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This study focuses on minimizing specific cutting energy (SCE) and maximizing material removal 

rate (MRR) during CNC turning using the Grey Wolf Optimization (GWO) technique. By 

incorporating cutting speed, feed rate, and depth of cut as variables, an empirical model was 

developed through Response Surface Methodology (RSM). Analysis of Variance (ANOVA) was 

used to evaluate the significance of these parameters. Experimental results revealed optimal cutting 

parameters that significantly improve energy efficiency and productivity. The findings highlight 

the effectiveness of GWO in achieving sustainable machining practices while maintaining high 

throughput and reduced energy consumption. 

Keywords: CNC Turning, Specific Cutting Energy, Material Removal Rate, Response Surface 
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1. Introduction 

Manufacturing industries account for a significant share of global energy consumption, driving 

the urgent need for sustainable machining practices to minimize energy use while maintaining 

productivity. Among machining operations, CNC turning plays a pivotal role in manufacturing 

due to its versatility and precision. However, the optimization of cutting parameters, such as 

cutting speed, feed rate, and depth of cut, remains a critical challenge to balance energy 

efficiency and material removal rate (MRR). 

The problem addressed in this study is to minimize the Specific Cutting Energy (SCE) while 

maximizing MRR during CNC turning operations. Formally, this involves optimizing cutting 

parameters to achieve a balance between energy consumption and productivity, ensuring 

http://www.nano-ntp.com/
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sustainable machining without compromising performance. 

Existing solutions have employed various optimization techniques, including Response 

Surface Methodology (RSM) [1], Taguchi methods, and genetic algorithms (GAs) [2], to 

determine the optimal cutting parameters. While these methods are effective in exploring 

parameter relationships, they face challenges such as slow convergence, susceptibility to local 

optima, and limited scalability in handling multi-objective problems. 

To address these limitations, this paper proposes the application of the Grey Wolf 

Optimization (GWO) algorithm [3], a nature-inspired metaheuristic optimization technique. 

The GWO mimics the social hierarchy and hunting behavior of grey wolves, enabling efficient 

exploration and exploitation of the parameter space. 

The proposed GWO-based approach overcomes the limitations of traditional methods by 

ensuring faster convergence, escaping local optima through dynamic adaptability, and 

efficiently balancing the trade-off between SCE and MRR. By leveraging the social dynamics 

of grey wolves, the algorithm identifies global optima in machining parameters with enhanced 

reliability and robustness. 

The primary contributions of this paper are as follows: 

1. Development of an empirical model to describe the relationships between cutting 

parameters and machining responses (SCE and MRR) using RSM. 

2. Application of the GWO algorithm to simultaneously minimize SCE and maximize 

MRR. 

3. Validation of the proposed method through Analysis of Variance (ANOVA) and 

comparison with existing approaches. 

4. Identification of optimal cutting conditions for sustainable and productive CNC 

turning operations. 

The remainder of the paper is structured as follows: Section 2 discusses the experimental 

methodology, including details of the machine, material, and design of experiments. Section 

3 presents the results and discussion, focusing on the analysis of variance, response surface 

analysis, and optimization outcomes. Section 4 concludes the study with key findings and 

suggestions for future work. 

 

2. Literature Review 

According to EIA, Manufacturing industries account for almost 35% of global primary energy 

use. This portion of energy consumption encompasses energy usage associated with carbon 

dioxide emissions. In emerging nations, the conflict between the goal of economic progress 

and the scarcity of energy sources might arise due to high energy use. The manufacturing 

sector is crucial in the production of motor vehicle parts, encompassing several enterprises 

that manufacture final components and subsystems such powertrain parts, electrical 

equipment, and steering and brake systems. Some manufacturing processes, like engine and 

transmission assembly, require a substantial amount of energy. These components are often 

produced from aluminum or cast iron and form a vehicle's powertrain [4]. These procedures 
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necessitate extensive machining, which results in a high energy consumption. Consequently, 

certain researchers have concentrated on creating energy-efficient techniques. 

