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Chest X-ray analysis plays a crucial role in diagnosing various pulmonary 

conditions. With the advent of traditional machine learning algorithms and 

advancements in data augmentation techniques, this study delves into the efficacy 

of different augmentation methods in enhancing the accuracy of chest X-ray 

abnormality diagnosis. This white paper discusses the application of classical ML 

algorithms and their performance when integrated with diverse data 

augmentation strategies, aiming to optimize diagnostic accuracy. 
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1. Introduction 

The utilization of machine l-earning in medical imaging, particularly in chest X-ray analysis, 

has exhibited promising outcomes in diagnosing pulmo--nary abnormalities [1]. Traditional 

ML algorithms, such as Support Vector Machines (SVM), Random Forest, and k-Nearest 

Neighbors (k-NN), have been applied to this domain. However, the limited size and variability 

of medical datasets often hinder model generalization. Data augmentation techniques present 

a viable solution by expanding the dataset's diversity and size, potentially improving model 

performance [2]. 

 

2. Machine Learning Models  

We have used Logistic Regression, Random Forest Classifier, and Support Vector Classifier 

(SVC). For our diagnosis methodology. Let us delve deeper into each of these machine 
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learning models, exploring their intricacies and working principles. 

Logistic Regression: 

Logistic Regression [3] is a foundational algorithm in machine learning, primarily used for 

binary classification tasks. Contrary to its name, it doesn't perform regression; instead, it 

models the probability of an instance belonging to a certain class using a logistic (sigmoid) 

function as shown in figure 1. This model is adept at predicting binary outcomes, such as 

whether an email is spam or not, based on a set of features. Its core principle lies in fitting a 

linear decision boundary that separates the classes in the feature space. Despite its simplicity, 

Logistic Regression is powerful, efficient, and particularly useful when dealing with linearly 

separable data or when interpretability of results is crucial. It's computationally efficient and 

less prone to overfitting, especially when the number of features is small. 

 

Figure 1: Logistic Regression Vs Linear Regression 

Logistic Regression is a fundamental and widely used statistical technique for binary 

classification problems. Despite its name, it's a classification algorithm rather than a regression 

one. It's particularly useful when the outcome to be predicted is a categorical variable with two 

possible outcomes, such as 'yes' or 'no', 'spam' or 'not spam'. 

Working Principle: 

• Model Representation: Logistic Regression models the probability of a certain class or 

outcome using a logistic function. It computes the probability that an instance belongs to a 

particular class. 

• Decision Boundary: It separates the classes by a linear decision boundary in the feature 

space. 

• Cost Function: The algorithm minimizes a cost function, often the logistic loss function, to 

optimize model parameters. 

Key Characteristics: 

• Linear Classifier: It's a linear classifier, which means it assumes a linear relationship 

between the features and the log-odds of the target variable. 

• Simple and Efficient: Logistic Regression is computationally efficient and less prone to 

overfitting when the number of features is relatively small. 

Random Forest Classifier: 
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Random Forest is an ensemble learning method [4], renowned for its versatility and robustness 

in handling both classification and regression tasks. This algorithm operates by constructing 

multiple decision trees during the training phase and combines their predictions for the final 

output. Each tree in the forest is trained on a random subset of the dataset, reducing overfitting. 

The algorithm then aggregates the predictions from these individual trees, typically by a 

majority vote, to arrive at the final classification. Random Forests are highly flexible, capable 

of handling large datasets with high dimensionality, and provide insights into feature 

importance, aiding in understanding the significance of different variables in the dataset. 

Random Forest is an ensemble learning method that operates by constructing multiple decision 

trees during training and outputting the class that is the mode of the classes of the individual 

trees (Figure 2). 

 

Figure 2: Working principle of random forest algorithm 

Working Principle: 

• Ensemble Method: It builds multiple decision trees and merges their predictions (bagging). 

• Feature Randomness: Each tree is trained on a random subset of features, which helps in 

reducing overfitting. 

