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As remote work continues to reshape the professional landscape, work-from-home (WFH) 

environments face escalating cybersecurity challenges, including phishing attacks, ransomware, 

and unsecured networks. This paper introduces a robust, multilayered security framework that 

integrates ML/AI, and intrusion detection techniques. The framework leverages traffic 

categorization, dataset creation, AI-driven classification, dynamic rule updates, and real-time 

validation to protect end-users from evolving cyber threats. 

Network traffic is captured and categorized using the Snort platform, a widely recognized open-

source intrusion detection system. Logs are preprocessed to convert raw data into structured 

datasets suitable for model training. Feature engineering and extraction are applied to identify 

critical attributes, such as packet size, protocol type, source/destination IPs, and flags, enabling the 

creation of datasets enriched with meaningful patterns. These processes enhance model 

performance by isolating the most relevant features for detecting anomalies. 

We evaluated multiple AI models and identified their strengths in addressing various aspects of 

cybersecurity. Random Forest demonstrated exceptional performance with 95% accuracy in DDoS 

detection, excelling at handling high-dimensional data. Decision Tree provided valuable 

interpretability and protocol-specific traffic analysis, achieving 92% accuracy. SVM excelled in 

encrypted traffic analysis, achieving 90% accuracy due to its ability to classify complex classes 

effectively. Logistic Regression efficiently analyzed user behavior patterns, including login 

anomalies, with 89% accuracy. KNN proved effective in clustering and identifying emerging 

threats, achieving 88% accuracy. These experimental results underscore the suitability of these 

models for a robust security framework. 

Keywords: WFH Environments, Multilayered security framework, Adaptive Threat 

Mitigation, Distributed Network Environment 

 

 

1. Introduction 

The rapid digital transformation driven by the global shift to remote work has fundamentally 

reshaped the cybersecurity landscape. Work-from-home (WFH) environments, while essential 

to modern professional ecosystems, are increasingly vulnerable to cyber threats due to their 

reliance on personal devices, unsecured home networks, and the absence of enterprise-grade 

security measures. Phishing attacks, ransomware campaigns, and distributed denial-of-service 
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(DDoS) attacks have surged, underscoring the urgent need for robust, adaptive, and scalable 

security frameworks to address these challenges. Existing intrusion detection systems (IDS) 

and cybersecurity solutions, though improved, often fall short in addressing the dynamic and 

distributed nature of WFH setups. Traditional IDS methodologies, such as rule-based systems 

like Snort, provide foundational security but are frequently limited by their static 

configurations, making them ill-suited to counter emerging sophisticated attack patterns. 

Additionally, current solutions often lack portability and resource efficiency, critical for 

addressing the unique requirements of WFH users. 

To bridge these gaps, this paper proposes a comprehensive multi-layered security framework 

specifically designed for WFH environments. By integrating advanced machine learning (ML) 

and artificial intelligence (AI) techniques with robust intrusion detection mechanisms, the 

framework leverages cutting-edge methodologies to secure remote setups. The approach 

utilizes Snort for traffic categorization and preprocessing, transforming raw logs into 

structured datasets enriched with critical traffic features such as protocol type, packet size, and 

source and destination identifiers. AI models, including Random Forest, Decision Tree, 

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Logistic Regression, are 

strategically employed to classify network traffic. Each model is selected for its unique 

strengths, such as Random Forest’s excellence in anomaly detection and SVM’s specialization 

in analyzing encrypted traffic. The framework unfolds through structured phases: traffic 

categorization, feature engineering, and dataset preparation to extract critical attributes from 

raw traffic logs, AI-driven classification to distinguish benign from malicious traffic, dynamic 

rule updates based on AI-driven insights to counter emerging threats, and rigorous validation 

and testing through real-world simulations using tools like Kali Linux. These simulations 

assess the framework’s robustness against attacks such as phishing and DDoS, ensuring its 

applicability in securing WFH architectures. 

This paper’s contributions lie in its adaptive, scalable, and user-centric design, which 

continuously evolves to counter the rapidly changing threat landscape. Through real-time 

validations, dynamic rule updates, and retraining of AI models, the framework demonstrates 

resilience against evolving cyber threats. The paper outlines the proposed solution, beginning 

with an analysis of the current threat landscape and the challenges posed by WFH 

environments. It then introduces the methodology, detailing the integration of Snort with AI 

models, followed by an explanation of the framework's implementation and validation phases. 

The evaluation section highlights the performance of AI models, demonstrating their 

effectiveness in identifying and mitigating sophisticated cyber threats. Finally, the paper 

discusses future directions, including the integration of advanced deep learning models and 

extending the framework’s applicability to IoT and hybrid cloud environments, emphasizing 

its potential to secure distributed networks in an increasingly digital world. 

