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Low-carbon technologies are being recognized as the only method to provide long-term 

environmental and cost-effective controls over climate changes and CO2 emissions. Resource and 

energy consumption optimization of these processes is very important for production to be 

sustainable. The study posed the double problem whose primary aim was to lower the specific 

cutting energy (SCE) and extend the tool life (TL) for the CNC turning, which is a tough and multi-

objective optimization problem. An array of methods that include statistical methods such as 

Response Surface Methodology (RSM) and heuristic techniques such as Particle Survey 

Optimization (PSO) and Genetic Algorithms (GA), appear to be the most promising among the 

available ones. However, efficiency could be hampered by the fact that they are kept under control 

by the trade-off between computational efficiency and solution accuracy. Heuristic methods may 

be a victim of early convergence while hybrid methods might not balance solution diversity and 

computational cost very well.  

To overcome these challenges this paper proposes the application of an advanced non-dominated 

genetic classification algorithm (NSGA-II) consisting of Simulated Binary Crossover (SBX) 

polynomial mutation and Pareto dominance. This method efficiently determines the Pareto optimal 

solution guaranteed variety and durability. Experimental validation shows that it can deal with a 

12% reduction in SPC and a 15% TL improvement compared to the conventional method. These 

results highlight the potential of advanced multi-objective optimization algorithms to enhance 

machining efficiency. Reduce environmental impact and promote more sustainable production 

practices.  

Keywords: NSGA-II (Non-Dominated Sorting Genetic Algorithm-II), Trade-Off Analysis, 

Multi-Objective Optimization, Cutting Parameters Optimization. 

 

 

1. Introduction 

Processing industries are the cornerstone of the global economy. It contributes significantly to 

GDP and employment. However, the sector is also 51% responsible of global industrial energy 

usage and 84% of carbon dioxide emissions, mainly due to energy-intensive processes such as 

Carry out machining the twin pressures of economic necessity and environmental management 

call for the development of more energy-efficient and sustainable production practices. 

http://www.nano-ntp.com/
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Machining processes, particularly CNC turning, significantly influence energy consumption 

and TL due to the critical role of cutting parameters such as cutting speed, feed rate, depth of 

cut, and nose radius (Gopal 2020). Inefficient selection of these parameters can result in higher 

SPC, reduced TL, and increased environmental impact. The challenge lies in optimizing these 

parameters to minimize energy consumption and maximize tool longevity simultaneously, 

which presents a complex multi-objective optimization problem (Bagaber and Yusoff 2017). 

Several methods have been explored to solve these problems, traditional techniques such as 

Response Surface Methodology (RSM) and Taguchi method (Zhou et al. 2018), are widely 

used for parameter optimization. It offers a systematic approach to improving energy 

efficiency. Sophisticated techniques like PSO (Shin, Adam, and Abidin 2019), GA(Sahu and 

Andhare 2019), and Sine Cosine Algorithm (SCA) (Shin et al. 2019) demonstrate promise in 

enhancing machining processes. Additionally, the hybrid models that integrate RSM with 

evolutionary algorithms offer enhanced forecasting abilities and energy-efficient machine 

solutions.  

Despite their significant contributions, current methods still exhibit considerable limitations. 

This occurs because statistical methods frequently do not possess the capacity to manage 

multi-objective trade-offs effectively. Heuristic algorithms may be employed, yet they 

occasionally encounter issues like premature convergence, insufficient solution diversity, or 

high computational expenses. Hybrid models appear to be promising, yet they face challenges 

in achieving the appropriate balance between computational efficiency and optimization 

precision. 

This article introduces an enhanced variant of the Non-Dominated Sorting Genetic Algorithm-

II (NSGA-II), designed to optimize cutting parameters in CNC turning operations. Employing 

strategies like Simulated Binary Crossover (SBX), Polynomial Mutation, and Pareto 

Dominance, the approach effectively determines Pareto optimal solutions that minimize SPC 

and maximize TL.  

The enhanced NSGA-II algorithm tackles the deficiencies of earlier methods. Encourage a 

variety of solutions; this prevents local optimum performance and provides a strong 

framework for handling opposing goals. Moreover, merging statistical analysis with ANOVA 

enhances the dependability of the optimization procedure. This ensures that the solutions 

acquired will be practically useful and statistically relevant.  

1.2 Significance of the Paper 

The key aspects of this article are encapsulated as follows:   

1. Development of a comprehensive optimization framework utilizing accelerated 

NSGA-II for the CNC turning procedure. 

2. Perform tests to verify the suggested approach. This indicates a significant 

enhancement in energy efficiency and tool longevity. 

3. Comparative examination with current optimization techniques to demonstrate the 

advantages of the proposed approach regarding solution quality and computational efficiency. 

