematic of 7T SRAM Cell.
Key Components of the 7T SRAM Cell
1. Cross-Coupled Inverters (M3 and M4):

e These transistors form the core memory storage elements. They are responsible for
holding the logic state (either 0 or 1) at nodes Q and Q bar.

2. Access Transistors (M1 and M2):

e These NMOS transistors control access to the cell for read and write operations. They
connect the internal nodes (Q and Q bar) to the bit lines (BL and BLB) when the word line
(WL) is activated.

3. Bit Lines (BL and BLB):

e BL and BLB are used to transfer data to and from the SRAM cell during write and read
operations. BL is typically connected to the drain of M1, and BLB is connected to the drain of
M2.
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4.  Word Line (WL):

e The word line is used to select a specific SRAM cell for read or write operations. When
the WL is high, it activates the access transistors (M1 and M2), allowing data to be written to
or read from the cell.

5. Additional NMOS Transistor:

e Thistransistor is connected in series with the ground path of the cross-coupled inverters.
During the read operation, it helps to isolate the cell from the ground, thereby preventing
voltage leakage from node Q to ground.

Operation of the 7T SRAM Cell
Write Operation:
e When the word line (WL) is high, both access transistors (M1 and M2) turn on.

o Data is written to the cell through the bit lines (BL and BLB). For instance, if a logic '1'
is to be written:

e BL is driven high.
e BLBisdriven low.

e The cross-coupled inverters (M3 and M4) latch the new data, storing the logic '1' at node
Q and logic '0" at node Q bar.

Read Operation:

e  The word line (WL) is activated, turning on the access transistors (M1 and M2).

e  The state of the cell is sensed by the bit lines. For example, if Q is high and Q bar is low:
o BL will sense a high voltage.

o BLB will sense a low voltage.

e  The additional NMOS transistor in the ground path is turned off during this operation to
prevent voltage leakage from Q to ground, thereby maintaining the integrity of the stored data.

Advantages of the 7T SRAM Cell

e Reduced Leakage: The additional NMOS transistor effectively reduces voltage leakage
during the read operation, which enhances data stability.

e Improved Performance: By isolating the ground path during reads, the cell can achieve
better performance and reliability compared to the traditional 6T SRAM cell.

4.2 Sleep Transistor

Sleep transistors are used to disconnect the SRAM cell from the power supply during idle
periods, significantly reducing static power dissipation as shown in Fig.2.

Key Concepts in Power Gating and Sleep Transistors
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1. Sleep Transistors:

e Sleep transistors are high threshold voltage transistors that are used to disconnect the
circuit from the power supply during standby mode, thereby reducing leakage currents.

e  They create what is known as a "virtual power supply" and a "virtual ground," effectively
isolating the circuit when it is not in use.

2. Virtual Power Supply and Ground:

e The virtual power supply (connected to VDD through a PMOS sleep transistor) and
virtual ground (connected to VSS through an NMQOS sleep transistor) are essential components
in power gating.

o This arrangement helps in integrating the devices and reducing leakage currents by
turning off the sleep transistors during standby modes.

3. Header and Footer Switches:

e The PMOS sleep transistor, referred to as the "header switch,” is used to control the
connection to the power supply (VDD).

e The NMOS sleep transistor, referred to as the "footer switch," controls the connection to
the ground (VSS).

e  These switches ensure that the circuit can be completely isolated from both power supply
and ground during standby, effectively cutting off leakage paths.
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Fig. 2. Schematic of SRAM cell with Sleep Transistor Technique
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4.  Operation of Sleep Transistors:

e During active operation, the sleep transistors are turned on, connecting the circuit to the
power supply and ground, and allowing normal operation.

e During standby mode, the sleep transistors are turned off. This isolates the circuit, thereby
reducing leakage currents significantly.

o  Specifically, when an NMOS transistor is used as a sleep transistor on the pull-down path,
a SLEEP signal is generated to control its state. When the circuit is in standby, this transistor
is turned off, making the gate terminal of the transistor float and cutting off the leakage path.

4.3 Dynamic threshold MOSFET (DTMOS)

Adjusts the threshold voltage dynamically based on the operational state to improve drive
current and reduce leakage power.

Ina DTMOS (Dynamic Threshold MOSFET) as shown in Fig.3, the body and gate terminals
are connected, introducing a body effect. This dynamic connection causes the threshold
voltages of NMOS and PMOS transistors to change in response to variations in the gate
voltage. When the gate voltage is zero, the DTMOS behaves similarly to a conventional
MOSFET.

e Use body biasing or back-gate control to change the threshold voltage of the transistors.

e Apply a higher threshold voltage during idle periods and a lower threshold during active
periods.
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Fig. 3. Schematic of SRAM using DTMOS Technique.
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4.4 Transistor Stacking

Stacking transistors in series reduces leakage current through sub-threshold leakage
reduction.The transistor stacking technique is a well-known method for reducing leakage
power in CMOS circuits. By arranging multiple transistors in series, this technique increases
the effective threshold voltage, thereby reducing sub-threshold leakage currents. This method
is particularly effective in standby modes where leakage power is a significant concern.

Implementation:

e Replace single transistors with series-connected transistors in the pull-up and pull-down
networks of the SRAM cell as shown in Fig.4.

e Increased Effective Threshold Voltage (Vth)
e Reduced Drain-Source Voltage (Vds)

e In a stacked configuration, the voltage across each transistor (\VVds) is lower, which also
reduces the sub-threshold leakage current. This occurs because the voltage drop is shared
among the transistors in the stack.