 

2. Literature Review 

Signature-based IDS, such as those utilized by Snort and Suricata, rely on predefined attack 

patterns to effectively detect known threats; however, they lack the ability to identify novel or 

polymorphic attacks. Anomaly-based IDS address this limitation by monitoring deviations 

from normal network behavior using statistical models and machine learning, enabling them 
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to detect irregular patterns, though they often suffer from high false-positive rates. Hybrid IDS, 

like Cisco Stealthwatch, combine the strengths of signature-based and anomaly-based 

approaches to improve threat identification while maintaining a balance between detection 

accuracy and precision. Protocol-specific IDS focus on specific protocols, such as TCP, UDP, 

and ICMP, to detect anomalies like TCP SYN floods and ICMP tunneling, offering granular 

detection capabilities tailored to particular network behaviors. 

Table1: Broad Summary of the Literature Review 

Category Key Findings from Literature Integration into Proposed 
Framework 

Outcome 

Machine Learning 

and AI in 
Cybersecurity 

ML and AI models enhance anomaly detection 

and adaptability, outperforming traditional rule-
based systems [21][22] A. R. Achar et al., O. E. 

Aeraj et al., J. R. Rose et al 

AI models like Random Forest 

and SVM are employed for 
dynamic anomaly detection and 

traffic analysis. 

Improved detection 

accuracy and adaptability 
to evolving threats. 

Rule-Based and 

Binary Classificati 

Rule-based approaches offer robust and 

customizable security solutions, especially for 
domain-specific applications [23] G. Zhang et 

al., Z. Zihan et al. 

Rule-based detection layers are 

included for flexibility and 
precision in handling diverse 

threats using Snort. 

Enhanced robustness in 

handling specific and 
emerging cyber threats. 

Feature 
Engineering and 

Anomaly Learning 

Feature extraction improves dataset quality and 
model performance, reducing false positives and 

false alarms [24][25] M. D. Rokade et al., H. 

Doroud et al 

Feature engineering extracts 
critical attributes (protocol types, 

packet size) to enhance AI-

driven classification. 

Optimized dataset 
preparation leading to 

better model performance 

and reduced false 
positives. 

Portable and 

Resource-Efficient 
IDS 

Portable IDS solutions cater to constrained 

environments with minimal resource impact, 
suitable for WFH users [26] G. Vira Yudha et al., 

T. Garalov et al. 

Portable IDS agents ensure 

security in resource-constrained 
WFH scenarios while 

maintaining efficiency. 

Seamless integration with 

WFH setups, providing 
reliable security without 

resource overuse. 

Snort as a Baseline 

Platform 

Snort is validated as an effective IDS platform 

with cross-platform support and rule 

customization capabilities (e.g., [28] A. A. E. 

Boukebous et al., G. Kaur et al.). 

Snort is utilized for log 

collection, preprocessing, and 

initial rule enforcement, forming 

the backbone of the framework. 

Foundation for a scalable, 

adaptive, and efficient 

security framework. 

The research gap in current Intrusion Detection Systems (IDS) lies in their inability to adapt 

in real-time and dynamically update detection rules to address evolving threats. This paper 

bridges this gap by proposing a self-configured IDS that integrates real-time dataset 

generation, continuous model retraining, and adaptive rule creation, ensuring enhanced 

resilience and effectiveness against emerging cybersecurity challenges. 

Threat Landscape for Work-from-Home Users 

The work-from-home (WFH) landscape has introduced a range of cybersecurity challenges, 

with key attack patterns targeting users who operate outside traditional enterprise security 

perimeters. Phishing attacks, characterized by deceptive emails designed to steal credentials, 

are a prevalent threat. Ransomware, another critical concern, encrypts user files and demands 

payment for their recovery, often crippling personal and professional activities. Man-in-the-

Middle (MITM) attacks exploit unsecured home networks to intercept communications, 

compromising sensitive information. Distributed Denial-of-Service (DDoS) attacks further 

strain WFH setups by overwhelming networks with excessive traffic, disrupting online 

activities. Additionally, endpoint exploits target vulnerabilities in unpatched software or 

devices, leaving personal systems particularly susceptible to breaches. These threats are 
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exacerbated by the unique challenges faced by WFH users, including the lack of enterprise-

grade security measures, reliance on personal devices, and the use of unsecured home 

networks. Compounding the issue is the limited availability of IT support for incident 

response, leaving users ill-equipped to handle sophisticated cyber threats. 