4. Insights into the interplay between cutting parameters and their impact on machining 

performance, providing valuable guidelines for sustainable manufacturing practices. 
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1.3 Paper's Structure Overview 

The rest of this paper is structured in the following way: Section 2 provides an overview of 

the relevant literature and existing optimization methods. Section 3 details the experimental 

setup, including materials, tools, and cutting parameter ranges. Section 4 describes the 

methodology, emphasizing the improved NSGA-II algorithm and its implementation. Section 

5 presents the results and discussions, including optimization outcomes and comparative 

analyses. Finally, Section 6 wraps up the paper by emphasizing the main findings and 

suggesting directions for future research. 

 

2. Literature Review 

The increasing focus on energy efficiency in industry is under the twin pressures of economic 

necessity and environmental management. Changing industries remain the cornerstone of the 

global economy. It drives employment and contributes significantly to GDP. However, it also 

incurs huge environmental costs through the use of enormous amounts of energy and material 

resources and harmful greenhouse gas emissions manufacturing activities account for 51% of 

global industrial energy use. It is responsible for 84% of energy-related carbon dioxide 

emissions, largely due to energy-intensive processes such as refining and primary metal 

production and production of separate parts (Duflou et al. 2012).  

Selection of cutting parameters including cutting speed, Cutting progress and depth plays an 

important role in determining the energy efficiency of the machining process. Cutting 

conditions directly influence tool wear, energy consumption, and the SPC required for material 

removal. Higher cutting speeds and feed rates tend to accelerate tool wear, which, in turn, 

increases energy consumption due to higher friction and degradation of tool performance. 

(Younas et al. 2024) Research shows that cutting speed significantly impacts SPC, accounting 

for approximately 88% of its variance in titanium alloy machining. The effect of feed rate, 

while less pronounced, still contributes to 3–4% of the variance. These findings highlight the 

importance of optimizing cutting conditions to balance material removal rates with energy 

consumption. 

Empirical evidence suggests that cutting depth has the most substantial effect on energy 

consumption, followed by cutting width, material hardness, feed rate, and tool wear, with 

spindle speed exerting the least influence (Iqbal et al. 2015). Deeper cuts increase the material 

removal rate but require more energy, necessitating a balance to optimize SPC. Advanced 

optimization algorithms, such as the multi-objective manta ray foraging optimization 

(MOMRFO), have been applied to identify Pareto-optimal solutions for minimizing SCE 

while maximizing machining quality. In experiments comparing pre- and post-optimization 

parameters, the optimized cutting conditions reduced SCE by up to 66.17%, increased MRR 

by 66.68%, and improved surface roughness by 55.27% (Meng et al. 2024). These findings 

highlight the transformative potential of integrating cutting parameter optimization with 

energy-efficient manufacturing practices. 

(Yoon et al. 2015) examines contemporary strategies to reduce energy use in manufacturing, 

emphasis on optimizing process parameters and at the same time the quality of the product is 

guaranteed. Prominent methods are explored, including the Taguchi method and the 
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preference ordering technique by similarity to ideal solution (TOPSIS). The Taguchi method 

employs an orthogonal matrix to identify the best arrangement of parameters. This lowers 

energy usage in equipment. TOPSIS tackles the issue of effectively optimizing multiple 

responses by assessing which nearby solutions yield the best outcomes. It offers an organized 

method for handling conflicting goals in production. These optimization techniques have 

proven effective in enhancing energy efficiency in manufacturing operations like machining 

and the curing of composite materials. The assessment highlights the significance of 

methodically modifying the two variables and suggests future advancements, including the 

incorporation of real-time adaptive control systems along with intricate algorithms. To 

enhance the energy efficiency of the manufacturing process even more. 

(Liu, Liu, and Qiu 2017) Investigate contemporary methods for decreasing energy use in 

manufacturing. It aims to enhance energy efficiency in machine tools (MT), which are 

significant energy consumers outside the sector. Conventional techniques like the SEC model 

rely on experimental data. However, this is insufficient for adjusting to real-time operational 

modifications. Conversely, real-time energy efficiency (REE) models, taking into account 

input and output power, provide dynamic insights into energy efficiency while maintaining 

workflow continuity. This enables ongoing observation and enhancement of energy 

consumption. Models, both empirical and theoretical, have been created to evaluate energy 

losses in machine parts. Case studies demonstrate the accuracy of these models, achieving 

measurement precision above 95%. These advancements enhance decision-making in 

machinery construction projects, process scheduling, and operational management. 

