
Nanotechnology Perceptions 20 No.S2 (2024) 532–549                                                    

 
 

Optimizing Path Loss Prediction: 

Advancements in Signal Parameter 

Estimation through Wavelet Neural 

Networks 

Ghufran Abd Al-Satar Sadoon, Emad A. Rassaq, Hasanain A. H. Al-

behadili  

 
Department of Computer Engineering, University of Basrah 

 Correspondence Email: pgs.ghufran.sadoon@uobasrah.edu.iq 

 
This study assesses the effectiveness of Neural Net- works (NN) and Wavelet Neural Networks 

(WNN) in predicting signal strength in wireless communication systems. WNNs, which integrate 

wavelet theory with NN architecture, demonstrate supe- rior performance. Significant reductions 

in Mean Squared Error (MSE) from 32.93 (NN) to 11.94 indicate improved precision for WNNs. 

Root Mean Squared Error (RMSE) decreases from 

5.73 (NN) to 3.45 with WNNs, highlighting more consistent predictions. Mean Absolute Error 

(MAE) decreases from 4.62 (NN) to 2.75, showcasing enhanced accuracy in WNNs. 

For predicting Average Distance, WNNs outperform NNs with lower MSE (59.4 vs. 106.65), 

RMSE (7.7 vs. 10.32), and MAE (5.73 vs. 7.878). The study, conducted on the Colab platform 

using Python, emphasizes that incorporating wavelet transforms enhances the model’s ability to 

recognize complex signal propagation patterns.  
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1. Introduction 

In the evolving landscape of wireless communication tech- nologies, intelligent planning is 

crucial for delivering a broad spectrum of wireless services. Central to this planning are 

channel propagation models, which are pivotal for predict- ing signal levels from a network 

of transmitters in various environments. These models play a vital role in optimizing the 

placement of network access points, assessing interference with neighboring systems, and 

evaluating overall network performance [1]. 

To develop these propagation models, several physics-based methodologies are commonly 

employed. These include ray- tracing [2]–[4], the vector parabolic equation (VPE) [5]– [7], 

and various comprehensive electromagnetic analysis tech- niques [7]. For specific 

applications like tunnel radio propaga- tion, initial models were formulated based on 
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waveguide mode theory [8]. These have evolved to incorporate more advanced methods such 

as the finite difference time domain technique [9], [10], along with ray-tracing [11], [12] and 

VPE-based models [13]. Furthermore, there’s been a growing interest in hybrid techniques 

that integrate these various methods for more robust modeling [14], [15]. Despite their 

effectiveness, the development of physics-based models can be demanding Identify 

applicable funding agency here. If none, delete this in terms of the required expertise and 

computational resources, making them less feasible for real-time applications [16], [17]. 

Another strategy for channel characterization involves ex- perimental measurements. While 

this approach can provide valuable insights, it tends to be costly and only partially effective, 

particularly in the face of uncertainties associated with measurements. These challenges are 

heightened in the complex environment of contemporary wireless services. Empirical path-

loss models offer a more accessible alternative in the field of wireless communication. These 

models can be calibrated using actual measurement data or estimated from pre-established 

tables [16], [18]–[20], providing a simpler approach, though with certain drawbacks. Neural 

Networks often fail to reflect complex indoor and outdoor propagation effects, making 

parameter extraction ambiguous. Generalized, non-site-specific character causes this 

shortcoming [1]. 

Recent research have shown that artificial neural networks (ANNs) are effective propagation 

modelers in diverse contexts. These include urban [21], suburban [23], rural [24], and 

interior settings like mines [25]. These investigations used real-world measurements and 

simulator-generated synthetic data for ANNs [26], [27]. By learning from real data, ANNs 

have increased empirical model correctness [23] and fixed systemic faults [28], [29]. These 

tests show ANNs' regression ability, but their full potential in predicting propagation 

properties in particular spatial configurations is untapped. 