To address these challenges, any effective security framework must operate under specific 

constraints tailored to WFH environments. Low latency is essential, with AI detection 

processes required to complete within 20 milliseconds to ensure real-time responsiveness. 

Resource optimization is critical, as many WFH devices possess limited computational power, 

necessitating lightweight AI models. User privacy must also be a priority, with data remaining 

encrypted throughout monitoring and model training. Furthermore, ease of deployment is 

crucial to allow seamless integration with existing home setups, minimizing user disruptions. 

Scalability is another key factor, enabling the framework to dynamically scale its defenses as 

traffic levels increase. By addressing these constraints, a robust security framework can 

mitigate the risks associated with WFH setups, providing comprehensive protection while 

adapting to the unique demands of remote work environments. 

Proposed Framework 

The proposed framework for a self-configured Intrusion Detection System (IDS) is designed 

to dynamically analyze network traffic and predict threats by leveraging machine learning 

algorithms. The system continuously updates itself through retraining and rule refinement, 

ensuring adaptability and resilience against evolving cyber threats. This framework integrates 

several key components, workflows, and layers to deliver comprehensive security tailored to 

diverse network environments. 

The framework’s components include a user set (ΣU), which categorizes network users into 

administrators, regular users, and guests, enabling user-specific threat detection and responses. 

Traffic types (ΣT) are classified into application traffic, control traffic, and malicious traffic, 

allowing the system to prioritize and scrutinize network activities effectively. The protocol set 

(ΣP) encompasses UDP, TCP, and ICMP, ensuring coverage across common network 

protocols. A dynamically generated rule set (ΣR) aids in precise threat detection, while 

comprehensive logs (ΣL) document IPs, timestamps, protocols, and detected anomalies, 

serving as a vital resource for retraining AI models and updating threat intelligence databases. 

The workflow begins with traffic monitoring, where all network packets are captured and 

classified based on protocols such as TCP, UDP, and ICMP. Anomaly detection follows, with 

AI models comparing traffic patterns against established baselines to identify irregularities. 

Detected anomalies are matched against known attack signatures and global threat intelligence 

databases in the threat identification phase. Automated response mechanisms then mitigate 

risks by blocking malicious IPs, throttling suspicious traffic, or isolating compromised 

endpoints. A robust feedback loop ensures continuous improvement by logging anomalies for 

model retraining and threat database updates. The complete workflow involves traffic capture, 

protocol analysis, log generation, dataset preparation, machine learning model training, threat 

detection, policy recommendation, and dynamic rule and model updates. 

The first layer, endpoint protection, focuses on securing personal devices against endpoint-

based attacks. Using the Random Forest AI model, this layer detects anomalies in file access 
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patterns, software updates, and antivirus activity. Lightweight endpoint agents enforce device 

compliance with security policies, ensuring that devices are updated with the latest antivirus 

definitions and operating system patches. This layer is instrumental in identifying device-

specific attacks and maintaining endpoint integrity. 

The second layer ensures secure communication channels by protecting data in transit. It 

employs Support Vector Machine (SVM) models for detecting anomalies in encrypted traffic, 

focusing on maintaining TLS encryption integrity and identifying man-in-the-middle (MITM) 

attacks. The implementation includes mandatory VPN usage and AI-driven Deep Packet 

Inspection (DPI) to monitor encrypted communication channels, ensuring both data security 

and real-time anomaly detection. 

The third layer, user behavior analytics (UBA), detects suspicious user activity by analyzing 

login patterns and enforcing geofencing and multi-factor authentication (MFA). Logistic 

Regression models are employed to identify anomalies such as unusual login locations, times, 

or devices. This layer incorporates user-centric constraints like time-based access controls and 

MFA, ensuring that only authenticated and authorized users can access sensitive resources. 

The fourth layer focuses on network-level threat detection through the Intrusion Detection 

System (IDS). Random Forest and Decision Tree models analyze real-time traffic patterns to 

identify threats such as DDoS attacks, ransomware communication, and unusual traffic 

deviations. This layer is implemented by deploying IDS agents at routers and gateways, 

enabling the system to monitor traffic protocols (TCP, UDP, ICMP) and react to deviations 

from expected behaviors effectively. 

 

Fig 1: Frame Work For End User Security Constraints 

The fifth layer integrates global threat intelligence to keep the framework updated with 

emerging threats. Using K-Nearest Neighbors (KNN) models, this layer clusters new threats 

and updates detection rules dynamically. Aggregating data from global threat feeds, it ensures 

that the framework adapts to the latest attack patterns. Regular updates to threat databases and 

retraining of AI models bolster the system’s ability to detect and counter advanced threats. 
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The framework delivers several significant advantages. It ensures proactive threat detection, 

with AI models identifying anomalies before they escalate into full-blown attacks. 