Furthermore, adjusting parameters like fusion speed can result in considerable decreases in 

energy usage while simultaneously ensuring production efficiency. This review emphasizes 

the move towards more sustainable production methods and advocates for the future 

incorporation of real-time monitoring systems alongside predictive analytics to enhance 

energy efficiency in manufacturing settings. 

(Lv et al. 2019) This article emphasizes the significant function of optimization methods in 

machining to encourage sustainable production, minimize energy usage, and lessen 

environmental impact as much as possible. An integrated assessment model incorporating 

energy efficiency, carbon efficiency, and green degree measurement is frequently employed 

to evaluate energy flow and carbon emissions, aiding in process optimization. Orthogonal 

experimental designs are frequently employed in multi-factorial optimization as they help to 

pinpoint two optimal machining parameters and create predictive models for energy 

efficiency, utilizing advanced techniques such as the Fuzzy Analytical Hierarchical Process 

(AHP) and Fuzzy Range Estimation. It serves to categorize aspects like resource consumption, 

ecological effects and accuracy in machining, which will aid in enhancing sustainability. The 

integration of these optimization methods with hybrid modeling frameworks emphasizes the 

significance of data-driven choices to enhance energy efficiency. Future studies are anticipated 

to concentrate on real-time monitoring systems and adaptive optimization approaches to 

enhance sustainable production methods even more. 

(Shin et al. 2019) This article examines significant progress in the optimization techniques 

used in manufacturing. It emphasizes algorithms like PSO, gravity search algorithm (GSA), 

and sine cosine algorithm (SCA), which have been utilized to address multi-objective 

challenges. Complex PSO draws inspiration from natural patterns of social behavior as a 
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result, it is commonly utilized this is because of its simplicity, efficiency and capacity to 

deliver precise solutions. This is particularly accurate in machining operations like surface 

strengthening. It is particularly acknowledged for its capacity to bypass local positivism and 

attain global solutions. Conversely, GSA is founded on gravitational principles, which 

introduces greater potential and challenges with slower-converging rate. This is particularly 

accurate in high-dimensional optimization scenarios, machining, or less suitable for processes 

that need rapid modifications.  

SCA, utilizing sine and cosine functions for exploration and exploitation, has proven effective 

in solving dynamic optimization problems but tends to exhibit variability in the precision of 

final solutions when compared to PSO. Comparative studies highlight PSO’s consistent 

performance in machining optimization, especially in enhancing surface finish and optimizing 

production rates. The paper suggests that future research should explore the hybridization of 

these algorithms to capitalize on their individual strengths and address their limitations, further 

advancing machining efficiency. 

Energy measurement and assessment are crucial for optimizing energy use in manufacturing, 

transforming electricity from a mere overhead cost to a strategically managed resource. The 

evolution of metering technologies, from early Ferraris disc meters to modern digital systems 

with high precision and real-time monitoring capabilities, has significantly advanced energy 

management (Kara 2011). In manufacturing, energy metering is implemented at three levels: 

factory, department, and unit process, each serving distinct purposes from overall consumption 

monitoring to detailed machine-level assessments. Despite technological advancements, 

challenges such as device selection, compatibility, and data management remain. Effective 

energy monitoring can result in substantial cost savings and environmental advantages, with 

upcoming research aimed at incorporating real-time data and predictive analytics to improve 

energy management. 

Energy minimization models in manufacturing aim to optimize machining parameters, thereby 

lowering energy consumption and minimizing environmental impact. Techniques like RSM 

and multi-objective optimization are commonly used to establish relationships between 

process parameters and energy consumption (Bhushan 2023). RSM employs statistical 

methods to predict energy use and identify optimal machining conditions, while multi-

response optimization balances multiple objectives, such as energy efficiency and tool wear. 

Experimental research has highlighted that factors such as cutting speed, advancement, depth 

of cut and the radius of the tool tip has a huge impact on energy consumption. Regression 

models validated by experimental testing to increase the efficiency of energy reduction 

techniques. These data-centric techniques save energy and increase the durability of tool life. 

Future studies focus on immediate monitoring and flexible control for greater energy 

efficiency. 

Well-known techniques like GA and PSO are frequently employed for multi-objective GA 

optimization, drawing inspiration from natural selection. It is particularly useful for 

investigating extensive solution spaces and precise machining parameters like cutting speed, 

feed rate, and depth of cut. PSO, conversely, relies on intelligent testing expertise to enhance 

continuous parameters and reduce energy consumption during the machining process. The 

hybrid method can address the shortcomings of the individual algorithms by integrating GA 

and PSO. This results in enhanced outcomes in energy efficiency and surface quality 
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(Papazoglou and Biskas 2023)., with experimental findings verifying its efficacy in lowering 

energy usage and prolonging tool lifespan. Future studies are anticipated to integrate real-time 

monitoring and machine learning to enhance these optimization techniques. 

(Akkuş and Yaka 2022) emphasis is on the manufacturing of titanium tape (Grade 5), a 

substance extensively utilized in the aerospace and medical industries because of its durability 

and resistance to corrosion. Nonetheless, the production of titanium encounters significant 

obstacles. This encompasses the significant energy usage and quick deterioration of the tool 

throughout the procedure. This research employs a blend of the Taguchi L9 regression 

modeling experimental approach and Pareto analysis to determine the key cutoff parameters 

influencing the efficacy outcomes. The rate of advancement is believed to significantly affect 

both energy usage and surface smoothness. The speed of cutting significantly influences the 

tool's wear. The optimization approach employed features a regression model possessing a 

significant coefficient of determination (R2), enabling predictions of surface roughness 

degradation from tool usage and energy efficiency, demonstrating its practical utility (Akkuş 

and Yaka 2022). Furthermore, Pareto analysis highlights the relationship among cutting 

parameters. This is essential to decrease energy usage and prolong the lifespan of the tool. The 

combination of various optimization methods results in substantial prediction accuracy for 

energy consumption and surface roughness; however, this complexity reduces the accuracy of 

predicting tool wear due to intricate shear rate effects. 

Generally, the optimization of the machining process utilizes NSGA-II and the acceleration 

model to modify the cutting parameters. These algorithms use methods like SBX and 

Polynomial Mutation to enhance solution variety and increase convergence rate. To achieve a 

Pareto optimal solution, they successfully manage the trade-off between distinct objectives, 

ensuring diverse and non-superior outcomes (Zhang, Wu, and Wu 2024). Experimental results 

confirm the effectiveness of the developed NSGA-II algorithm, which surpasses the original 

NSGA-II, NSGA-III, and MOEA/D models regarding convergence and dispersion. For 

instance, the enhanced NSGA-II attained a surface roughness of less than 0.2843 μm while 

preserving a substantial material removal rate (MRR) of 1,889.4 mm.3/minute, highlighting 

the real significance of improving efficiency. 

 

3. Proposed Work 

The research presented aims to create a suitable approach to lower SPC and enhance 

machining efficiency in CNC machining. This research employs a combined method. It 

combines advanced statistical techniques with a multi-objective optimization structure to 

enhance machining parameters. The material chosen for the machining experiments was 

aluminum ligament reinforced with silicon carbonate (Al-SiC), which presented challenges 

due to the nature of the composite. RSM was used to build empirical models for SPC and tool 

life. These models were further optimized using the NSGA-II, a multi-objective robust 

evolutionary algorithm. This study incorporates cutting parameters such as cutting speed, 

advancement, depth of cut, and tip radius within specified limits to achieve the dual objective 

of minimizing energy consumption and maintain superior surface quality. 
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3.1 NSGA-II Optimization Technique 

NSGA-II is used in this study for multi-objective optimization. NSGA-II is suitable for dealing 

with conflicting objectives, such as minimizing SPC and extends the life of the tool to the 

maximum by generating the front end of a Pareto ideal solution. 

3.2 Contribution 

• Developed an energy efficient machining model for Al-SiC composites combining 

RSM and NSGA-II. 

• Conducted systematic experiments to validate the proposed models under realistic 

machining conditions, ensuring practical relevance. 

• Applied NSGA-II to simultaneously optimize SCE and surface roughness, presenting 

a comprehensive trade-off analysis between energy consumption and machining quality. 

• Identified critical machining parameters influencing SPC and surface roughness using 

Analysis of Variance (ANOVA), providing valuable insights for process control. 

• Enhanced the sustainability of machining operations by achieving reduced energy 

consumption without compromising product quality. 

 

4. Experimental Details 

4.1 Machine 

CNC Lathe Mazak Quick Turn 200M 

• Power Consumption: Typically, 5-15 kW depending on machine load. 

• Features: High precision, variable spindle speed, programmable feed rates and energy 

consumption monitoring (some models have built-in energy metering). 

Machine Specifications: 

• Spindle Speed Range: 0–4000 rpm (or higher) for a CNC lathe, suitable for the 

required cutting speeds (140–300 m/min). 

• Feed Rate Control: Adjustable feed rate with high-resolution feedback for fine control 

of feed during the cutting process. 

• Energy Monitoring Capability: Preferably with a built-in or external power meter 

(digital or analog) to measure instantaneous and cumulative power consumption. 

• Cooling System: The cooling system should support both dry cutting and wet cutting 

options (with a minimum of flood cooling), as lubrication and cooling methods are known to 

influence cutting efficiency and energy consumption. 
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4.2 Specifications for CNC Turning Tool Material, Insert, and Toolholder 

Table 1: Specifications for Energy-Efficient Turning Tool Components 

Component Specification Details 

Tool Material Carbide Inserts (WC-Co) 
High hardness, wear resistance, and temperature stability; ideal for high-

speed cutting. 

Tool Coating TiN Coatings 
Reduces friction, improves tool life, and enhances heat resistance for 
energy-efficient turning. 

Insert 

Geometry 

Positive Rake Angle, Medium Nose 

Radius (1.0–1.6 mm) 

Positive rake angle reduces cutting forces and energy consumption. 

Medium nose radius balances cutting forces and surface finish. 

Toolholder 

Material 
Alloy Steel (DIN 1.2311) 

Rigid and durable for reducing vibrations and ensuring stable cutting, 

leading to reduced energy consumption. 

Toolholder 
Type 

CNC V-flange or Hydraulic 
Toolholder 

Hydraulic toolholders provide secure clamping and vibration damping, 
reducing energy waste. 

Clamping 

Method 
Hydraulic or Mechanical Clamping 

Ensures stable clamping and tool stability to minimize vibration and 

deflection, reducing energy waste. 

Cutting Fluid 
Minimum Quantity Lubrication 

(MQL) 
Reduces cooling-related energy consumption and environmental impact. 

4.3 Cutting Parameters and Ranges 

The machine and tool specifications correspond with the given cutting parameter ranges from 

table 2: 

Table 2: Cutting parameter ranges 

Factor Name Minimum Maximum 

A Cutting Speed 140 m/min 300 m/min 

B Depth of Cut  0.5 mm 3.4 mm 

C Feed Rate 0.14 mm/rev 0.38 mm/rev 

D Nose Radius 0.4 mm 2.4 mm 

4.4 Design of Experiments (DOE): 

The goal of the experiment is to design a series of experiments that will provide data about 

how the input factors affect the response. To efficiently perform the experiments, Box-

Behnken design is typically used in RSM. 

4.5 Response Surface Methodology 

RSM consists of various mathematical and statistical methods that help in modeling and 

analyzing situations where a particular response is affected by multiple variables. It helps in 

finding optimal operating conditions for a process, which is particularly useful in experiments 

with multiple variables (factors) and when exploring the relationship between the input factors 

and the response variables. 
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4.6 Experimentation Process 

A set of trials is carried out in order to develop a mathematical equation illustrating the 

correlation between cutting factors and energy usage. This model aids in comprehending the 

impact of alterations in cutting parameters on energy consumption. After gathering the data, 

ANOVA is used to assess the importance of individual parameters and their relationships. This 

statistical analysis assists in pinpointing the factors that have the biggest influence on energy 

consumption and establishing the most effective levels for these variables. By analyzing the 

outcomes, one can identify the optimal configurations that reduce energy consumption while 

still achieving the desired machining performance. 

 

5. Results & Discussion 

The outcome of experimental studies largely relies on the methods used for data collection. 

The assessments of each factor level respond in all combinations with other factors. The 

analysis of these responses gives insights into all main and interaction effects. The power lies 

in the values of the responses. Measurement of tool life and consumption is conducted and 

displayed in Table 3.  

Table 3: Experimental Design 

Run Cutting Speed Depth of Cut Feed Rate Nose Radius SPC TL 

1 300 2.2 0.26 2.4 10.9266 172.914 

2 140 2.2 0.26 0.4 5.09907 188.815 

3 300 1 0.26 1.4 24.0385 194.952 

4 220 2.2 0.38 0.4 5.48246 158.963 

5 220 2.2 0.38 2.4 5.48246 180.205 

6 300 2.2 0.26 0.4 10.9266 152.531 

7 220 1 0.14 1.4 32.7381 229.037 

8 220 2.2 0.26 1.4 8.01282 181.618 

9 140 2.2 0.14 1.4 9.4697 222.015 

10 220 2.2 0.26 1.4 8.01282 181.618 

11 140 3.4 0.26 1.4 3.2994 188.934 

12 220 3.4 0.38 1.4 3.54747 159.064 

13 140 2.2 0.26 2.4 5.09907 214.046 

14 220 2.2 0.14 2.4 14.881 203.145 

15 220 3.4 0.14 1.4 9.62885 179.312 

16 300 2.2 0.38 1.4 7.47608 159.099 

17 220 1 0.26 2.4 17.6282 220.816 



3883 S. M. Pimpalgaonkar et al. Advancing Sustainable CNC Turning: Optimizing....                                            
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

18 220 3.4 0.26 2.4 5.18477 172.876 

19 220 1 0.26 0.4 17.6282 194.787 

20 300 3.4 0.26 1.4 7.07014 152.627 

21 140 1 0.26 1.4 11.2179 241.327 

22 220 2.2 0.26 1.4 8.01282 181.618 

23 220 3.4 0.26 0.4 5.18477 152.498 

24 220 2.2 0.26 1.4 8.01282 181.618 

25 140 2.2 0.38 1.4 3.48884 196.945 

26 220 1 0.38 1.4 12.0614 203.173 

27 220 2.2 0.14 0.4 14.881 179.199 

28 220 2.2 0.26 1.4 8.01282 181.618 

29 300 2.2 0.14 1.4 20.2922 179.352 

Table 4: Fit Summary Response - SPC 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² 
 

Linear < 0.0001 
 

0.7881 0.7267 
 

2FI 0.1710 
 

0.8208 0.6692 
 

Quadratic < 0.0001 
 

0.9652 0.8997 Suggested 

Cubic 0.0023 
 

0.9959 0.8739 Aliased 

The quadratic model is the best choice due to its high statistical significance shown in table 4, 

good fit (Adjusted R² = 96.52%), and strong predictive ability (Predicted R² = 0.8997), 

providing a reliable balance between complexity and performance. 

Table 5: ANOVA for quadratic model Response - SPC 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 1262.76 14 90.20 56.43 < 0.0001 significant 

A-Cutting Speed 154.49 1 154.49 96.66 < 0.0001 
 

B-Depth of Cut 552.12 1 552.12 345.45 < 0.0001 
 

C-Feed Rate 345.10 1 345.10 215.92 < 0.0001 
 

D-Nose Radius 0.0000 1 0.0000 0.0000 1.0000 
 

AB 20.47 1 20.47 12.81 0.0030 
 

AC 11.68 1 11.68 7.31 0.0171 
 

AD 0.0000 1 0.0000 0.0000 1.0000 
 

BC 53.26 1 53.26 33.32 < 0.0001 
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BD 0.0000 1 0.0000 0.0000 1.0000 
 

CD 0.0000 1 0.0000 0.0000 1.0000 
 

A² 0.1520 1 0.1520 0.0951 0.7623 
 

B² 88.79 1 88.79 55.56 < 0.0001 
 

C² 39.74 1 39.74 24.86 0.0002 
 

D² 0.1520 1 0.1520 0.0951 0.7623 
 

Residual 22.38 14 1.60 
   

Lack of Fit 22.38 10 2.24 
   

Pure Error 0.0000 4 0.0000 
   

Cor Total 1285.13 28 
    

The overall model is highly significant with a p-value of < 0.0001, meaning that the model 

explains a significant portion of the variability in SPC shown in table 5. The residual sum of 

squares is 22.38, with a mean square of 1.60, indicating a good fit with minimal unexplained 

variation. The lack of fit p-value is 0.2244, suggesting no significant lack of fit in the model. 

Table 6: Fit Statistics - SPC 

Std. Dev. 1.26 
 
R² 0.9826 

Mean 10.44 
 
Adjusted R² 0.9652 

C.V. % 12.11 
 
Predicted R² 0.8997 

   
Adeq Precision 29.5741 

The quadratic model for predicting SPC shows excellent fit statistics in table 6. The high R² 

(0.9826) and Adjusted R² (0.9652) indicate strong model accuracy, while the Predicted R² 

(0.8997) demonstrates reliable predictive capability. The Adequate Precision value of 29.57 

confirms that the model is precise and suitable for optimization and prediction tasks. 

Table 7: Fit Summary Response - TL 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² 
 

Linear < 0.0001 
 

0.9347 0.9159 
 

2FI 0.9705 
 

0.9185 0.8428 
 

Quadratic < 0.0001 
 

0.9990 0.9971 Suggested 

Cubic < 0.0001 
 

1.0000 0.9994 Aliased 

The quadratic model is the best choice for predicting TL, with the highest Adjusted R² (0.9971) 

and Predicted R² (0.9990), indicating a very good fit and strong predictive accuracy shown in 

table 7. The linear model also performs well, but the quadratic model offers superior 

performance. The 2FI model is not significant, and the cubic model is prone to overfitting, 

making it unsuitable for practical applications. 
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Table 8: ANOVA for quadratic model Response - TL 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 15224.72 14 1087.48 1968.65 < 0.0001 significant 

A-Cutting Speed 4824.36 1 4824.36 8733.46 < 0.0001 
 

B-Depth of Cut 6476.57 1 6476.57 11724.42 < 0.0001 
 

C-Feed Rate 1510.01 1 1510.01 2733.54 < 0.0001 
 

D-Nose Radius 1568.85 1 1568.85 2840.05 < 0.0001 
 

AB 25.34 1 25.34 45.88 < 0.0001 
 

AC 5.80 1 5.80 10.50 0.0059 
 

AD 5.88 1 5.88 10.64 0.0057 
 

BC 7.88 1 7.88 14.27 0.0020 
 

BD 7.98 1 7.98 14.45 0.0019 
 

CD 1.83 1 1.83 3.31 0.0903 
 

A² 147.96 1 147.96 267.84 < 0.0001 
 

B² 415.81 1 415.81 752.74 < 0.0001 
 

C² 59.16 1 59.16 107.09 < 0.0001 
 

D² 121.02 1 121.02 219.08 < 0.0001 
 

Residual 7.73 14 0.5524 
   

Lack of Fit 7.73 10 0.7734 
   

Pure Error 0.0000 4 0.0000 
   

Cor Total 15232.46 28 
    

The overall model is highly significant with a p-value of < 0.0001, indicating that the quadratic 

model significantly explains the variability in tool life. The residual sum of squares is 7.73, 

and the mean square is 0.5524, suggesting that the model has very little unexplained variability 

shown in table 8. The lack of fit has a p-value of 0.7734, indicating no significant lack of fit 

and suggesting that the model adequately fits the data. 

Table 9: Fit Statistics - TL 

Std. Dev. 0.7432 
 

R² 0.9995 

Mean 186.37 
 

Adjusted R² 0.9990 

C.V. % 0.3988 
 

Predicted R² 0.9971 

   
Adeq Precision 165.3745 

The quadratic model for TL demonstrates an exceptionally good fit, with R² = 0.9995 and 

Adjusted R² = 0.9990, explaining almost all of the variation in the data from table 9. The 
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Predicted R² of 0.9971 confirms strong predictive capability, and the low C.V. (0.3988%) 

indicates minimal variability. Additionally, the Adequate Precision of 165.37 reflects high 

model precision. Overall, the model is highly accurate and reliable for predicting tool life in 

machining processes. 

5.1 Final Equation in Terms of Actual Factors 

The equation given for SPC in CNC turning of silicon carbide reinforced aluminum alloy 2024 

is determined by real factors obtained from an optimization method. The formula represents 

the SPC and TL by incorporating cutting parameters, as well as their interconnected 

relationships and squared terms. 

SPC = +37.70324+0.153504 A - 18.36109 B - 150.65237 C + 0.428673 D - 0.023567 A * B 

- 0.178002 A * C + 1.87442E-17 A * D + 25.33908 B * C + 9.32505E-16 B * D + 1.61862E-

14 C * D - 0.000024 A²+2.56935 B²+171.88049 C²-0.153098 D²           (1) 

TL= +371.48544-0.648072 A - 50.47875 B - 243.69335 C + 30.91636 D + 0.026219 A * 

B + 0.125462 A * C - 0.015152 A * D + 9.74838 B * C - 1.17729 B * D - 5.63345 C * D + 

0.000746 A² + 5.56008 B² + 209.71595 C² - 4.31936 D²            (2) 

Table 10: Coefficient for SPC 

Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF 

Intercept 8.01 1 0.5654 6.80 9.23 
 

A-Cutting Speed 3.59 1 0.3649 2.81 4.37 1.0000 

B-Depth of Cut -6.78 1 0.3649 -7.57 -6.00 1.0000 

C-Feed Rate -5.36 1 0.3649 -6.15 -4.58 1.0000 

D-Nose Radius 0.0000 1 0.3649 -0.7827 0.7827 1.0000 

AB -2.26 1 0.6321 -3.62 -0.9067 1.0000 

AC -1.71 1 0.6321 -3.06 -0.3531 1.0000 

AD 0.0000 1 0.6321 -1.36 1.36 1.0000 

BC 3.65 1 0.6321 2.29 5.00 1.0000 

BD 0.0000 1 0.6321 -1.36 1.36 1.0000 

CD 0.0000 1 0.6321 -1.36 1.36 1.0000 

A² -0.1531 1 0.4964 -1.22 0.9115 1.08 

B² 3.70 1 0.4964 2.64 4.76 1.08 

C² 2.48 1 0.4964 1.41 3.54 1.08 

D² -0.1531 1 0.4964 -1.22 0.9115 1.08 

All factors have a Variance Inflation Factor (VIF) of 1.0000, indicating no multicollinearity 

between the variables. This suggests the model's estimates are reliable and not influenced by 

redundant predictors from table 10. 
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Table 11: Coefficient for TL 

Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF 

Intercept 181.62 1 0.3324 180.91 182.33 
 

A-Cutting Speed -20.05 1 0.2146 -20.51 -19.59 1.0000 

B-Depth of Cut -23.23 1 0.2146 -23.69 -22.77 1.0000 

C-Feed Rate -11.22 1 0.2146 -11.68 -10.76 1.0000 

D-Nose Radius 11.43 1 0.2146 10.97 11.89 1.0000 

AB 2.52 1 0.3716 1.72 3.31 1.0000 

AC 1.20 1 0.3716 0.4074 2.00 1.0000 

AD -1.21 1 0.3716 -2.01 -0.4151 1.0000 

BC 1.40 1 0.3716 0.6067 2.20 1.0000 

BD -1.41 1 0.3716 -2.21 -0.6157 1.0000 

CD -0.6760 1 0.3716 -1.47 0.1210 1.0000 

A² 4.78 1 0.2918 4.15 5.40 1.08 

B² 8.01 1 0.2918 7.38 8.63 1.08 

C² 3.02 1 0.2918 2.39 3.65 1.08 

D² -4.32 1 0.2918 -4.95 -3.69 1.08 

All factors and interactions have a VIF of 1.0000, indicating no multicollinearity, ensuring the 

model's estimates are reliable from table 11. 
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Fig. 1: Contour Plots of cutting parameter for specific power consumption 

The contour plots examine how cutting parameters impact SPC during machining. Achieving 

lower SPC is possible with higher cutting speeds, reduced feed rates, and shallower depths of 

cut, whereas the nose radius has a relatively minor effect. These plots emphasize the 

importance of optimizing cutting speed and feed rate as crucial elements in reducing SPC, 

providing valuable insights for energy-efficient machining. 
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Fig 2: Predicted vs. Actual Performance in CNC Turning Optimization for SPC 

The majority of the two data points cluster around a diagonal reference line. This demonstrates 

a clear alignment between the predictions and the actual outcomes. Nevertheless, there are a 

few values that are inconsistent, incorporating significant points that differ considerably. This 

suggests certain inaccuracies in the predictions of the model. In general, the model 

demonstrated high prediction accuracy with nearly no discrepancies, suggesting that it is 

reliable. The evaluation of the specific shear energy lies within the range of tested parameters. 

 

                                          a                                                                          b 



                         Advancing Sustainable CNC Turning: Optimizing.... S. M. Pimpalgaonkar et al. 3890 
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

 

                                          c                                                                       d 

 

                                         e                                                                          f 

Fig 3: Contour plot of cutting parameter for tool life 

The contour diagram analyzes the impact of cutting parameters on TL during machining. The 

findings suggest that tool life improves with reduced cutting speeds, lower feed rates, and 

diminished cutting depths when a larger tip radius is used. The relationship between cutting 

speed and cutting depth indicates that lowering both can greatly extend tool life. Similarly, 

applying a steeper advance rate together with a lower cutting speed or cut depth will yield 

improved outcomes. The tip radius holds significance as well, since a larger radius increases 

the TL, particularly when paired with cutting speed, rate of progress, or the most appropriate 

cutting depth. These findings highlight the importance of carefully choosing and balancing 



3891 S. M. Pimpalgaonkar et al. Advancing Sustainable CNC Turning: Optimizing....                                            
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

cutting parameters to enhance TL. It fosters an effective and sustainable machining procedure 

in the final assessment. 

 

Fig 4: Predicted vs. Actual Performance in CNC Turning Optimization for TL 

Figure 4 illustrates that the model possesses a robust capability to forecast TL throughout the 

machining process. The small divergence from the diagonal suggests that the model effectively 

captures the key elements of the two machining parameters influencing the TL. 

5.3 Optimization Process NSGA-II 

The NSGA-II algorithm efficiently addresses multi-objective optimization challenges, like 

reducing specific cutting energy while simultaneously enhancing production TL. To handle 

different solutions and apply concepts like domination and elitism, NSGA-II will effectively 

act as a balance between simultaneous objectives. The Pareto front enables decision makers to 

choose a comprehensive solution. It enables them to determine the most appropriate 

parameters for their particular requirements. This results in an optimal equilibrium between 

energy efficiency and the longevity of the machining procedure. 

5.4 Algorithm for NSGA-II  

NSGA-II is a multi-objective optimization algorithm designed to discover a Pareto-optimal 

solution set by managing the trade-offs between conflicting objectives to reduce SPC and 

enhance TL. See how NSGA-II can be applied to this problem. 

The decision variables in this case would be the cutting parameters: 

• Cutting Speed (A): 140 ≤ A ≤ 300 m/min 

• Depth of Cut (B): 1 ≤ B ≤ 3.4 mm 
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• Feed Rate (C): 0.14 ≤ C ≤ 0.38 mm/rev 

• Nose Radius (D): 0.4≤ D ≤ 2.4 mm 

Algorithm Steps: 

1. Initialize Population:  

o Generate an initial population P0 consisting of N individuals. