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This paper is concerned with studying 1D fractional order generalized thermos-elastic half-space 

in the context of two distinct models: (LS) Lord-Shulman model and (DPL) Dual-phase-lag model. 

Exponentially varying heat source has been applied to the surface of the bounding plane x = 0. 

Proposed equations have been formulated by using Caputo-Fabrizio fractional order derivative. The 

homotopy perturbation technique is used to find its approximate solution. The effect of 

exponentially varying heat source and the fractional order parameter has been investigated on 

temperature, displacement, and stress under the (LS) Lord-Shulman and (DPL) Dual-phase-lag 

model. The procured results have been illustrated graphically using MATLAB, where the influence 

of the homotopy perturbation technique has been observed. The validity of this intended model is 

assessed by comparing it with previously published results. According to the authors, this explicit 

work will be more useful for studying the thermal behavior of various bodies in Geophysics, 

Mathematical Biology, and Acoustics, as well as for investigating real-life problems in the field of 

Engineering.  

Keywords: Caputo-Fabrizio fractional order derivative, Homotopy Perturbation Technique, 

Nonlinear Problem, Dual-Phase-lag model, generalized thermos-elasticity, exponentially vary 

heating.  

 

 

1. Introduction 

In the current research paper two distinct models of thermos-elasticity viz., the Lord-Shulman 

(LS) Model and the Dual-Phase-Lag (DPL) Model, have been considered to study a 1D 

fractional order problem in half-space with the help of homotopy perturbation technique. 

The LS model refers to a theory in the field of linear thermo-elasticity [3]. This was proposed 

by H. W. Lord and Y. Shulman in 1967. Lord and Shulman have tried to eliminate the paradox 

of infinite velocity of thermal differences inherent in CTE. This model is based on a modified 

Fourier’s law but additionally a single relaxation time was also considered. 

The DPL model was proposed by D. Y. Tzou [8]. It introduced a dual-phase-lagging effect to 
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account for finite thermal wave speeds in heat conduction problems. This model considers two 

relaxation times associated with heat conduction process. Also this is used to describe the time 

delays between the temperature and the heat flux in a material and was established to modify 

the assumption made in Fourier’s law and Canttaneo-Vernotte (CV) model [1,2] or thermal 

wave model or hyperbolic heat conduction model. 

Dhaliwal R.S. et al., introduced the dynamic coupled thermo-elasticity and proposed various 

methods to solve system of PDEs [5]. Hetnarski R. B. et al., proposed the theory of generalized 

thermo-elasticity with improving the shortcomings of classic thermo-elasticity [12]. S. K. Roy 

Choudhuri, studied the problem of one-dimensional disturbances in an elastic half-space 

employed by dual-phase-lag effects and analyzed the underlying characteristic features [20]. 

S. Mukhopadhyay, et al., formulated fundamental solutions in an unbounded medium for a 

three- phase-lag thermoelastic problem [33]. K. R. Gaikwad, et al., determined the temperature 

and thermal deflection for a unsteady-state temperature field in response to internal heat 

generation in it. Moreover, a series solution in terms of Bessel’s function is derived with the 

help of Hankel transform and generalized finite Fourier transform method [36]. H. M. Youssef, 

et al., obtained the exact analytical solution for the two-temperature dual-phase-lag model of 

bioheat transfer. Also the significant effects of dual-phase-lag time parameter, heat flux value, 

and two-temperature parameter have discussed [48]. K. R. Gaikwad, et al., analyzed the 

transient thermoelastic problem to obtain the analytical solution for the temperature field and 

thermal deflection for a thin circular plate using integral transform method [50]. 

In recent decades Fractional Calculus has been used as a powerful mathematical tool to model 

real world problems in the field of science, technology and engineering. Many definitions of 

fractional order derivative have derived till now [4, 7, 10, 13, 17, 37]. Lots of different 

thermoelastic problems have solved using fractional derivatives. H. H. Sherief, applied the 

theory of fractional order derivative to study a 1D problem of half space [41]. Lin W., 

discussed the IVP for a class of FDEs. Feed-back control of chaotic FDE is investigated 

theoretically and to verify analytical result the fractional Lorenz system is provided as a 

numerical example [19]. S. G. Khavale, et al., analyzed the temperature, displacement and 

stress field for a fractional order thermoelastic problem by employing axi-symmetric heat 

source and obtained the results using integral trans- form technique including Mittag-Leffler 

function [52]. Yang X. J., proposed a new fractional order derivative with non-singular kernel 

and derived an analytical solution of fractional order heat conduction equation using it [46]. 