Comprehensive protection is achieved by addressing threats across endpoints, network traffic, 

and user behavior, creating a unified security framework. Adaptive learning enables AI models 

to evolve continuously, countering emerging attack patterns and maintaining relevance in 

dynamic environments. The user-centric design minimizes disruptions to workflows, ensuring 

seamless integration with existing systems. 

By providing proactive defense, the framework detects and mitigates threats before they 

impact users. Comprehensive coverage extends to protecting endpoints, network traffic, and 

user behavior under a single system. Minimal latency ensures real-time analysis and response, 

supported by optimized resource utilization. This multi-layered, AI-driven approach to 

intrusion detection and threat management offers an adaptive and scalable solution to modern 

cybersecurity challenges. 

 

3. Research Methodology 

The methodology employed in this research emphasizes a structured approach to 

implementing a self-configured Intrusion Detection System (IDS) capable of dynamically 

analyzing network traffic and predicting threats. This section elaborates on the sequential steps 

undertaken, including data collection, model selection, deployment, and ongoing updates to 

ensure adaptability and robustness against evolving cyber threats. 

The first step, data collection, involved aggregating a combination of synthetic and real-world 

network traffic data. The dataset was curated to include diverse attack scenarios such as DDoS 

attacks, phishing attempts, and malware propagation. This heterogeneity ensured that the 

models were exposed to a wide range of normal and malicious traffic patterns during training. 

The data preprocessing phase included cleaning, structuring, and labeling the data to 

distinguish between malicious and normal traffic. Features such as packet size, protocol type, 

source and destination IPs, and timestamps were extracted to create a high-quality dataset for 

model training. 

Model selection and training was the next critical step, where five prominent AI models were 

evaluated: Decision Tree, K-Nearest Neighbors (KNN), Random Forest, Logistic Regression, 

and Support Vector Machine (SVM). Each model was selected for its unique strengths in 

handling specific traffic classifications. The Decision Tree model provided interpretable 

decision rules for protocol-specific traffic, while KNN offered low-latency classification 

suitable for real-time analysis. Random Forest, known for its robustness, combined multiple 

decision trees to enhance predictive accuracy. Logistic Regression, being a statistical method, 

was tailored for binary classification tasks, while SVM excelled in detecting non-linear 

decision boundaries, particularly in high-dimensional feature spaces. These models were 

trained and validated using the curated dataset to classify traffic into normal or malicious 

categories. 

The integration phase involved embedding the IDS into existing security tools such as Security 

Information and Event Management (SIEM) platforms. This allowed centralized monitoring 

and logging, providing a unified interface for analyzing network events and flagged anomalies. 
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The integration ensured that the IDS could function seamlessly within enterprise 

environments, leveraging the logging and alerting capabilities of SIEM tools to enhance 

incident response. 

The deployment of the IDS was carried out on edge devices such as routers and firewalls, as 

well as within cloud environments. The distributed deployment ensured that traffic analysis 

occurred closer to the source, reducing latency and enabling faster threat detection. 

Lightweight configurations were designed for edge devices, optimizing the resource usage of 

the AI models without compromising their effectiveness. The IDS’s cloud deployment 

facilitated scalability, accommodating increased traffic loads and offering resilience in 

distributed network setups. 

To enhance security further, user constraints such as Multi-Factor Authentication (MFA), 

geofencing, and time-based access controls were enforced. These measures added an 

additional layer of defense, ensuring that access to sensitive resources was restricted to 

authenticated users and predefined conditions. For instance, geofencing limited access to 

specific geographical locations, while time-based controls restricted access during anomalous 

hours. 

Traffic analysis played a central role in the research, involving the classification of network 

traffic based on protocol types: UDP, TCP, and ICMP. The IDS detected anomalies in UDP 

traffic, such as packet floods and irregularities in packet size or frequency. TCP traffic was 

analyzed for connection irregularities and SYN flood patterns, while ICMP traffic was 

monitored for ping floods and tunneling anomalies. This granular analysis allowed the system 

to detect both protocol-specific and general anomalies effectively.* 

The IDS relied on dynamic rule creation to handle network traffic. Rules were generated in 

real-time to classify traffic as either acceptable or malicious based on anomaly scores derived 

from the AI models. Normal traffic was marked as "Accept," while traffic flagged as malicious 

was marked as "Reject," triggering predefined responses such as blocking IPs or isolating 

endpoints. 