• Voting Mechanism: For classification, the final prediction is made by a majority vote of 

the constituent trees. 

Key Characteristics: 

• Versatile: Random Forests can handle both classification and regression tasks. 

• Robust to Overfitting: They are less prone to overfitting compared to individual decision 

trees due to the aggregation of multiple trees. 

• Feature Importance: They can provide insights into feature importance, aiding in 

understanding the dataset. 

SVC (Support Vector Classifier): 

Support Vector Machine (SVM) is a supervised machine learning algorithm used for 

classification and regression analysis [5]. SVC is specifically the classification variant. 
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Support Vector Machine (SVM) is a powerful supervised learning algorithm known for its 

effectiveness in both classification and regression tasks. The Support Vector Classifier (SVC) 

variant specifically addresses classification problems. SVC finds the hyperplane that best 

separates different classes in the feature space. What sets SVM apart is its ability to handle 

complex, nonlinear relationships between features through the use of kernel functions. This 

"kernel trick" enables SVM to map data into higher-dimensional spaces where linear 

separation becomes possible, even when the original data is not linearly separable. SVM aims 

to maximize the margin between classes, making it robust against outliers and effective in 

high-dimensional spaces. Once trained, SVC is memory efficient during prediction, requiring 

only a subset of data points called support vectors (Figure 3). 

 

Figure 3: Working Principle of Support vector classifiers 

Each of these models has its strengths and limitations. Logistic Regression offers simplicity 

and interpretability, while Random Forest provides robustness and versatility in handling 

various data types. SVC, on the other hand, is effective in complex, high-dimensional spaces 

and offers flexibility through kernel functions. The choice among these models often depends 

on the specific characteristics of the dataset, the problem's nature, and the trade-offs between 

model complexity and interpretability. Tailoring the choice to suit the data and problem at 

hand is crucial for achieving optimal performance in machine learning tasks. 

Working Principle: 

• Hyperplane: SVC finds the hyperplane that best separates different classes in the feature 

space. 

• Kernel Trick: It can handle nonlinear relationships between features through the use of 

kernel functions, transforming data into higher dimensions where linear separation is possible. 

• Margin Maximization: It aims to maximize the margin between different classes, which 

enhances its robustness to outliers. 

Key Characteristics: 

• Effective in High-Dimensional Spaces: It's effective in cases where the number of 

dimensions is greater than the number of samples. 

• Versatile Kernels: Various kernel functions like linear, polynomial, radial basis function 

(RBF), etc., allow flexibility in modeling complex relationships. 
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• Memory Efficient for Prediction: Once trained, only a subset of data points (support 

vectors) is required for making predictions. 

Each of these algorithms has its strengths and weaknesses, and their performance can vary 

depending on the dataset characteristics, feature quality, and problem type. Choosing the most 

suitable algorithm often involves experimentation and analysis based on the specific problem 

at hand. 

 

3. Methodology: 

This study employs a comprehensive approach to evaluate the impact of diverse data 

augmentation methods on traditional ML algorithms for chest X-ray abnormality diagnosis. 

The methodology involves: 

Dataset Collection: Gathering a sizable chest X-ray dataset containing both normal and 

abnormal cases. (Hojjat Salehinejad et al (2019)) collected this dataset from 'Shenzhen No.3 

People's Hospital', Guangdong Medical College, and Shenzhen, China. The dataset comprises 

frontal Chest X-rays (CXRs) classified into two categories: normal and tuberculosis (TB). 

Among the outpatient clinics, a total of 662 CXRs were recorded, including 336 cases of 

tuberculosis and 326 normal cases. 

Preprocessing: Standardizing image sizes, normalizing pixel values, and segmenting regions 

of interest to ensure uniformity [7]. 

Model Development: Implementing SVM, Random Forest, and logistic regression algorithms 

as baseline models. 

Data Augmentation Techniques: Incorporating augmentation methods such as rotation, 

flipping, zooming, and adding noise to the dataset. The strategic selection of data augmentation 

techniques significantly impacts the robustness and accuracy of classifiers. By essentially 

creating an infinite quantity of data from existing samples, augmentation enhances machine 

learning (ML) classifier models [8]. It serves as a cost-effective approach, compensating for 

the expenses associated with collecting more data (Figure 4-6). 