S. G. Khavale and K. R. Gaikwad, analyze a magnto- thermo-viscoelastic problem in spherical 

region for an isotropic medium and derive the general solution in the context of fractional 

order derivative [49]. K. R. Gaikwad and V. G. Bhandwalkar, modified a problem of two-

temperature for finite piezoelectric rod by employing three different heating applications viz., 

thermal shock, ramp-type and harmonically vary heating and derived the general solutions 

with the help of Caputo-Fabrizio fractional order derivative [51]. 

In the current paper we are using Caputo-Fabrizio fractional order derivative, which is a 

fractional derivative without singular kernel, firstly introduced by M. Caputo and M. Fabrizio 

[44]. This fractional derivative has various interesting properties whose significance can be 

seen for modeling in many branches of sciences. Many researchers studied this new derivative 

and used this as a tool in deriving solutions of complex thermoelastic problems. 
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Researchers introduced various methods for solving FDEs such as Lagrange characteristics 

method [18], Generalized transform method [22,27], Finite element method [26], Adomian 

decomposition method [28, 32], Variational iteration method [29], Fractional sub-equation 

method [35], Finite difference method [38], Homotopy analysis method [14]. In this paper we 

are using Homotopy perturbation technique [11]. 

A homotopy analysis method (HAM) was proposed by Liao, which transforms a non-linear 

prob- lem into an infinite number of linear problems without using perturbation techniques [9, 

14]. Using these techniques we can solve linear and non-linear fractional PDEs. He improved 

and dis- cussed a powerful, easy-to-use analytic tool, namely the homotopy analysis method 

for nonlinear problems [6, 16]. A homotopy perturbation technique (HPM) is a special case of 

homotopy analysis method. Both methods HPM and HAM are based on Taylor series respect 

to the embedding parameter ‘p’. If initial guess and auxiliary linear operator are good enough 

then both the methods give good approximate solutions. The only difference is that HPM had 

use of a good initial guess which is not necessary in HAM. Ji-Huan He, defined the Homotopy 

perturbation method (HPM) and discussed its validity and solved some examples by using the 

technique [11, 15]. 

Further lots of thermoelastic problems have been solved by many of the researchers using 

homotopy perturbation technique. S. Momani, et al., proposed and discussed the homotopy 

perturbation method for solving nonlinear PDEs of non-integer order [21]. A. Golbabai, et al., 

applied Homotopy perturbation method to the numerical solution for solving eighth-order 

boundary value problems and compared its results with the results obtained by modified 

decomposition method [23]. M. Ghasemi, et al., applied HPM to solve nonlinear integro-

differential equations and discussed the effectiveness of method [24]. Zaid M. Odibat, present 

modification of the homotopy perturbation method and conduct a comparative study between 

the new modification and the homotopy perturbation method [25]. Xicheng Li, et al., extended 

the HPM method to solve time-fractional diffusion equation with a moving boundary condition 

and obtained an accurate approximate solution [30]. J.H. He, introduced the concepts of the 

homotopy perturbation method and paid particular attention to give an intuitive grasp for the 

solution procedure [31]. 

P. K. Gupta, et al., applied a homotopy perturbation technique to solve the fractional order 

Fornberg-Whitham equation [34]. A. M. A. El-Sayed, et al., proposed a homotopy perturbation 

technique to solve a class of initial boundary value problems of partial differential equations 

of arbitrary fractional order in finite domain in terms of illustrating good approximate solution 

[39]. 

S. K. Rana, et al., studied wave motion in an infinite transversely isotropic, thermoelastic plate 

in the context of conventional coupled thermo-elasticity, Lord-Shulman and Green-Lindsay 

theories of thermo-elasticity using homotopy perturbation method [40]. Sudhakar Yadav, et 

al., studied a one-dimensional problem for a half-space in the context of the L-S theory of 

generalized thermo-elasticity with one relaxation time parameter with the help of Homotopy 

analysis method proposed by S. J. Liao [42]. A. Allahverdizadeh, et al., formulated nonlinear 

analysis of a thin rectangular functionally graded plate in terms of von-Karman’s dynamic 

equations and the governing equations of motion reduced to a Duffing’s equation and then 

solved by using homotopy perturbation method [43]. Sudhakar, Y. et al., analyze a 
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thermoelastic problem in the context of exponentially varying heat source using homotopy 

analysis method [45]. Roul. P., found the numerical solution of singular boundary value 

problem by a domain decomposition homotopy perturbation approach [47]. Sayed Abo-