A cutting-edge wavelet neural network (WNN) model accurately predicts wireless 

communication properties in this article. This method improves wireless signal frequency 

and temporal detection using wavelet analysis and neural networks. This is necessary for 

assessing signal strength, interference, and route loss in varied conditions. Model can be 

used in cities and rural areas. Environmental characteristics and transmitter-receiver spatial 

dynamics are among its inputs. Its versatility is crucial for network optimization. This 

model's unique architecture improves network design and efficiency by combining wavelets' 

detailed analysis with neural networks' adaptive learning. Learning from real-world and 

simulated data enhances forecast precision, setting a new wireless communication network 

planning and assessment benchmark.  

This study explores complicated communication networks, focusing on nowcasting and 

forecasting signal properties. Artificial intelligence, especially neural networks, improves 

signal parameter prediction methods. 

The research begins with a detailed signal transmission factor examination. Factors include 

weather, physical obstacles, interference, and communication equipment. A thorough 

assessment of these elements will prepare the research for further study. 

The paper then evaluates contemporary nowcasting and signal parameter forecasting 

approaches. The study critically analyses these methodologies' strengths and flaws to 

discover field gaps and areas for improvement. Improved predictive models will result from 
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this evaluation. 

At the core of the research is the creation of an advanced neural network-based solution. 

This model is designed to adapt to the ever-changing dynamics of communication systems, 

providing precise and consistent predictions. The model will undergo extensive phases of 

training, testing, and validation to ensure its effectiveness and reliability. 

Moreover, a key aspect of this research is to ensure the practical application of the developed 

model. The goal extends beyond conceptual development; the intention is to produce a tool 

that can be effectively integrated into current commu- nication infrastructures, thereby 

improving their operational efficiency and dependability. 

 

2. RELATED WORKS 

This paper examines the rapid evolution of 5G networks, which are projected to experience a 

substantial increase in traffic, potentially quintupling compared to present levels, 

necessitating advanced management techniques [30]. Central- ized processing units, 

particularly in Cloud Radio Access Networks (C-RAN), emerge as crucial for effective 

resource management. C-RAN facilitates dynamic resource allocation and adaptability, 

optimizing radio and hardware resources by recognizing demand patterns and enhancing the 

efficiency of Baseband Unit (BBU) pools, addressing traffic variability often influenced by 

the tidal effect [31], [32]. 

A 2015 study [33] highlighted the growing global data traf- fic and its impact on existing 

network structures, advocating for C-RAN as a solution due to its high processing power and 

intelligent UE mapping capabilities. Using a Key Performance Indicator (KPI) to minimize 

blocked UEs, the research applied a Discrete Particle Swarm Optimization (DPSO) 

algorithm, demonstrating the potential to significantly reduce Base Sta- tion (BS) activity 

during low traffic periods. 

Further advancements in 2016 included research [34] that utilized C-RAN architecture to 

propose a resource provision- ing strategy aimed at lowering power consumption at cell sites 

and in the cloud, addressing fluctuations in per-user capacity demand. In another study [35], 

the focus was on addressing interference and energy efficiency issues in small cell 

deployments using C-RAN virtualization technologies, introducing an adaptive mechanism 

within a Software-Defined Wireless Network (SDWN) paradigm. The same year, research 

[36] delved into resource virtualization within C-RAN, ex- amining wireless interface 

virtualization, traffic-aware joint scheduling, and collective programming for spectral 

efficiency enhancement. 

In 2017, a study [37] discussed a two-level energy effi- ciency optimization problem in H-

CRAN networks, involving a dynamic shutdown algorithm for picocells and algorithms to 

reduce BBU servers, effectively maintaining User Equip- ment (UE) Quality of Service 

(QoS) while reducing energy consumption. 

By 2018, research [38] explored network sizing through dynamic adaptation to fluctuating 

demands using a self- organizing C-RAN framework, incorporating Cell Differentia- tion 

and Integration (CDI) for semi-static scaling of the BBU pool and Remote Radio Heads 
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(RRHs). 

In 2019, a study [39] highlighted the importance of 5G tech- nologies like HetNets for load 

balancing in LTE-A networks, proposing a hardware utilization model to address spectrum 

shortages. 