Fig. 4. Schematic of SRAM using Transistor Stacking Technique

4.5 Dynamic threshold MOSFET (DTMOS) with Sleep Transistor.

Description: Combines the benefits of variable threshold adjustment and sleep transistors to
achieve better power savings.
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Implementation:

e Integrate both DTMOS and sleep transistor techniques into the SRAM cell design as
shown in Fig.5.

e 7T SRAM cell with both body-bias control and sleep transistors.
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Fig. 5. Schematic of 7T DTMOS SRAM Cell with Sleep Transistor Technigue.
4.6 Stack Transistor with Sleep Transistor

Description: Utilizes both transistor stacking and sleep transistors to minimize power
dissipation while maintaining performance.

Implementation:
e  Combine series-connected transistors (stacking) with sleep transistors in the SRAM cell.

e 7T SRAM cell with series-connected transistors and sleep transistor as shown in Fig.6.
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Fig. 6. Schematic of 7T SRAM Cell with Stacking &Sleep Transistor Technique.

5. Simulation and Results

Simulations were conducted for each design technique, and the following results were
recorded:
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5.1 Power Dissipationand Delay of Basic 7T SRAM
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Fig.7 Waveforms of 7T conventional MOSFET cell.
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e  Power Delay Product (PDP): The product of power dissipation and propagation delay,

indicating overall efficiency.
PDP=Pxtp4-301.023x1022W.Sec (Joule)

e  Energy Delay Product (EDP): The product of energy consumed and delay, providing a
comprehensive measure of performance.

EDP=Extpq = Pxtys® =99.099x1072J.Sec
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5.2 Power Dissipation and Delay of 7T SRAM using Sleep Transistor
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Fig.10 Waveforms of 7T SRAM using Sleep Transistor
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e Power Delay Product (PDP): The product of power dissipation and propagation delay,
indicating overall efficiency.

PDP=Pxtpg- 46.999x10-22W.Sec (Joule)

e  Energy Delay Product (EDP): The product of energy consumed and delay, providing a
comprehensive measure of performance.

EDP=Extps = Pxtp® = 3.868x107%2).Sec
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5.3 Power Dissipation and Delay of 7T SRAM using Dynamic threshold MOSFET (DTMOS)
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Fig.13 Waveforms of 7T SRAM using Dynamic threshold MOSFET (DTMOS).
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Fig. 13 Average Power Fig.14 Delay

e Power Delay Product (PDP): The product of power dissipation and propagation delay,
indicating overall efficiency.

PDP=Pxt,4-28.60x1022W.Sec (Joule)
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5.4 Power Dissipation and Delay of 7T SRAM using Transistor Stacking
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Fig.15 Waveforms of 7T SRAM using Transistor Stacking.
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e Power Delay Product (PDP): The product of power dissipation and propagation delay,
indicating overall efficiency.

PDP=Pxtp4-122.74x102°W.Sec (Joule)

e  Energy Delay Product (EDP): The product of energy consumed and delay, providing a
comprehensive measure of performance.

EDP=ExXtps= Pxtpe® = 45.33x107%2).Sec
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5.5 Power Dissipation and Delay of 7T SRAM using Dynamic threshold MOSFET (DTMOS)
with Sleep Transistor
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Fig.18 Waveforms of 7T SRAM using Dynamic threshold MOSFET (DTMOS) with Sleep

Transistor.
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e Power Delay Product (PDP): The product of power dissipation and propagation delay,
indicating overall efficiency.

PDP=Pxtp4-12.819x102?W.Sec (Joule)

e  Energy Delay Product (EDP): The product of energy consumed and delay, providing a
comprehensive measure of performance.

EDP=Extps = Pxtpe® = 0.492x102).Sec
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5.6 Power Dissipation and Delay of 7T SRAM using Stack Transistor with Sleep Transistor
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Fig.21 Waveforms of 7T SRAM using Stack Transistor with Sleep Transistor.
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Power Delay Product (PDP): The product of power dissipation and propagation delay,

indicating overall efficiency.
PDP=Pxtp4-23.9325x1022W.Sec (Joule)

Energy Delay Product (EDP): The product of energy consumed and delay, providing a

comprehensive measure of performance.
EDP=Extpq = Pxtys? = 2.946x10%2).Sec

6. Comparative Analysis

The

comparative analysis highlighted that the DTMOS with Sleep technique offers the best

balance between power dissipation and propagation delay. The Stack with Sleep technique
provides the greatest power savings but at the cost of increased delay, making it suitable for
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ultra-low-power applications where speed is less critical.

Technique Power Dissipation Propagation Delay PDP(J) EDP(J.Sec)
(W) (ps) (x10%) (x10%)

Basic 7T SRAM 914.38 32.92 301.023 99.099
Sleep Transistor 571.08 8.23 46.999 3.868
DTMOS 521.27 5.48 28.600 1.569
Transistor Stacking 332.32 36.93 122.74 45.330
DTMOS with Sleep 333.83 3.84 12.819 0.492
Stack with Sleep 270.72 12.31 23.932 2.946

7. Conclusion and Future Work

This paper demonstrated the effectiveness of various low-power techniques in the design of
7T SRAM cells. The combination of variable threshold and sleep transistors emerged as the
most promising approach, offering significant power savings with minimal impact on
performance. Future work could explore the scalability of these techniques to smaller
technology nodes and their impact on other performance aspects like stability and noise
margins. Additionally, incorporating adaptive control mechanisms could further enhance the
efficiency of these designs.
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