Dahab, et al., investigate the wave propagation in transversely isotropic thermoelastic two-

dimensional plates in the context of GL model and applied the technique of homotopy 

perturbation technique to get the approximate solution with boundary condition [53]. Adedapo 

Ismaila Alaje, et al., established the proposed technique by coupling a power series function 

of arbitrary order with the renowned homotopy perturbation method and proved the 

convergence of the method using the Banach fixed point theorem [54]. Althobaiti N. et al., 

analyzed solution of half-space in the context of two thermoelastic models employs by 

homotopy perturbation technique [55]. Payam Jalili, et al., present a general method of HPM 

to make this method more straightforward to use for future studies in solving heat transfer 

problems using Python [56]. 

Nomenclature: 

 

 

2. The Models Used in the Problem 

The two models depend on thermal relaxation time are as follows [12, 13]: 

 Lord-Shulman (LS) Model: 

κ T, ii =(∂/∂t + τ∂²/∂t² )(ρCET + γT0e)  (1)           

 Dual-Phase-Lag (DPL) Model: 

κ(1+τ_θ  ∂/∂t)T,ii=(∂/∂t+τ ∂^2/〖∂t〗^2 )(ρC_E T + γT_0 e)    (2) 

 

3. Homotopy Perturbation Technique Fractional Order Problem - Formulation 

Consider a general equation of type, 

λ, µ Lame’s Constants 
ρ Density 
CE Specific heat per unit mass 
T0 Reference temperature 
t Time 
k Thermal Conductivity 
α Fractional differential operator 
eij Strain tensor components 
αt Coefficient of linear thermal expansion 
σij Stress vector components 
τ the thermal relaxation time 
τθ the phase-lag of temperature gradient 
p ∈ [0, 1] the embedding parameter 
γ = (3λ + 2µ)αt 
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L(u) = 0         

Assuming the homotopy convex as follows [15]: 

H(u, p) = (1 − p)F (u) + pL(u)                                          (4)                                                                         

where F (u) is the functional operator for known solution u0. It is shown that 

      H(u, p) = 0                                                                     (5)                                         

The embedding parameter p is monotonically increases in [0,1], hence it can be taken as an 

expanding parameter to obtain the solution, 

U= ∑ 𝑝ͥ𝑢ᵢ∞
𝑖=0 = u0+pu1+p2u2+.... (6) 

When p → 1, the approximate solution is: 

 U= lim
𝑝→1

𝑢 =  ∑ 𝑢𝑖
∞
𝑖=0  

Definition of Caputo-Fabrizio Fractional Order Derivative 

The Caputo-Fabrizio fractional order derivative is defined in [35] as follows: 

 aD
(α)

t f(t) = 
𝑀(𝛼)

1−𝛼
 ∫ 𝑓′(

𝑡

𝑎
τ) exp [

𝛼(𝑡−𝜏)

1−𝛼
] 𝑑τ 

where, M (α) is the normalization function such that, 

M (0) = M (1) = 0, 0 ≤ α ≤ 1, −∞ < a < t, f ∈ H1(a, b), a < b 

We suppose that the function M (α) = 1 and substituting a = 0 in the definition defined in above 

equation. 

Fractional Order Problem - Formulation 

Consider a generalized thermoelastic half space in isotropic homogeneous medium subjected 

to exponentially varying heat source on the boundary plane surface x = 0. The surface is 

assumed to be traction free. 