Moving to 2020, research [40] focused on strategies in Het- erogeneous Centralized Radio 

Access Networks (H-CRAN), utilizing handover indicators and a genetic algorithm to man- 

age active cells and reduce operational costs. The same year, studies [41], [42] addressed 

hardware resource provisioning in RRH-BBU combinations for 5G networks, focusing on 

QoS and physical resource block allocation. Additionally, research [43] introduced a DES 

for predicting influenza-like illness death counts, with Dias and Windeatt [44] presenting a 

variant, Dynamic Ensemble Selection with Instantaneous Pruning (DESIP), for signal 

calibration applications. 

In 2021, a study [45] shifted focus to the PRRH-BBU assignment problem in 5G networks, 

formulating an optimiza- tion model for efficient resource allocation at multiple levels. 

Related to ensemble methods, Moraitis et al.’s research [46] explored various models like 

MLP, SVR, RF, and KNN regressors using bagging in rural environments, finding KNN 

regressors with bagging to be highly accurate. Further studies [47]–[49] showed the 

consistency of Random Forest in outperforming other algorithms in path loss predictions, 

with Sotiroudis et al. [50]finding XGBoost to be superior in this regard. 

This study amalgamates four datasets to develop a more universally applicable model, 

addressing challenges in uni- fied modeling using Dynamic Regressor Selection (DRS) or 

Dynamic Ensemble Selection (DES). Techniques like oversampling, undersampling, and 

synthetic data generation (SMOTER, SMOGN, GAN) are considered to address data 

imbalances [51]–[57]. The paper emphasizes the potential of DRS and DES in enhancing 

predictive accuracy across various datasets, noting their variable performance based on 

dataset characteristics [43], [58]–[61]. This comprehensive approach to model selection and 

data handling aims to optimize pre- dictive accuracy in the rapidly evolving field of 5G 

network management. 

In previous research, [62] introduced an approach for de- termining the optimal operational 

configuration of a Wireless Sensor Network (WSN) through the application of exact 

mathematical programming techniques, notably Mixed Integer Programming (MIP). 

However, it is acknowledged that these techniques entail high computational complexities. 

As an alter- native, recent efforts have explored the integration of learning algorithms, such 

as Neural Networks (NNs), to predict WSN settings with heightened accuracy and 

significantly reduced computational costs compared to MIP solutions. 

Researchers have directed their attention towards forecasting crucial WSN parameters, 

namely network lifetime, transmission power level, and internode distance. These parameters 

exhibit interdependence and play pivotal roles in achieving optimal WSN functionality. 

Building upon the foundation laid by [1], The focus has shifted towards utilizing machine 

learning algorithms that concentrate on employing data and algorithms to mimic human 

learning processes. [63], particularly NNs, to efficiently predict and optimize the WSN 

operational parameters. This approach not only streamlines computational costs but also 
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contributes to enhancing the overall efficiency of WSNs. 

In a related study, the authors in [64] aimed to enhance the prediction accuracy of respiratory 

signals by adapting the multi-layer perceptron neural network (MLP-NN) model, It is a 

branch of deep learning [65] to accommodate dynamic changes in respiratory patterns. The 

foundation of their work involved the development of an initial MLP-NN designed to predict 

respiratory signals sourced from a real-time position management (RPM) device. However, 

early testing outcomes revealed diminished prediction accu- racy, particularly for irregular 

breathing patterns, attributable to the use of a fixed dataset in a one-time training scenario. 

To address this limitation and bolster accuracy, the authors introduced a novel continuous 

learning technique. This method involved updating the training data continuously, thereby 

re- placing the conventional one-time learning process based on fixed training data. Notably, 

a dual MLP-NN configuration was employed in their adaptation approach, where one MLP-

NN performed real-time prediction of respiratory signals, while the other underwent training 

using updated data, and vice versa. The predictive performance was quantitatively assessed 

using the root-mean-square-error (RMSE) metric, employing respiratory patterns from 202 

patients, each with a recording length of 1 minute. 

The investigation delved into the impact of various factors on the new predictor’s 

performance, including the addition of an extra network, training parameters, and irregularity 

in respiratory signals. The authors explored four distinct network configurations: a single 

MLP-NN, high-computation dual MLP-NNs (U1), and two combinations of high- and low-

computation dual MLP-NNs (U2 and U3). Results indicated that the RMSEs using the U1 

method were notably reduced by 34%, 19%, and 10% in comparison to MLP-NN, U2, and 

U3 methods, respectively. The continuous training approach with a dual-network 

configuration demonstrated improved prediction accuracy compared to the conventional one-

time training of an MLP-NN using fixed signals. 