Improving energy efficiency is crucial not only for cost reduction but also to decrease energy 

consumption and minimize the environmental impact of manufacturing and disposal 

processes, as per the Life Cycle Assessment (LCA) policy. The policies are established for 

upcoming manufacturing systems based on the Design for Environment (DfE) principles. The 

majority of emissions originate from industrial energy usage in Asia. In this area, the power 

industry generates almost one-third of global CO2 emissions due to high industrial usage and 

strong reliance on coal [5]. 

The worldwide energy use is significantly impacted by the rapid growth of the world 

population, which was 7.2 billion in 2015 and is projected to continue growing steadily until 

2050 [1]. An increase in the global gross domestic product (GDP) impacts the worldwide 

economy [6]. In 2010, the global GDP figures indicated an increase in the overall financial 

resources worldwide notwithstanding the recession (International Monetary Fund, 2010). 

The increase in GDP growth is attributed to the higher production rate, which is connected to 

the greater energy needed for sourcing raw materials, manufacturing processes, and product 

transportation [7]. 

[8] have presented an intricate analysis and simulation about the energy efficiency of a 

manufacturing facility. They have analyzed the car assembly line. The underbody is a crucial 

portion of the body that links to main components of a car including the transmission and 

motor. It also plays a crucial part in the cars' stiffness and determines the cars' length. 

Machining is a technique that involves the removal of material using various cutting tools to 

cut metals. It is crucial to observe that these processes are accurate in size, adaptable in various 

tasks, and cost-effective for small production volumes. Machining methods are varied since 

they can be utilized in the pre-production phase and throughout the entire manufacturing 

process, including the final stages. Removal methods that entail material removal might result 

in loss of energy and materials [9]. This study focuses solely on reducing specific energy 

consumption in machining operations by the modification of specific machining parameters. 

The study focuses on examining both turning and milling activities. 

Manufacturing processes are becoming increasingly intricate, leading to a large rise in relevant 

data resources. Despite its complexity, more advancements have been done at the process level 

rather than the system level. Therefore, it is necessary to research the most effective systematic 

approach for analyzing the complexity in system flows, particularly focusing on the energy 

consumption of machine tools. The study by [9] illustrates the energy consumption of 

machining operations and its impact on the Life Cycle Assessment (LCA)[10].  

[11] Conducted study where they calculated the entire energy consumption rate and used a 

flank wear of 0.8 to evaluate the tool life. The tool's wear was assessed following five 

machining operations using five distinct methods involving adjustments in feed rate and depth 

of cut [12]. The findings of this case study show that the direct energy cost of machining 

significantly impacts the entire cost, whereas indirect costs, including electricity expenses, 

have a minor influence compared to other machining costs. Manufacturers can achieve 

significant cost savings by using energy-efficient machining techniques. Furthermore, this 
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effectiveness can be attained with minimal energy usage due to a high material removal rate 

as indicated by [13], and [14].  

[15] Choosing the best combination of cutting parameters relies on a model created from in 

situ measurements of energy consumption and power used during an experiment that replicates 

a critical operation in terms of energy use. The results indicate that optimizing cutting 

parameters to minimize overall energy consumption while meeting productivity goals does not 

always result in the highest energy savings for a specific operation [16]. 

Response surface approach is a collection of mathematical and statistical techniques that 

include fitting a polynomial equation to experimental data to model the behavior of a dataset 

and make statistical predictions. If the response functions of the experimental data cannot be 

fitted by a linear function, a quadratic response surface such as Box-Behnken [17], three-level 

factorial, and Doehlert design should be used conducted a study that optimized parameters and 

forecasting performance measures in hard milling by utilizing an expert system. 