 

Figure 4: Some of the images from dataset 
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Figure 5: Cropping the Images for Region of Interest 

There's a plethora of ways to augment image data, including rotations, adjusting lighting 

conditions, cropping, masking and more[9]. These operations allow a single image to generate 

multiple variations, effectively increasing the dataset size. This augmentation process not only 

enriches the dataset but also aids in combating overfitting issues in classifiers[10, 11]. 

Ultimately, it enables classifiers to generalize better by exposing them to a wider array of data 

variations. 

 

Figure 6: Masked Images 

Model Training and Evaluation: Training each model on augmented datasets and evaluating 

their performance using metrics like accuracy, precision, recall, and F1-score. The 
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experiments evaluated models’ respective performances using various evaluation measures.  

1 CV Accuracy: Cross-Validation Accuracy. This represents the average accuracy of the 

model during cross-validation (often using k-fold cross-validation) on the training data. It 

indicates how well the model performs on unseen data. 

2 Test Accuracy: Accuracy of the model on the test dataset. It showcases how accurately 

the model predicts on new, unseen data. 

3 Area under Curve (AUC): The area under the Receiver Operating Characteristic (ROC) 

curve. It measures the model's ability to distinguish between classes. A higher AUC generally 

indicates a better-performing model. 

4 Precision: Precision is the ratio of correctly predicted positive observations to the total 

predicted positive observations. It measures the accuracy of positive predictions made by the 

model. 

5 Recall: Recall (also known as sensitivity) is the ratio of correctly predicted positive 

observations to all actual positives. It indicates the model's ability to identify all positive 

instances correctly. 

6 F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a 

balance between precision and recall, offering a single metric that summarizes both measures. 

 

4. Results and Discussion 

The experimental results demonstrate notable improvements in model performance when 

trained on augmented datasets compared to unaugmented ones. Specifically, augmentation 

techniques like rotation and flipping contribute significantly to enhancing model 

generalization and robustness. SVM and Random Forest models exhibit improved 

performance with augmented data, showcasing higher accuracy and recall rates in detecting 

abnormal chest X-ray patterns (Figure 7 and Table 1). We have evaluated our results on three 

sets of data: 

• Unprocessed Images (UI) 

• Cropped Images (CI) 

• Masked Images (MI) 

Results on UI: 

 

Figure 7: Confusion Matrix of Results obtained by classifiers on Unprocessed Images 
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Table 1: Results for these unprocessed images (UI) 
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1. Logistic 

Regression 

0.80 0.78 0.78 0.77 0.80 0.78 

2. Random 
Forest  

0.82 0.76 0.76 0.76 0.73 0.75 

3. Support 

Vector 
Machine 

0.81 0.78 0.78 0.78 0.77 0.78 

This table I presents the performance metrics of different machine learning algorithms on a 

classification task. Each row corresponds to a different algorithm, and the columns represent 

various evaluation metrics. Now, interpreting the values in the table: 

Logistic Regression: It shows decent cross-validation and test accuracies around 0.80 and 0.78, 

respectively. The precision, recall, and F1 score are relatively consistent and balanced, 

indicating a fair overall performance. 

Random Forest: It has a slightly higher cross-validation accuracy (0.82) but a lower test 

accuracy (0.76). Precision and recall are closer, but the F1 score suggests a trade-off between 

precision and recall. 

Support Vector Machine (SVM): SVM demonstrates consistent performance across cross-

validation and test accuracies (around 0.81 and 0.78, respectively). Precision, recall, and F1 

score are also consistent and balanced, showing a stable performance across different metrics. 

These metrics collectively provide insights into the performance and characteristics of each 

algorithm in solving the classification task, aiding in the selection of the most suitable 

algorithm based on the evaluation criteria and requirements of the specific problem (Figure 8 

and Table 2). 

Results on CI: 

 

Figure 8: Confusion Matrix of Results obtained by classifiers on Masked Images Images 
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Table 2: Confusion Matrix of Results obtained by classifiers on cropped Images 
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1. Logistic 
Regression 

0.74 0.73 0.73 0.80 0.59 0.68 

2. Random 

Forest  

0.79 0.77 0.77 0.86 0.70 0.77 

3. Support 
Vector 

Machine 

0.78 0.77 0.77 0.67 0.54 0.60 

The table presents the performance metrics of three different machine learning algorithms: 

Logistic Regression, Random Forest, and Support Vector Machine (SVM). In terms of cross-

validation accuracy, Random Forest performs the best with a score of 0.79, closely followed 

by SVM at 0.78 and Logistic Regression at 0.74. When tested on unseen data, Random Forest 

maintains its lead in accuracy with a score of 0.77, while both SVM and Logistic Regression 

exhibit slightly lower but comparable test accuracies of 0.77 and 0.73, respectively. Assessing 

the models' ability to discriminate between classes, measured by the Area Under Curve (AUC), 

all three algorithms show similar performance, hovering around 0.77 to 0.73. Looking deeper 

into precision, recall, and F1 score, Random Forest exhibits the highest values across all three 

metrics, emphasizing its balanced capability in correctly identifying positive cases, 

minimizing false positives, and achieving a higher harmonic mean between precision and 

recall. Logistic Regression follows, with decent precision but relatively lower recall, indicating 

it identifies positives well but may miss some relevant cases. SVM, while showing competitive 

accuracy, lags in precision and recall, resulting in a lower F1 score compared to the other 

models. Overall, Random Forest emerges as the top performer among these algorithms across 

various evaluation criteria, displaying a robust balance between precision and recall on this 

dataset (Figure 9 and Table III). 

Results on Masked Images: 

 

Figure 9: Confusion Matrix of Results obtained by classifiers on Masked Images Images 
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Table 3: Confusion Matrix of Results obtained by classifiers on masked Images are given in 

table 
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1. Logistic Regression 0.67 0.64 0.64 0.64 0.53 0.59 

2. Random Forest  0.77 0.79 0.79 0.70 0.86 0.77 

3. Support Vector Machine 0.68 0.65 0.64 0.67 0.54 0.60 

D. Comparison of three methods: 

A combined table summarizing the results of the three classification algorithms (Logistic 

Regression, Random Forest, and Support Vector Machine) on three sets of data: Unprocessed 

Images (UI), Cropped Images (CI), and Masked Images (MI). The comparison across three 

distinct image sets—Unprocessed Images (UI), Cropped Images (CI), and Masked Images 

(MI)—reveals varying performances of three classification algorithms: Logistic Regression, 

Random Forest, and Support Vector Machine (SVM). Notably, Random Forest consistently 

demonstrates robustness across different image types, maintaining higher accuracy, precision, 

recall, and F1 score compared to the other algorithms in most cases. Logistic Regression, while 

exhibiting consistency on Unprocessed Images, experiences a notable performance drop on 

Cropped and Masked Images, especially in precision and recall. Support Vector Machine 

shows mixed results, with decreased performance on Cropped and Masked Images compared 

to Unprocessed Images. These findings suggest that while all algorithms display sensitivity to 

different image alterations, Random Forest exhibits more resilience and adaptability across 

varied image modifications, positioning it as a relatively versatile choice for classification 

tasks involving diverse image datasets (Figure 10). 

 

Figure 10:  Results of the three classification algorithms on three sets of data. 
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5. CONCLUSION 

This study underscores the potential of traditional ML algorithms in diagnosing chest X-ray 

abnormalities when coupled with diverse data augmentation techniques. The findings 

emphasize the significance of augmenting datasets to mitigate overfitting and enhance the 

generalization capabilities of models in medical image analysis. Future research could explore 

more sophisticated augmentation methods and leverage deep learning architectures to further 

advance diagnostic accuracy. 
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