The displacement is, 
  

ui = (u, 0, 0),   uy = uz = 0  (8) 

The fundamental equations [7, 20] will take the form: 

 

 

ρ
𝜕𝛼+1𝑢

𝜕𝑡𝛼+1 = (λ+2μ)
𝜕2𝑢

𝜕𝑥2 - 𝛾
𝜕𝑇

𝜕𝑥
 

  

k (1+𝜏𝜃
𝜕𝛼

𝜕𝑡𝛼) 
𝜕2𝑇

𝜕𝑥2 = (
𝜕𝛼

𝜕𝑡𝛼 + 𝜏
𝜕𝛼+1

𝜕𝑡𝛼+1) (𝜌𝐶𝐸𝑇 +  𝛾𝑇0𝑒) 

𝜎𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
−  𝛾(𝑇 − 𝑇0) 

The non-dimensional variables are defined as: 

 

(7)

) 

(9)

) 
(10) 

(11) 
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 𝑐1
2 = 

𝜆+2𝜇

𝜌
,  

𝑇

𝑇0
=  𝜃, 𝑐1

2𝑡 = 𝑡′,  𝛼1=
𝛾𝑇0

𝜆+2𝜇
, ƞ =  

𝜌𝐶𝐸

𝑘
, ƞx =  x′, a2= 

𝛾

𝜌𝐶𝐸
, 

   

E= 
𝜕𝑢

𝜕𝑥
 , 𝜎′𝑥𝑥 = 

𝜎𝑥𝑥

𝜆+2𝜇
, a1a2 = 𝜖, 𝜃 − 1 =  𝜃                

Using variables from equation (12) in equations (9)-(11), we get, 

 
𝜕𝛼+1𝑢

𝜕𝑡𝛼+1 = 
𝜕2𝑢

𝜕𝑥2 − 𝑎1 
𝜕𝜃

𝜕𝑥
         (13) 

                                                                                      

(1+ 𝜏𝜃
𝜕𝛼

𝜕𝑡𝛼) 
𝜕2𝜃

𝜕𝑥2 =  
𝜕𝛼𝜃

𝜕𝑡𝛼 + 𝜏
𝜕𝛼+1𝜃

𝜕𝑡𝛼+1 + 𝑎2 
𝜕𝛼

𝜕𝑡𝛼 [ 
𝜕𝑢

𝜕𝑥
+ 𝜏

𝜕2𝑢

𝜕𝑡𝜕𝑥
]     (14) 

                         

𝜎𝑥𝑥 =  
𝜕𝑢

𝜕𝑥
− 𝑎1 𝜃                            (15) 

 

4. Solution using Homotropy perturbation technique 

The boundary conditions are assumed as: 

θ(t, 0) = e−t,              σxx (t, 0) = 0  (16) 

 

From equations (13) and (15), 
𝜕2𝜎𝑥𝑥

𝜕𝑥2 =
𝜕𝛼+1𝜎𝑥𝑥

𝜕𝑡𝛼+1 + 𝑎1  
𝜕𝛼+1𝜃

𝜕𝑡𝛼+1      (17) 

From equations (14) and (15), 

 

𝜕2𝜃

𝜕𝑥2
= (1 +  𝜖)

𝜕∝𝜃

𝜕𝑡∝
+ 𝜏(1 +  𝜖)

𝜕∝+1𝜃

𝜕𝑡∝+1
+  𝑎2  [ 

𝜕∝𝜎𝑥𝑥

𝜕𝑡∝
+ 𝜏

𝜕∝+1𝜎𝑥𝑥

𝜕𝑡∝+1
] −  𝜏𝜃

𝜕3𝜃

𝜕𝑡𝜕𝑥2
 

Using homotopy perturbation technique [18], from equations (17) and (18) we have, 

𝜕2𝜎𝑥𝑥

𝜕𝑥2 + 𝑝 [−
𝜕𝛼+1𝜎𝑥𝑥

𝜕𝑡𝛼+1 − 𝑎1  
𝜕𝛼+1𝜃

𝜕𝑡𝛼+1 ] = 0     (19) 

𝜕2𝜃

𝜕𝑥2 + 𝑝[−(1 + 𝜖)
𝜕∝𝜃

𝜕𝑡∝ −  𝜏(1 +  𝜖)
𝜕∝+1𝜃

𝜕𝑡∝+1 − 𝑎2 [
𝜕𝛼𝜎𝑥𝑥

𝜕𝑡𝛼 + 𝜏 
𝜕𝛼+1𝜎𝑥𝑥

𝜕𝑡𝛼+1 ] + 𝜏𝜃
𝜕3𝜃

𝜕𝑡𝜕𝑥2=0    (20) 

we can expand the solution as: 

𝜎𝑥𝑥(𝑥, 𝑡) =  𝜎𝑥𝑥
0 + 𝑝1𝜎𝑥𝑥

1 + 𝑝2𝜎𝑥𝑥
2 + 𝑝3𝜎𝑥𝑥

3 + ⋯                    (21) 