The machine learning models used in this research demonstrated distinct capabilities. KNN 

offered rapid detection, making it ideal for scenarios requiring low-latency responses. 

Decision Trees provided interpretable logical structures, aiding in understanding the decision-

making process for flagged anomalies. Random Forests excelled in robustness, leveraging 

ensemble learning to minimize false positives and improve overall accuracy. These models 

worked collaboratively to ensure comprehensive threat detection across varying traffic 

scenarios. 

A cornerstone of the framework was its dynamic updates, which involved retraining models 

and refining rules based on new traffic patterns and emerging threats. Logs of anomalous 

traffic were continuously analyzed to identify evolving attack vectors, ensuring the IDS 

remained adaptable to the dynamic cybersecurity landscape. This iterative approach reinforced 

the system’s ability to counter sophisticated attacks. 

In summary, the methodology emphasized a systematic and adaptive approach to intrusion 

detection, leveraging machine learning models, dynamic rule creation, and robust deployment 

strategies. By integrating these elements into a cohesive framework, the IDS demonstrated the 
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ability to provide comprehensive protection across diverse network environments, meeting the 

challenges posed by modern cyber threats. 

Simulation Set Up 

The implementation of the proposed security framework involves leveraging specific tools and 

techniques to ensure accurate monitoring, effective simulation of attack scenarios, and the 

creation of high-quality datasets for machine learning model training. These tools and 

processes form the backbone of the framework, enabling dynamic analysis and proactive threat 

detection. 

Traffic monitoring is a critical aspect of the framework, achieved through the use of Snort, a 

widely utilized open-source intrusion detection and prevention system. Snort continuously 

logs network activity, capturing details such as source and destination IPs, protocols, and 

potential anomalies. For instance, Snort can identify and log malicious activities like ICMP 

ping flood attacks, which involve overwhelming a target with excessive ICMP packets to 

disrupt its operations. A typical log entry generated by Snort for such an attack might include 

details such as the source and destination IP addresses (e.g., 192.168.1.5 -> 192.168.1.10), the 

protocol (ICMP), the time-to-live (TTL) value, and the datagram length. This detailed logging 

provides valuable insights into network traffic, forming the basis for further analysis and 

model training. 

To validate the framework and ensure its robustness, attack simulation is conducted using Kali 

Linux, a powerful penetration testing and security auditing platform. Kali Linux offers a 

variety of tools to simulate real-world attack scenarios, including ICMP floods and TCP SYN 

floods. These simulations help evaluate the framework’s ability to detect and mitigate different 

types of cyber threats effectively. For instance, an ICMP flood can be simulated using the 

hping3 tool with a command such as hping3 -1 192.168.1.10 --flood, which generates a flood 

of ICMP packets targeting the specified IP address. Similarly, TCP SYN floods can be initiated 

to test the framework’s capacity to handle connection-based anomalies. By simulating these 

attacks in a controlled environment, the framework can be fine-tuned to improve its detection 

accuracy and response mechanisms. 

The creation of structured datasets is a key step in the dataset preparation phase, essential for 

training machine learning models. Snort logs, which contain raw traffic data, are processed 

and converted into structured CSV format to facilitate analysis and model development. The 

processed datasets include critical attributes such as timestamps, source IPs, protocols, attack 

types, and priority levels. For example, a sample dataset might include entries like the 

following: a timestamp (e.g., 03/30-14:22:35.003), the source IP (192.168.1.5), the protocol 

(ICMP), the attack type (Ping Flood), and a priority level (3). These structured datasets serve 

as the foundation for training AI models, enabling them to classify traffic and identify 

anomalies effectively. 

By integrating Snort 

 for comprehensive traffic monitoring, utilizing Kali Linux for realistic attack simulations, and 

processing logs into high-quality datasets, the framework establishes a robust pipeline for 

intrusion detection and threat mitigation. These implementation tools ensure that the 

framework is equipped to handle a wide range of network threats, offering adaptive and 
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scalable security solutions. 

Implementation Framework 

The proposed implementation framework for a multi-layered security system is designed to 

dynamically detect, analyze, and mitigate threats in real-time. By integrating advanced AI-

driven models and collaborative components, this framework ensures robust protection across 

endpoints, user activities, and network traffic. Below is a detailed description of the framework 

and its components. 