In this paper, the significance lies in the pioneering intro- duction of a cutting-edge Wavelet 

Neural Network (WNN) based model, meticulously engineered to predict crucial pa- 

rameters influencing wireless communication. By seamlessly integrating wavelet analysis 

with neural network frameworks, this model achieves an advanced capability to discern both 

the frequency and temporal aspects of wireless signals. This unique fusion enables a more 

comprehensive assessment of signal strength, interference patterns, and path loss in diverse 

settings, spanning densely populated urban areas to open rural spaces. The WNN model 

optimizes networks by responding to environmental factors and transmitter-receiver spatial 

dynamics. 

Wavelets' thorough analysis and neural networks' adaptive learning increase network design 

and efficiency. This improves forecast accuracy by analyzing various inputs and learning 

from real-world and simulated data. This study forecasts and predicts communication signal 

parameters and proposes a cutting-edge wireless communication network planning and 

assessment method to enhance academic research. This sophisticated neural network-based 

approach could improve communication infrastructure operational efficiency and reliability 

as AI becomes more important in signal prediction. 
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3. METHODOLOGY 

This section presents a structured strategy for evaluating Neural Networks (NNs) and 

Wavelet Neural Networks (WNNs) for signal parameter prediction. After data gathering, 

critical preprocessing activities prepare the data for analysis. 

Table I. Comparison  Of  Related  Works  In  5g Network  Management  And  Respiratory  

Signal  Prediction 
Year 5G Network Management Respiratory Signal Prediction 
2015 [33] Advocated for C-RAN to handle growing global 

data 
traffic; applied DPSO algorithm for UE 
minimization 

- 

2016 [34] Proposed C-RAN strategy to lower power 

consump- 
tion; addressed fluctuations in per-user capacity 
de- mand 

Addressed poor prediction accuracy in MLP-

NN for 
irregular respiratory patterns; introduced 
continuous learning with dual MLP-NNs [2] 

2017 [37] Discussed energy efficiency optimization in 

H- 
CRAN networks; dynamic shutdown algorithm 
for picocells 

- 

2018 [38] Explored network sizing through dynamic 

adaptation 
using self-organizing C-RAN framework 

- 

2019 [39] Emphasized HetNets for load balancing in 

LTE-A 
networks 

- 

2020 [40] Focused on strategies in H-CRAN using 

handover 
indicators and genetic algorithm 

Addressed poor prediction accuracy in MLP-

NN for 
irregular respiratory patterns; introduced 
continuous learning with dual MLP-NNs [2] 

2021 [45] Formulated an optimization model for efficient 

re- 
source allocation in 5G networks 

- 

Ensemble Methods and Data 

Handling 
- - Explored DRS and DES in enhancing 

predictive 
accuracy; addressed data imbalances using 
oversam- pling, undersampling, and synthetic 
data generation [51]–[57]; emphasized the 
potential of DRS and DES across various 
datasets [43], [58]–[61] 

Regular NNs and advanced WNNs are used in further research. All paths train and test their 

models on the dataset. 

The evaluation phase extensively tests each model's prediction ability, measuring 

performance. The procedure closes with a detailed comparison of traditional NN and WNN 

results. The benefits and cons of each strategy are compared. 

The core hypothesis driving this comparative study is that WNNs may offer superior 

performance over conventional NNs in specific signal-processing tasks. By clearly outlining 

the differences between these two approaches, the study aims to highlight the potential 

improvements in accuracy and reliability that WNNs might offer. 
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Fig. 1. General Flowchart 

This methodology will be explained in the next subsections. These sections include data 

pretreatment, neural network architecture and training protocols, evaluation metrics, and 

comparative analysis statistics. This detailed explanation explains the study's process and 

findings. 

A. Dataset 

Smart devices with sensors and Wi-Fi and cellular networks are changing university 

operations in the digital age. University campuses rely heavily on Information and 

Communication Technologies (ICTs), laying the framework for many smart campus 

applications. Effective radio network planning and optimization are essential for these 

applications' QoS. Signal path loss models, which predict radio wave signal strength at 

different transmitter-receiver distances, are crucial to this procedure. Transmission of 

electromagnetic waves might vary depending on the channel's physical qualities. Existing 

path loss models may need to be adjusted or recalibrated using data particular to smart 

campuses to appropriately reflect their features. 

Path loss, the attenuation of signal power from the transmitter to the receiving antenna over 

varying distances, is important in this study. The study measured three routes at Covenant 

University in Ota, Ogun State, Nigeria. In order to acquire path loss statistics and campus 

terrain details. From the area's Digital Terrain Map (DTM), the terrain profile data comprised 

longitude, latitude, elevation, altitude, clutter height, and transmitter-receiver distance. Use 

this dataset to construct empirical radio wave propagation models for smart campuses. 

Analysis of Survey Routes X, Y, and Z data showed path loss statistics and terrain profile 

differences. In the following table, first-order descriptive statistics summarize wireless signal 

characteristics throughout the three survey routes in a smart campus: 
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Table 2. Consolidated  Overview  Of  Wireless  Signal  Characteristics Across  Three  

Survey  Routes  In  A  Smart  Campus  Environment 
Statistical Measure Route X Route Y Route Z 

Mean Longitude 3.1651 3.1669 3.1600 

Mean Latitude 6.6777 6.6742 6.6727 

Mean Elevation (m) 54.22 61.03 48.61 

Mean Altitude (m) 59.68 54.00 52.21 

Mean Clutter Height (m) 4.97 5.03 6.93 

Mean Distance (m) 399.81 460.49 447.42 

Mean Path Loss (dB) 142.42 139.72 146.34 

Standard Deviation (Path Loss 

dB) 

9.42 9.52 7.30 

Sample Size 937 1229 1450 

A rigorous analytical process is used in this study to obtain detailed insights into wireless 

signal characteristics in a smart campus setting. We carefully measured path loss and terrain 

profile parameters along Covenant University Survey Routes X, Y, and Z. Our technique is 

distinguished by data analyses, comparisons, and findings displays. Table II shows mean 

values and standard deviations of path loss, longitude, latitude, elevation, altitude, clutter 

height, and distance. This detailed overview demonstrates our commitment to acquire data 

and study its complexities, contributing to the understanding of radio wave propagation in a 

smart campus. To place our findings in the perspective of wireless communication research, 

we cite [30]–[32]. We apply a deliberate and analytical approach to enhance the discussion 

on optimal Quality of Service in smart campus applications. 

B. Preprocessing 

Combining survey data from X, Y, and Z into a single dataset is crucial during 

preprocessing. This procedure integrates longitude, latitude, elevation, altitude, clutter 

height, distance, and path loss measurements into a single dataset. The study mixes different 

datasets to capture each route's unique traits and variances in a single data structure. 

Normalization follows merging all route data. Data values must be standardized using this 

procedure. The study normalizes data within a range, usually 0 to 1, using min-max scaling. 

Scaling neural network inputs improves learning by ensuring consistency and impartiality. 

Normalization divides data into training and testing. The training subset teaches neural 

networks signal strength and route loss prediction. This subset tests the model's projected 

performance. Data partitioning is essential for validating models' generalization to fresh data, 

demonstrating robustness and effectiveness. 

The study's success hinges on sophisticated preprocessing. Next, we'll describe how each 

preprocessing step affects the study approach. This detailed examination describes neural 

network training and evaluation's meticulous data preparation. 

C. Neural Network 

This research estimates Neural Network (NN) signal intensity using a computer model 

inspired by human brain neural pathways. Many layers of the NN process and transmit input 

data. Longitude, latitude, elevation, and others are sent to the input layer. The layer's vast 

connections connect every neuron to every input. This design analyzes input signals to 

simplify pattern recognition. 
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Hidden layers follow the input layer. These layers improve data processing. They transfer 

inputs from previous layers to subsequent layers. An important feature of these hidden layers 

is the incorporation of activation functions, which introduce non-linearities into the model. 

This non-linearity is essential for the NN’s ability to learn and represent more complex 

relationships within the data. 

Architecture concludes with output layers. Unlike the previous layers, the output layer 

outputs the projected signal strength continuously. The regression research purpose is met. 

The model's intrinsic NN parameters are adjusted iteratively throughout training. Trainings 

aim to bridge model prediction-observation gaps. A statistical analysis evaluates NN 

performance. These measures compare model prediction accuracy to measurements. They 

demonstrate NN prediction capacity and inform model training. 

This section highlights the NN's learning progression visually. These visuals provide 

significant information regarding the model's prediction skills during training and 

generalization to fresh data. They help uncover issues like overfitting, where the model 

overlearns from the training data, or underfitting, indicating a model too simple to catch data 

patterns. 

Finally, the NN component stresses signal strength prediction model creation. The NN's 

smart campus signal strength prediction strengths and weaknesses are revealed by final 

analysis utilizing established criteria. 

D. Wavelet Neural Network 

Novel computer model Wavelet Neural Network (WNN) blends wavelet techniques with 

neural network design. Before feeding neural network input data for prediction, wavelet 

analysis is done. Mathematical wavelet analysis shows input data frequency and time. Both 

perspectives are essential to uncover data patterns that may be hidden in time or space. The 

WNN design begins with wavelet-modified input data.  

Approximation coefficients reflect the data's trend, while detail coefficients show its shorter-

term features. The original data is numerically represented by these coefficients. 

After the wavelet transformation, the WNN’s structure mirrors that of a traditional neural 

network, with an input layer specifically designed to accept the wavelet-transformed 

coefficients. Following this, the network comprises multiple layers of nonlinear processing 

units, each contributing to the model’s ability to discern complex relationships within the 

data. 

The WNN output layer predicts signal strength in this study. A variety of statistical measures 

evaluate the WNN's expected accuracy. Loss curves show model learning throughout 

training iterations. Model convergence and generalization to fresh data are shown visually.  

Wavelet transformation preprocessing distinguishes WNNs from neural networks. This 

feature may improve model data interpretation and prediction. 

The wavelet transform of a function is mathematically represented as 
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                                                                      (1) 

where 

• Wf (a, b) (a, b) represents f's wavelet transform at scale a and location b. 

• ψ(t) is mother wavelet function, 

• a is scale factor, 

• b is translation factor. 

 

4. COMPARISON 

This mathematical foundation lets the WNN find patterns in data of various sizes and places. 

We methodically compare the standard Neural Network (NN) and Wavelet Neural Network 

(WNN). Comparisons of wavelet analysis' neural network signal strength prediction are 

needed. Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute 

Error (MAE) are key performance measures in this study. These measurements will be 

compared across both models to determine their practicality, precision, and reliability. 

Critically analyzing models' learning curves and numerical data. Graphs show training and 

validation loss over time, determining model learning efficiency. These signals suggest 

overfitting (model performs well on training data but badly on unseen data) or underfitting 

(model fails to recognize data complexity). The practical implications of each model are also 

examined in this comparison.  

This includes training and inference computation efficiency, model implementation 

complexity, and dataset and context scalability. Comparison is used to assess model 

strengths and drawbacks. Evidence-based conclusions and suggestions for NN and WNN 

implementation in real-world signal strength prediction scenarios are planned. This 

comparison study should show how advanced neural network architectures might benefit 

wireless communications. 

 

5. EXPERIMENT RESULTS 

A. Neural Network Results 

Neural Network (NN) performance on the test set has shown insights, particularly in 

prediction accuracy. Mean Squared Error (MSE) is 32.934, suggesting a moderate average of 

the squares of the errors, which are the differences between expected and actual signal 

strength. The NN can predict, but its predictions and observations diverge. The MSE-derived 

Root Mean Squared Error (RMSE) is 5.738, indicating the forecast error. RMSE is in signal 

strength units, hence the model's predictions are 5.738 units off. This error level may be 

acceptable or excessive depending on the application. 

The Mean Absolute Error (MAE) of 4.621 measures the average absolute difference between 
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model predictions and data. With an average error size of 4.621 units, the MAE's 

insensitivity to outliers supports consistent test set performance. These measurements 

quantify the NN's prediction abilities, however domain-specific criteria must be considered. 

Signal strength forecasts may require even small RMSE or MAE errors for connection or 

safety. In applications with higher error tolerance, these figures may work. 

The results also suggest model improvements. Should the error metrics exceed acceptable 

thresholds, adjustments in the model’s architecture, like modifying the number of layers or 

neurons, trying various activation func- tions, or integrating regularization techniques, could 

be explored to improve performance. Enhancing the training dataset or employing more 

sophisticated preprocessing methods might also contribute to better generalization and 

reduced error rates. In conclusion, the promising results of the NN need to be con- 

textualized within the specific application and benchmarked against other models such as the 

WNN to determine the most effective approach for predicting signal strength. 

Table 3. Neural  Network  Performance  Metrics 
Metric Value 

MSE 32.934 

RMSE 5.738 

MAE 4.621 

In Figure 2, the loss curve of the NN depicts the model’s learning progression throughout its 

training over 100 epochs. The graph features two distinct curves: one for training loss and 

another for validation loss, each providing valuable in- sights into the model’s learning 

dynamics. 

 

Fig. 2. Loss curve NN 

The training loss curve reflects the model’s ability to fit the training data over time. At the 

outset, there is a notable steep decline in loss, indicative of rapid learning and substantial 

gains in the model’s predictive accuracy. This steep decrease is a common occurrence in the 

initial phase of training, where the model begins to assimilate knowledge from a relatively 

uninformed state. 

Conversely, the validation loss curve illustrates the model’s performance on unseen data, 

separate from the training dataset. This curve is crucial as it indicates the model’s capacity to 

generalize its learning to new data. In the depicted scenario, the validation loss mirrors the 
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downward trend of the training loss, suggesting that the model is effectively capturing gener- 

alizable patterns instead of merely memorizing specifics from the training dataset. 

As training progresses, both curves tend to plateau, sig- naling that the model has reached a 

saturation point where additional learning, with the existing architecture and hyper- 

parameters, leads to minimal further reductions in loss. This plateau often marks the 

convergence of the model, implying that extending the training with more epochs is unlikely 

to enhance performance significantly. 

An important observation is the close alignment and similar trajectory of the training and 

validation loss curves. This closeness is a positive indication of the model’s generalization 

capabilities, as it implies a low likelihood of overfitting to the training data. 

The initial high loss value at the start of training might be attributed to several factors, such 

as the scale of the data, the initialization of the model’s weights, or the inherent complexity 

of the task. However, the model's rapid loss drop shows its ability to overcome initial hurdles 

and adapt to the data format. 

B. Wavelet Neural Network Results 

WNN results show powerful prediction skills, as seen by lower error metrics than classical 

NN.  

A significant improvement over the NN's MSE is the WNN's 11.942. The WNN's 

predictions are on average closer to the actual values, indicating a superior data fit. MSE 

decreases significantly when wavelet processing is integrated into the WNN architecture, 

allowing it to capture more signal patterns and dynamics. 

WNN RMSE is 3.455, significantly lower than NN. Since RMSE uses the same units as 

signal strength, it is useful in practical applications. A reduced RMSE suggests WNN 

forecasts are closer to real signal intensities in critical situations. The WNN's MAE is 2.755, 

better than the NN. MAE, a simple metric of average error size, shows that the WNN has 

less absolute disparities between forecasts and actual values. 

These improved WNN measurements offer various insights. First, wavelet analysis may help 

the WNN capture local and global data patterns better than regular NNs, resulting in more 

accurate predictions. This helps with non-linear or noisy signal strength data. Second, the 

WNN's reduced MSE, RMSE, and MAE indicate better prediction ability and greater 

robustness to outliers and noise. Real-world applications with data inconsistencies require 

such robustness. 

However, this improved accuracy of the WNN must be weighed against potential increases 

in computational com- plexity. While the WNN has showcased enhanced accuracy, 

considerations around training duration, implementation com- plexity, and model 

interpretability are also crucial. 
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Fig. 3. Loss curve WNN 

In conclusion, the WNN results indicate a more advanced ability in accurately predicting 

signal strength compared to the NN. This positions the WNN as a highly effective option for 

applications where precise and reliable prediction of signal strength is a key requirement. 

Table 4. Wavelet  Neural  Network  Performance  Metrics 
Metric Value 

MSE 11.942 

RMSE 3.455 

MAE 2.755 

Figure 3 in the study presents the loss curve for WNN, showcasing how the model’s error 

evolves throughout its training over 100 epochs. This graph, like that of the NN, plots both 

the training and validation loss, providing insight into the WNN’s learning efficiency and its 

capability to generalize. The training loss curve shows how well the WNN fits training data. 

Models that learn data patterns usually reduce initial loss significantly. For excellent 

prediction, the WNN must detect and learn from training dataset patterns and characteristics, 

as shown by this significant loss curve reduction. 

The validation loss curve compares the WNN's performance to a dataset not used for training 

to measure generalization. The WNN is learning to generalize its predictions to new data 

when the validation loss matches the training loss and settles without divergence. The model 

predicts reduced error because these curves converge at a lower plateau. The model has 

learned its maximum given the architecture and hyperparameters, therefore more training 

epochs are unlikely to improve results. 

Additionally, the WNN effectively avoids overfitting by closely tracking training and 

validation loss curves during training. This shows that the model is robust and accurate. 

Wavelet-transformed data gives the WNN better performance than the NN in training and 

validation, according to loss values. The previously lower error measurements support this. 

In summary, the loss curves in Figure 3 validate the effective training of the WNN and its 

proficiency in generalizing from the training data to unseen data. This ability is crucial for 

prac- tical applications where dependable predictions on new inputs are required. The 
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demonstrated results of the WNN highlight its potential as an effective tool for accurately 

predicting signal strength, offering clear advantages over traditional neural network models. 

C. Comparison Results 

The WNN outperforms the NN in performance metrics, as seen in the table. The WNN 

outperformed the regular NN in MSE, RMSE, and MAE, as seen in the table.  

WNN (11.94) has a substantially lower MSE than NN (32.93). The WNN's substantial MSE 

decrease signals a more accurate prediction model due to fewer errors between projected and 

actual values. RMSE, which measures average error in the same units as the predicted 

variable, is lower in WNN (3.45) than NN (5.73). The WNN's lower RMSE makes its 

predictions closer to signal strength values, making it better for precision-critical scenarios. 

The MAE, which averages absolute differences between forecasts and actual data, shows 

that the WNN (2.75) surpasses the NN (4.62). WNNs perform better due to their reduced 

MAE and more consistent prediction accuracy across the dataset.  

This shows that the Wavelet Neural Network estimates signal strength more precisely and 

reliably. Wavelet analysis in the neural network architecture helps the WNN capture more 

complex data patterns that the normal NN may miss. on applications that need precise signal 

strength prediction, the WNN excels on all three criteria. 

Table 5. Comparison  Of  Nn And  Wavelet  Nn Performance  Metrics 
Metric NN Wavelet NN 

MSE 32.93 11.94 

RMSE 5.73 3.45 

MAE 4.62 2.75 

 

6. CONCLUSION 

This study indicates that Wavelet Neural Networks (WNNs) identify complex signal 

propagation properties better than Neural Networks (NNs). WNNs increase prediction 

accuracy with wavelets' dual time-frequency localization. WNNs' quality benefits wireless 

communication. WNNs' lower Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and Mean Absolute Error (MAE) error rates show they can make accurate 

predictions, which is useful in network planning and optimization. 

 

7. FUTURE WORK 

This study prepares for future research. Future research could examine how wavelet families 

affect model performance in WNN architecture. More research is needed on WNNs' 

scalability for larger datasets and signal data adaption. WNNs in real time in dynamic 

situations with changing signal properties are another option. Edge computing devices using 

WNNs for instantaneous signal strength prediction could change mobile networks.  

Domain knowledge like urban or rural signal propagation characteristics can improve the 

WNN model for more accurate real-world applications. WNNs with cutting-edge 

technologies like 5G and Internet of Things (IoT) make intriguing research areas. Finally, 
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making the WNN model easier to utilize for industry professionals by building a user-

friendly software solution. This platform would bring WNN technology to practitioners by 

connecting sophisticated research to real-world application. Finally, WNNs' promising 

results in this study are just the beginning. These techniques could transform wireless 

network architecture and signal strength prediction with future refinement. 
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