𝜃(𝑥, 𝑡) =  𝜃0 + 𝑝1𝜃1 +  𝑝2𝜃2 + 𝑝3𝜃3 + ⋯   (22) 

θ(x, t) from equations (21) and (22) in equations (19) and (20), we get the linear equations in 

series form. First few of them are as: 

 𝑝0: 
𝜕2𝜎𝑥𝑥

0

𝜕𝑥2
= 0  (23) 

 

𝑝0: 
𝜕2𝜃0

𝜕𝑥2 = 0 

 

(12) 

(18) 
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𝑝1: 
𝜕2𝜎𝑥𝑥

1

𝜕𝑥2
 = 

𝜕𝛼+1𝜎𝑥𝑥
0

𝜕𝑡𝛼+1
 + 𝑎1  

𝜕𝛼+1𝜃

𝜕𝑡𝛼+1
 

𝑝1: 
𝜕2𝜃1

𝜕𝑥2
 = (1 +  𝜖)

𝜕∝𝜃0

𝜕𝑡∝
 + 𝜏(1 +  𝜖)

𝜕∝+1𝜃0

𝜕𝑡∝+1
 - 𝜏𝜃

𝜕3𝜃0

𝜕𝑡𝜕𝑥2
+ 𝑎2 [

𝜕∝𝜎𝑥𝑥
0

𝜕𝑡∝
+ 𝜏

𝜕∝+1𝜎𝑥𝑥
0

𝜕𝑡∝+1
] (26) 

𝑝2: 
𝜕2𝜎𝑥𝑥

2

𝜕𝑥2
=  

𝜕𝛼+1𝜎𝑥𝑥
1

𝜕𝑡𝛼+1
 + 𝑎1  

𝜕𝛼+1𝜃1

𝜕𝑡𝛼+1
    (27) 

 

𝑝2: 
𝜕2𝜃2

𝜕𝑥2
 = (1 +  𝜖)

𝜕∝𝜃1

𝜕𝑡∝
 + 𝜏(1 +  𝜖)

𝜕∝+1𝜃1

𝜕𝑡∝+1
 - 𝜏𝜃

𝜕3𝜃1

𝜕𝑡𝜕𝑥2
+ 𝑎2 [

𝜕∝𝜎𝑥𝑥
1

𝜕𝑡∝
+ 𝜏

𝜕∝+1𝜎𝑥𝑥
1

𝜕𝑡∝+1
] (28) 

 

𝑝3: 
𝜕2𝜎𝑥𝑥

3

𝜕𝑥2 =  
𝜕𝛼+1𝜎𝑥𝑥

2

𝜕𝑡𝛼+1  + 𝑎1  
𝜕𝛼+1𝜃2

𝜕𝑡𝛼+1                       (29) 

Using the boundary conditions from equation (16) the solutions of system of linear equations 

can be obtained as: 

 

In the series form the solution can be expressed as: 

 

From equation (15) we have, 

𝜕𝑢

𝜕𝑥
= [𝑎1 + (𝑎1 𝑚1 + 𝑙1)

𝑥2

2!
+  (𝑎1 𝑚2 + 𝑙2)

𝑥4

4!
+ (𝑎1 𝑚3 + 𝑙3)

𝑥6

6!
] 𝑒−𝑡  (40) 

Integrating equation (40) w.r.t. ′x′, we get, 

𝑢(𝑥, 𝑡) =  [𝑎1 
𝑥1

1!
+ (𝑎1 𝑚1 + 𝑙1)

𝑥3

3!
+ (𝑎1 𝑚2 + 𝑙2)

𝑥5

5!
+ (𝑎1 𝑚3 + 𝑙3)

𝑥7

7!
] 𝑒−𝑡  (41) 

Where, 

(28)

6) 

 (25) 
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5. Graphical Representation and Discussion 

The numerical values of displacement, temperature, and stress for copper material are 

demonstrated in this problem. MATLAB software is utilized to calculate the values of field 

variables by utilizing the solutions of equations (38), (39), and (41). The results are plotted for 

temperature, displacement, and stress against space variable x at t = 0.2 and four distinct values 

of the fractional order parameter α = 0, 0.25, 0.50, 0.75, 1. 