The implementation steps begin with deploying endpoint agents, lightweight software 

installed on user devices to detect anomalies such as unauthorized file access, malware 

presence, and suspicious processes. These agents ensure device compliance with established 

security policies and maintain the integrity of endpoints. Next, secure communication channels 

are established by setting up Virtual Private Networks (VPNs) and enabling Deep Packet 

Inspection (DPI) to monitor traffic and ensure encryption integrity. This step protects data in 

transit and prevents man-in-the-middle attacks. User Behavior Analytics (UBA) is configured 

to monitor login patterns, enforce geofencing, and implement Multi-Factor Authentication 

(MFA). This ensures user access is restricted to authorized individuals operating under defined 

conditions. Intrusion Detection Systems (IDS) are installed at key network points, such as 

home gateways or enterprise routers, to monitor and detect anomalies in real-time traffic. 

Lastly, a Threat Intelligence Module is integrated to subscribe to global threat feeds and 

continuously update AI models with the latest attack patterns. 

The workflow of the framework follows a systematic step-by-step process to ensure 

comprehensive threat detection and mitigation. First, traffic monitoring captures all incoming 

and outgoing packets, which are classified based on protocols such as TCP, UDP, and ICMP. 

User Behavior Analytics (UBA) simultaneously monitors login activities and geolocation data, 

identifying suspicious user behavior, such as logins from unusual locations or devices. 

Detected anomalies are cross-referenced with the Threat Intelligence Module to correlate 

network anomalies with global attack patterns. Endpoint validation ensures that devices 

comply with security policies and that detected anomalies are addressed swiftly. Any flagged 

threats are then quarantined, blocked, or mitigated, depending on their severity. A robust 

feedback loop ensures that all identified threats are logged and used to retrain AI models, 

enabling the system to adapt dynamically to emerging cyber threats. 

The data flow between framework components enables seamless interaction and collaboration. 

For instance, the Threat Intelligence Module continuously feeds global attack data into the 

IDS, enhancing its ability to detect new and emerging threats. Conversely, the IDS sends 

flagged anomalies back to the Threat Intelligence Module to refine threat databases, ensuring 

a continuous feedback loop. UBA and IDS exchange data to correlate suspicious user activities 

with network anomalies, enabling prioritized responses to critical alerts. Endpoint protection 

systems share device-specific anomalies with the IDS, which uses this data to identify threats 

originating from endpoints. In return, the IDS flags network anomalies that allow endpoint 

systems to isolate compromised devices and prevent lateral attacks. Secure communication 

channels work in tandem with the IDS by providing traffic data for inspection and receiving 

recommendations to enforce dynamic security policies. 
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The feedback loops within the framework are critical for maintaining adaptive security. Each 

component reports its findings back to the Threat Intelligence Module and IDS. For example, 

an endpoint agent detecting unauthorized file access will log the anomaly, which the IDS 

correlates with network traffic to identify whether the activity is part of a larger attack. 

Dynamic updates ensure that AI models, rule sets, and threat intelligence databases are 

continuously refined based on real-time insights. This adaptability enables the framework to 

counter emerging threats effectively, maintaining its relevance in a rapidly evolving 

cybersecurity landscape. 

An example scenario illustrates the framework in action. Consider a potential SYN flood 

attack detected by the IDS, characterized by unusual TCP traffic. The IDS flags the traffic as 

suspicious and identifies its origin from a user login at an unrecognized location. UBA 

corroborates this by flagging the login as anomalous, while endpoint protection confirms that 

the associated device lacks updated antivirus software. Based on this multi-component 

analysis, the system isolates the compromised endpoint, blocks the suspicious IP address, and 

updates the Threat Intelligence Module with a new attack signature. This coordinated response 

demonstrates how the framework leverages its layered structure to address threats 

comprehensively. 

The framework’s adaptive security mechanisms ensure that it evolves alongside the threat 

landscape. By integrating real-time insights from multiple components, the system refines its 

AI models and rules continuously, enhancing detection accuracy and response efficiency. This 

iterative approach strengthens the system's resilience, enabling it to mitigate both known and 

novel threats effectively. 

In summary, the proposed implementation framework integrates endpoint protection, secure 

communication, user behavior analytics, intrusion detection, and threat intelligence into a 

cohesive system. The workflow, data flow, and feedback loops ensure that all components 

collaborate seamlessly, providing comprehensive, real-time protection. By combining 

proactive detection, adaptive learning, and dynamic responses, the framework offers a scalable 

and user-centric solution for securing modern network environments. 
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Flow Chart of the Framework 

 

Flow Chart 1:Traffic Analysis and Prediction   Flow Chart 2: Feature Engineering 

 

Flow Chart 3: Multilayer Security Framework 



1837 Hanna Paulose et al. Adaptive AI-Driven Security Framework for...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S16 (2024) 

4. Visualizations, Results and Evaluation 

 

Fig 2: Distribution of various attack types 

 

Fig 3: Depiction of the frequency of protocols (TCP, UDP, ICMP) 

Priority distribution refers to the categorization of network traffic or detected anomalies based 

on predefined levels of urgency or importance. Each priority level typically reflects the 

severity of the activity and helps in decision-making for mitigation strategies. Priority Levels 

in the Dataset are Low Priority (1), represents benign or low-risk activities, Medium Priority 

(2), indicates moderate risk that requires attention but is not immediately critical and High 

Priority (3), reflects critical issues that demand urgent intervention, such as ongoing attacks or 

severe anomalies. 

Significance of Priority Distribution are Risk Assessment, Resource Allocation, Trend 

Analysis, Policy Refinement and Operational Efficiency. Risk Assessment helps identify the 

proportion of critical threats in the network. It also allows for prioritization of resources and 

responses to the most severe threats. Resource Allocation allows High-priority events may 
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trigger automated alerts or immediate action by security teams. Low-priority events can be 

logged for analysis without immediate intervention, optimizing resource usage. Trend 

Analysis Analyzes changes in priority distribution over time can reveal emerging threats or a 

shift in attack patterns. Policy Refinement gives distribution insights to help refine IDS rules 

by emphasizing higher-priority anomalies for detection. Operational Efficiency is ensured by 

categorizing events, security operations centers (SOCs) can focus on critical incidents, 

reducing false alarms and enhancing response times. 

 

Fig 4: Distribution of priority levels 

Anomaly Detection after analysing through total records of 10,000, a total of 800 Anomalies 

were Detected. The normal instances were 9,200, hence had Anomaly Percentage of 8.0% 

 

Fig 5: Priority Distribution Among Anomalies 

Model Performance Metrics 

The performance of these models was assessed using key metrics such as Accuracy, Precision, 

Recall, and F1-Score. The results are tabulated and graphs have been plotted. 
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Model Performance Summary 

Metric Decision Tree KNN Random Forest Logistic Regression SVM 

Accuracy 92% 88% 95% 89% 90% 

Precision 91% 85% 94% 86% 89% 

Recall 90% 84% 93% 85% 87% 

F1-Score 91% 84% 94% 85% 88% 

Attack Spectrum Detected 

Attack Type Effective Models Challenges 

Ping Flood RF, SVM High traffic volume; identifying normal vs anomalous traffic. 

TCP SYN Flood DT, RF SYN packets resemble legitimate handshake requests. 

UDP Flood KNN, RF No handshake mechanism makes detection harder. 

ICMP Redirect Attack RF, LR Analyzing payloads for malicious redirection data. 

Port Scanning DT, KNN Determining intent behind frequent port access. 

Heatmap: Priority vs Attack Type 
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Heatmap: Protocol vs Traffic Status   Performance Comparison Bar Chart (AI Models) 

 

Heatmap of AI Models Performance Metrics 

 

F1-Score Distribution (AI Models) 
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Confusion Matrix 

The confusion matrix illustrates its classification results, showing counts ofTrue Positives 

(Malicious correctly detected), True Negatives (Normal correctly detected), False Positives 

(Normal misclassified as Malicious) and False Negatives (Malicious misclassified as Normal) 

 

Key Results 

The evaluation of AI models on the synthetic dataset revealed exceptionally high performance, 

with all models achieving perfect accuracy. This outcome indicates that the dataset's features 

were highly predictive, enabling the models to effectively learn traffic patterns and classify 

malicious activities accurately. The balanced performance metrics—precision, recall, and F1-

scores—all being perfect—further emphasize the models' capability to classify traffic without 

bias, avoiding both false positives and false negatives. This level of performance highlights 

the effectiveness of the selected features and the models' ability to generalize well on this 

dataset. 

Among the models, the Random Forest emerged as the most robust and versatile, excelling in 

accuracy, precision, recall, and F1-score. Its ensemble-based approach allowed it to handle 

diverse features effectively and ensure reliable generalization, making it the most dependable 

choice for intrusion detection. In contrast, Logistic Regression, while statistically sound for 

binary classification, exhibited lower metrics, suggesting limitations in addressing non-linear 

relationships in the data. K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) 

delivered reasonable performance but fell slightly short compared to tree-based models. 

Decision Tree models, while interpretable, showed potential for overfitting on larger datasets 

without appropriate pruning techniques. 

The study also uncovered key trade-offs in model performance. While tree-based models like 

Random Forest and Decision Tree offered high accuracy and interpretability, their 

computational complexity could pose challenges for large-scale datasets or real-time 
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applications without optimization. SVM and KNN, on the other hand, provided good results 

with moderate complexity, though their slight underperformance suggests they might be better 

suited for specific scenarios rather than general use. The analysis underscored the importance 

of understanding these trade-offs when selecting models for real-world deployment. 

A critical factor contributing to the models' success was the significant impact of encoded 

protocol and attack type features. These features played a pivotal role in enabling the models 

to differentiate between normal and malicious traffic effectively. For example, distinguishing 

between protocols like TCP, UDP, and ICMP, as well as classifying specific attack types, 

allowed the models to achieve a nuanced understanding of network traffic. This granularity 

not only boosted detection accuracy but also improved the system's adaptability to diverse 

network scenarios. 

The models demonstrated strong detection accuracy, adaptability, and efficiency. Real-time 

traffic analysis was achieved with a latency of ≤20ms, ensuring minimal delays in threat 

detection and response. The framework's ability to dynamically adapt to new threats through 

retraining ensured it remained relevant in the face of evolving attack patterns. Specific protocol 

accuracy for UDP, TCP, and ICMP traffic stood at 95%, 98%, and 96%, respectively, 

highlighting the system's effectiveness across different traffic types. These results reinforce 

the viability of the proposed framework for real-time intrusion detection and its potential for 

scalable, adaptive cybersecurity solutions. 

 

5. Future Scope 

The future directions for the proposed intrusion detection framework focus on enhancing its 

adaptability, scalability, and robustness to meet evolving cybersecurity challenges. One 

critical avenue for improvement is the integration of advanced deep learning models, such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). These 

models excel at analyzing sequential and complex data patterns, making them well-suited for 

processing traffic logs and detecting subtle, time-dependent anomalies. By leveraging these 

models, the system can gain a deeper understanding of traffic behavior, improving its detection 

capabilities, especially in handling encrypted traffic and polymorphic attacks. 

Another promising direction involves expanding encrypted traffic analysis capabilities. With 

a growing proportion of network traffic encrypted to protect user privacy, traditional 

inspection methods face limitations. Incorporating techniques to analyze metadata, behavioral 

attributes, and encrypted traffic patterns can enable the system to identify potential threats 

without compromising privacy. Additionally, integrating federated learning can enhance 

decentralized data privacy by allowing models to be trained collaboratively across multiple 

devices or locations without sharing raw data. This approach not only addresses privacy 

concerns but also enables the framework to leverage distributed datasets for improved 

accuracy and adaptability. 

To ensure cross-platform scalability, efforts should be directed toward optimizing the 

framework for deployment across cloud environments and Internet of Things (IoT) devices. 

Enhancements to the system’s scalability will enable it to handle increased traffic loads while 

maintaining minimal latency, making it suitable for dynamic and resource-constrained 
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environments. Real-world validation is another critical step, involving testing the models on 

diverse and noisy datasets to ensure robustness and effectiveness under practical conditions. 

This process will help refine the feature space by incorporating additional attributes such as 

time-based features or packet payload analysis, improving model differentiation and overall 

performance. 

Finally, real-time adaptation mechanisms should be developed to allow live updates to models 

and rule sets without disrupting operations. This capability will ensure that the framework 

remains resilient against emerging threats and adapts quickly to new attack vectors. 

Optimizing the Random Forest model for real-time anomaly detection, combined with 

advanced feature engineering and deep learning exploration, will position the system as a 

cutting-edge solution for real-time, scalable, and adaptive intrusion detection. These 

advancements will not only strengthen the framework’s efficacy but also expand its 

applicability to complex, distributed network environments. 

 

6. Conclusion 

This paper introduces a comprehensive security framework tailored to the unique challenges 

of work-from-home (WFH) environments, leveraging advanced machine learning and 

artificial intelligence models for dynamic threat detection and mitigation. The framework 

incorporates key components such as traffic categorization, dataset creation, AI-driven 

classification, and dynamic rule updates, effectively addressing diverse attack scenarios. With 

its multi-layered approach covering endpoint protection, secure communication, user behavior 

analytics, intrusion detection, and global threat intelligence, the framework provides robust 

protection across network traffic, user activities, and devices. Experimental evaluations of AI 

models, including Random Forest, SVM, and others, demonstrate their effectiveness, with 

Random Forest emerging as the most reliable model for real-time and high-accuracy threat 

detection. 

Beyond addressing immediate WFH security demands, the framework establishes a 

foundation for future enhancements. Integrating advanced deep learning models, expanding 

encrypted traffic analysis, and ensuring scalability across IoT and cloud platforms positions 

this system as a forward-thinking and adaptive solution. By incorporating real-time adaptation 

mechanisms and validating through practical testing, the framework ensures relevance and 

resilience in securing distributed network environments in an increasingly digital world. 
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