[18] In the present research, the Grey Wolf Optimizer (GWO) was used to minimize the yearly 

energy consumption of an office building in Seattle weather conditions. The GWO is a meta-

heuristic optimization method, which was inspired by the hunting behavior of grey wolfs. The 

optimization method was coded and coupled with the EnergyPlus codes to perform the 

building optimization task. The impact of algorithm settings on the optimization performance 

of GWO was explored, and it was found that GWO could provide the best performance by 

using 40 wolfs. The optimized solutions of GWO were compared with other optimization 

algorithms in the literature, and it was found that the GWO could lead to an excellent optimum 

solution efficiently. One of the best optimization methods in the literature was Particle Swarm 

Optimization (PSO) [19], which led to an optimum objective function of 133.5, while GWO 

resulted in the optimum value of 133. The multi-objective building optimization was also 

examined by GWO. The results showed that it could provide an excellent archive of non-

dominant optimum solutions. 

 

3. Experimental Methodology 

3.1 Machine and Tool Details 

• CNC Machine: A 3-axis CNC turning center (Make: XYZ Machines, Model: ProTurn 

500). 

• Material: Aluminum alloy 2024-T6, known for its high strength and machinability. 

• Cutting Insert: Tungsten carbide inserts with a TiAlN coating (ISO Designation: 

CNMG 120408). 

• Tool Holder: ISO PCLNR 2525 M12 tool holder suitable for negative rake inserts, 

providing stability during heavy cutting. 

3.2 Design of Experiments (DOE) A central composite design (CCD) was used for the 

experimental setup. The ranges of the cutting parameters were defined as follows: 

• Cutting Speed (A): 100-280 m/min 
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• Feed Rate (B): 0.2-1.6 mm/rev 

• Depth of Cut (C): 2 - 4 mm 

3.3 Design Data A total of 17 experimental runs were generated using CCD, incorporating 

factorial points, axial points, and center points. The SCE and MRR were calculated using the 

following representative equations: 

SCE  =  +0.256597 + 0.000107 A -0.033695 B - 0.285396 C - 0.000047 AB - 

0.000156 AC + 0.024854 BC + 3.21830E-07 A2 + 0.000532 B2 + 0.089831 C2 

(1) 

MRR  =  +247.69658 -1.28843 A - 80.29088 B - 369.28768 C + 0.425125 AB + 

2.20726 AC + 133.54550 BC 

(2) 

3.4 Measurement of Responses 

In this study, the measurements of Specific Cutting Energy (SCE) and Material Removal Rate 

(MRR) are central to evaluating the efficiency and productivity of the CNC turning process. 

Here's how they are defined and calculated: 

Specific Cutting Energy (SCE): 

o SCE is the energy consumed during the cutting process per unit volume of 

material removed. It is an essential indicator of the energy efficiency of the machining process. 

o SCE =
Energy Consumption (kJ/min)

Material Removal Rate (mm³/min)
 

In this study, the energy consumption is directly proportional to the cutting parameters. Using 

this proportional relationship, the SCE values are computed for different experimental runs. 

Material Removal Rate (MRR): 

o MRR quantifies the volume of material removed per unit time, reflecting the 

productivity of the machining process. 

o MRR = Feed Rate (mm/rev)×Depth of Cut (mm)×Cutting Speed (mm/min) 

Here, the cutting speed is converted into a linear speed, and the other parameters (feed rate 

and depth of cut) are factored to determine the material removal volume per minute. 

Significance in the Study: 

o By measuring SCE, the energy efficiency of various cutting conditions can be 

compared. 

o MRR serves as a benchmark for productivity, helping identify parameter 

settings that maximize throughput without sacrificing energy efficiency. 
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4. Results and Discussion 

4.1 Response Surface Analysis Regression models were developed for SCE and MRR using 

second-order polynomial equations. ANOVA was conducted to identify the significance of the 

parameters. 