Numerical Values of Constants: 
Physical Constants Value 

Lame’s constant (λ) 7.76 × 1010 Nm−2 

Lame’s constant (µ) 3.86 × 1010 kgm−1s−2 

Density (ρ) 8954 kgm−3 

Reference temperature (T0) 293o k 

Coefficient of linear thermal expansion (αt) 1.78 × 10−5 k−1 

Thermal conductivity (k) 8886.73 sm−3 

Specific heat per unit mass (CE) 383.1 

These physical constants for copper material are chosen for numerical calculation [44]. 

Figure 1-5 indicates the stress variation under the LS and DPL model at t = 0.2 for distinct 

values of α = 0, 0.25, 0.50, 0.75, 1 respectively, when the boundary of the half-space is 

subjected to a heat source varying with time t at zero stress. 

When α = 0, 0.25, 0.5, in Figure 1-3 the stress function gradually decreases with increase in 

value of x and after travelling some distance x it reaches to zero for both LS and DPL model. 

The effect of relaxation time appears in LS and DPL model as follows: 

In Figure 1, is evident in the increase at distinct values of relaxation time τ = 0.8, 1.0, and τθ 

= 0 for LS model but decrease at distinct values of relaxation time τθ = 0.4, 0.7, and τ = 0 for 

DPL model. In Figure 2, is evident in the decrease at distinct values of relaxation time τ = 0.8, 

1.0, and τθ = 0 for LS model but increase at distinct values of relaxation time τθ = 0.4, 0.7, 

and τ = 0 for DPL model. In Figure 3, it is evident that the relaxation time decreases at different 

values for both LS model and DPL models. 

We observed in Figure 1 that (σxx)LS > (σxx)DP L, for all intervals of x. Hence, the rate of 

convergence of the series solution for the LS model is higher than for the DPL model. In Figure 

2 and 3, the effect of (σxx)LS < (σxx)DP L is shown for all intervals of x. Thus, series solutions 
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Fig. 1. Stress variation under LS and DPL model at t=0.2 when α = 0 

 

Fig. 2. Stress variation under LS and DPL model at t=0.2 when α = 0.25 
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Fig. 3. Stress variation under LS and DPL model at t=0.2 when α = 0.5 

for the DPL model have a higher convergence rate than those for the LS model. 

When α = 0.75, 1, in Figure 4 and 5, the stress function increases with an increase in the value 

of x for both models. The effect of relaxation time appears in the LS and DPL models as 

follows: 

In Figure 4, is evident in the decrease at distinct values of relaxation time τ = 0.8, 1.0, and τθ 

= 0 for LS model but increase at distinct values of relaxation time τθ = 0.4, 0.7, and τ = 0 for 

DPL model. In Figure 5, is evident in the decrease at distinct values of relaxation time for both 

LS model and DPL model. 

Figure 4 displays, the impact of the relation (σxx)LS < (σxx)DP L for all intervals of x. 

Therefore, the convergence rate of series solutions for the DPL model is higher than that for 

the LS model. But in Figure 5, it is observed that the values of (sigmaxx)LS and (sigmaxx)DPL 

fluctuate for different values of relaxation time. 

In Figure 6-10, we can see that there are temperature variations under both LS and DPL models 

for different values of α = 0, 0.25, 0.5, 0.75, 1. 

For α = 0, 0.25 in Figure 6 and 7, respectively, the temperature θ gradually increases from a 

non-zero constant value with an increase in the value of space variable x under both LS and 

DPL models. 

For α = 0, in Figure 6, the effect of relaxation time appears in both the LS and DPL models. It 

is evident in the increase at distinct values of relaxation time τθ = 0.4, 0.7, and τ = 0 for DPL 

model, while for LS model it first decreases then coincides and then increase at distinct values 
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of relaxation time τθ = 0.4, 0.7, and τ = 0. 

For α = 0.25, the effect of relaxation time is evident in Figure 7 as indicated by the decrease 

at different values of relaxation time. τ = 0.8, 1.0, and τθ = 0 for the LS model, but they almost 

 

Fig. 4. Stress variation under LS and DPL model at t=0.2 when α = 0.75 

 

Fig. 5. Stress variation under LS and DPL model at t=0.2 when α = 1 

coincide at distinct relaxation time τθ = 0.4, 0.7, and τ = 0 for the DPL model. Figure 8-10 

demonstrates that the temperature rapidly decreases as x increases for α = 0.5, 0.75, 1. 



                                   A Homotopy Analysis Approach to a 1D… Vidhya G. Bhandwalkar et al. 2044  
 

Nanotechnology Perceptions Vol. 20 No. S16 (2024) 

Here, we note that θLS < θDP L for distinct values of α = 0, 0.25, 0.5, 0.75, 1 in all intervals 

of x. 

 

Fig. 6. Temperature variation under LS and DPL model at t=0.2 when α = 0 

Figure 11-15 shows variations in displacement under the LS and DPL models for distinct 

values of α = 0, 0.25, 0.5, 0.75, and1 respectively. 

For all distinct values of α = 0, 0.25, 0.5, 0.75, 1, the displacement increases with increasing 

the space variable x in both the LS and DPL models. 

For α = 0, 0.25, uLS < uDP L for all intervals of x. While for α = 0.5, 0.75, 1, we have uLS > 

uDP L for all intervals of x. 

For α = 0, the effect of relaxation time appears in both the LS and DPL models and is evident 

in the decrease at distinct values of relaxation time τ = 0.8, 1.0, and τθ = 0 in the LS model, 

while is in the increase at distinct values of relaxation time τθ = 0.4, 0.7, and τ = 0 for DPL 

model as shown in Figure 11. For α = 0.25, 0.5, the effect of relaxation time appears and 

decreases at distinct relaxation time values for both the LS and DPL models, as shown in 

Figures 12 and 13, respectively. In Figures 14 and 15, for α = 0.75, 1,the effect of relaxation 

time appears and is in the increase at distinct relaxation time values for both the LS and DPL 

models. 

 

6. Conclusion 

In the present work, the homotopy perturbation technique has been utilized to analyze the dis- 

placement, temperature and stress for a half space under an exponentially varying heat source 

using a generalized thermo-elasticity theory based on fractional order heat conduction with 

Caputo- Fabrizio time-fractional derivative. 
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Fig. 7. Temperature variation under LS and DPL model at t=0.2 when α = 0.25 

 

Fig. 8. Temperature variation under LS and DPL model at t=0.2 when α = 0.5 
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Fig. 9. Temperature variation under LS and DPL model at t=0.2 when α = 0.75 

 

Fig. 10. Temperature variation under LS and DPL model at t=0.2 when α = 1 
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Fig. 11. Displacement variation under LS and DPL model at t=0.2 when α = 0 

 

Fig. 12. Displacement variation under LS and DPL model at t=0.2 when α = 0.25 
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Fig. 13. Displacement variation under LS and DPL model at t=0.2 when α = 0.5 

 

Fig. 14. Displacement variation under LS and DPL model at t=0.2 when α = 0.75 
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Fig. 15. Displacement variation under LS and DPL model at t=0.2 when α = 1 

The important findings of this paper are summarized as follows: 

- The proposed results were analyzed to determine the rate of convergence of the series 

solution for LS and DPL model due to the effect of variations in temperature, displacement, 

as well as compressive and tensile type stresses, distinct relaxation time and fractional order 

parameter. 

- When the external heat source is applied to the boundary of the half-space, the variable 

in the field variable functions appears against the space-time domain. 

- The compressive and tensile type stresses produced under both LS and DPL model for 

dis- tinct values of fractional order parameter α = 0, 0.25, 0.5, 0.75, 1, which shows significant 

effects on the rate of convergence of series solution as shown in Figures 1-5. 

- Figures 6-10 show the impact of the CF-fractional order parameter and relaxation time 

on temperature for both models LS and DPL. 

- With the variations in fractional order parameter for various relaxation time the 

significant changes in displacement have been noted against space-time domain as shown in 

Figures 11-15. 

-The LS and DPL models have been examined and have shown significant effects due to the 

embedded parameter p, fractional order parameter alpha, tau, and tautheta. 

- The results presented here will be more useful in studying the thermal behavior of 

various bodies in geophysics, real life problems in engineering, mathematical biology and 

acoustics. 
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To continue studying this problem, it may be beneficial to explore a half-space with symmetric 

or axisymmetric heat supply. Moreover, by changing the approach of finding the solution, i.e. 

instead of homotopy perturbation technique, a use of direct approach or modified homotopy 

perturbation method can also lead to a new inspiration to continue the current work. 
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