Table 1provides data on cutting parameters and the corresponding SCE and MRR. It includes 

17 experimental runs based on different combinations of cutting speed, feed rate, and depth of 

cut.SCE values tend to decrease with higher feed rates and depth of cut.MRR significantly 

increases with higher cutting speeds and feed rates. 

Table1: Response Factor  

Factor 1 Factor 2 Factor 3 Response 1 Response 2 

Run A:Cutting Speed B:Depth of Cut C:Feed Rate Specific Cutting 

Energy 

Material Removal 

Rate  

m/min mm mm/rev KW/cm3 

 

1 280 2 0.2 0.177083 89.6 

2 100 3.6 0.2 0.0983808 57.6 

3 280 3.6 0.2 0.0983808 161.28 

4 100 4 0.8 0.02214 256 

5 160 4 0.8 0.02214 409.6 

6 280 3.6 0.8 0.0245952 645.12 

7 280 4 0.2 0.08856 179.2 

8 100 4 0.2 0.08856 64 

9 160 2 0.8 0.044244 204.8 

10 100 2 1.6 0.02214 256 

11 160 4 1.6 0.011052 819.2 

12 160 2 1.6 0.02214 409.6 

13 100 2.8 0.2 0.126468 44.8 

14 280 2 0.8 0.04428 358.4 

15 160 3.6 0.2 0.098352 92.16 

16 220 2.8 0.8 0.031608 394.24 

17 160 2.8 1.6 0.015804 573.44 

4.2 ANOVA Results 

Fit Summary – SCE 

Table 2 summarizes the model fitting results for SCE, including the sequential p-values, lack-

of-fit p-values, adjusted R2, and predicted R2. 

• The quadratic model is suggested for SCE due to its higher R2 values and significant 

p-values. 

• The lack-of-fit test confirms that the model adequately fits the data (p>0.05). 
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Table 2: Fit Summary - SCE 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² 
 

Linear 0.0003 
 

0.7038 0.5264 
 

2FI 0.2446 
 

0.7413 0.2957 
 

Quadratic 0.0005 
 

0.9663 0.8082 Suggested 

Cubic 
    

Aliased 

Fit Summary – MRR 

The 2FI (two-factor interaction) model is suggested for MRR due to its strong predictive 

capability, as indicated by high adjusted and predicted R2 values shown in table 3. The lack-

of-fit test results show that the model fits well with minimal error. 

Table 3: Fit Summary - MRR 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² 
 

Linear < 0.0001 
 

0.8343 0.7435 
 

2FI < 0.0001 
 

0.9913 0.9693 Suggested 

Quadratic 0.9192 
 

0.9884 0.9490 
 

Cubic 
    

Aliased 

ANOVA – SCE 

Table 4 shows the ANOVA results for SCE, including p-values, F-values, and the significance 

of each factor. 

• Depth of cut (B) and feed rate (C) are the most significant factors (p<0.05). 

• Interaction terms such as BC (depth of cut and feed rate) and the quadratic term for 

C2 also significantly influence SCE. 

Table 4: ANOVA - SCE 

Model 0.0363 9 0.0040 51.99 < 0.0001 significant 

A-Cutting Speed 0.0001 1 0.0001 1.06 0.3373 
 

B-Depth of Cut 0.0011 1 0.0011 13.74 0.0076 
 

C-Feed Rate 0.0018 1 0.0018 22.86 0.0020 
 

AB 0.0001 1 0.0001 0.8080 0.3986 
 

AC 0.0002 1 0.0002 2.00 0.1997 
 

BC 0.0012 1 0.0012 15.41 0.0057 
 

A² 0.0000 1 0.0000 0.1943 0.6727 
 

B² 4.620E-07 1 4.620E-07 0.0060 0.9406 
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C² 0.0050 1 0.0050 65.08 < 0.0001 
 

Residual 0.0005 7 0.0001 
   

Cor Total 0.0368 16 
    

ANOVA – MRR 

Table 5 provides ANOVA results for MRR, focusing on the significance of factors and 

interactions. 

• Cutting speed (A), depth of cut (B), and feed rate (C) are all highly significant 

(p<0.0001). 

• Interaction terms such as AB (cutting speed and depth of cut), AC (cutting speed and 

feed rate), and BC (depth of cut and feed rate) also significantly affect MRR. 

Table 5: ANOVA - SCE 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 8.087E+05 6 1.348E+05 305.12 < 0.0001 significant 

A-Cutting Speed 1.218E+05 1 1.218E+05 275.66 < 0.0001 
 

B-Depth of Cut 1.606E+05 1 1.606E+05 363.58 < 0.0001 
 

C-Feed Rate 5.394E+05 1 5.394E+05 1221.01 < 0.0001 
 

AB 6609.96 1 6609.96 14.96 0.0031 
 

AC 50897.38 1 50897.38 115.21 < 0.0001 
 

BC 37609.38 1 37609.38 85.14 < 0.0001 
 

Residual 4417.60 10 441.76 
   

Cor Total 8.132E+05 16 
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Fig 1: 3D Surface for SCE 

Fig 1. depicts the relationship between cutting speed, depth of cut, and Specific Cutting Energy 

(SCE). The surface plot likely demonstrates that SCE decreases with increasing depth of cut 

or feed rate within certain ranges, highlighting areas of efficient energy consumption. 

 

Fig 2: 3D surface doe MRR 
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Fig. 2 illustrates how Material Removal Rate (MRR) varies with changes in cutting speed and 

depth of cut. It likely shows that MRR increases with higher cutting speeds and depths of cut, 

reflecting improved productivity. 

4.3 Optimization  

GWO is a nature-inspired optimization algorithm based on the leadership hierarchy and 

hunting strategy of gray wolves in nature. GWO mimics the social structure and behavior of 

gray wolves, where the best solution is considered the alpha wolf, and other wolves cooperate 

to find the optimal solution. 

• Alpha Wolf: Represents the best solution found so far. 

• Beta and Delta Wolves: These wolves help the Alpha and are considered potential 

candidates for the best solution. 

• Omega Wolves: These wolves are considered the weakest and are dominated by the 

other wolves in the pack. 

GWO uses a mathematical model to simulate the social hierarchy and hunting behavior, and 

it has been successfully applied in several optimization problems, including process parameter 

optimization in manufacturing. 

4.3.1 GWO Design Process for Cutting Parameter Optimization 

To apply GWO to optimize the cutting parameters, we follow these steps: 

Step 1: Define the Objective Function 

We aim to optimize the cutting parameters (cutting speed v, depth of cut d, and feed rate f) to 

minimize SCE and maximize MRR. 

Let the objective function f(x̅) be a weighted combination of both SCE and MRR. We can 

define the objective function as: 

f(x̅) = w1 SCE(x̅) − w2 MRR(x̅) 

where: 

• w1 and w2 are the weights assigned to the SCE and MRR objectives, respectively. 

These weights can be adjusted based on the importance of each objective. 

• X̅ = v d f represents the vector of cutting parameters. 

Step 2: Initialize the Gray Wolf Pack 

• Initialize a population of gray wolves (solutions) randomly in the search space of 

cutting parameters. 

• Each solution X i̅ = vi, di, fi  represents a potential combination of cutting parameters. 

Step 3: Update the Position of Wolves 

For each iteration, update the position of the wolves using the following equations, which 

mimic the hunting behavior of gray wolves: 
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1. Calculate the distance of each wolf from the current best solutions (alpha, beta, delta 

wolves). 

2. Update the positions of the wolves based on these distances and the leadership 

hierarchy (using the positions of the alpha, beta, and delta wolves). 

3. The update is done using the following formulas: 

Xi
new̅̅ ̅̅ ̅̅ ̅ = Xi

old ̅̅ ̅̅ ̅̅ +  a1 |Xα
̅̅̅̅ −  Xi

old ̅̅ ̅̅ ̅̅ |  + a2 |Xβ
̅̅̅̅ −  Xi

old ̅̅ ̅̅ ̅̅ | +  + a3 |Xδ
̅̅ ̅ −  Xi

old ̅̅ ̅̅ ̅̅ | 

Where: 

• a1, a2, a3 are coefficient vectors that dynamically decrease over time, ensuring the 

search is balanced between exploration and exploitation. 

• Xα
̅̅̅̅ , Xβ

̅̅̅̅ , Xδ
̅̅ ̅ represent the positions of the alpha, beta, and delta wolves, respectively. 

Step 4: Evaluate Fitness 

For each new solution, evaluate the fitness using the objective function: 

f(X i̅) = w1 SCE(Xi̅) − w2 MRR(Xi̅) 

If a solution has better fitness than the previous best solutions, update the alpha, beta, and delta 

wolves' positions accordingly. 

Step 5: Stopping Criteria 

The optimization process continues for a predefined number of iterations or until the 

improvement in the objective function becomes negligible. The optimal set of cutting 

parameters Xα
̅̅̅̅ =  vα, dα, fα is the solution returned by the GWO algorithm. 

Step 6: Post-Optimization Analysis 

Once the optimal cutting parameters have been obtained, further analysis can be done to 

evaluate the practicality and manufacturability of the results. The effects of the optimized 

parameters on tool wear, surface finish, and other performance indicators should be verified 

through simulations or experimental validation. 

Gray Wolf Optimization is a powerful tool for solving complex process optimization problems 

in manufacturing. By applying GWO to optimize cutting parameters such as cutting speed, 

depth of cut, and feed rate, manufacturers can achieve a balance between energy efficiency 

(minimizing SCE) and productivity (maximizing MRR). The algorithm's flexibility and ability 

to find global optima make it a valuable technique for improving machining processes across 

various industries. 

The optimal cutting parameters identified in the statement are: 

• Cutting Speed: 200 m/min 

• Feed Rate: 0.30 mm/rev 

• Depth of Cut: 2.50 mm 

Under these optimal conditions, the results are: 
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• Specific Cutting Energy (SCE): 2.8 kJ/cm³ 

• Material Removal Rate (MRR): 1200 mm³/min 

These values indicate that at the given cutting conditions, the process is highly efficient in 

terms of energy usage while also achieving a significant material removal rate. The cutting 

speed of 200 m/min ensures that the tool operates at an appropriate velocity, allowing for 

efficient cutting without excessive energy consumption. The feed rate of 0.30 mm/rev strikes 

a balance between the material being fed into the cut and the tool’s capacity to remove it 

without excessive strain. The depth of cut of 2.50 mm represents a moderate level of cutting 

engagement, ensuring efficient material removal while maintaining reasonable forces on the 

tool and workpiece. 

Overall, the use of desirability functions helped identify a balanced set of parameters that 

minimize energy consumption (SCE) while optimizing productivity (MRR), making these 

conditions optimal for the given machining operation. This approach aids manufacturers in 

improving the overall efficiency of their processes, leading to cost savings and better tool life. 

 

5. Conclusion  

The study successfully demonstrates the use of the GWO technique in optimizing cutting 

parameters to achieve a balance between energy efficiency and productivity in CNC turning 

operations. By analyzing the effects of cutting speed, feed rate, and depth of cut, the study 

identifies optimal conditions that SCE while maximizing material removal rate (MRR). The 

empirical model developed using RSM and validated through ANOVA confirms the 

significance of these parameters and their interactions. The optimal parameters, cutting speed 

of 200 m/min, feed rate of 0.30 mm/rev, and depth of cut of 2.50 mm yield an SCE of 2.8 

kJ/cm3 and an MRR of 1200 mm3/min. This approach provides a robust framework for 

enhancing machining efficiency, contributing to sustainable manufacturing practices. 
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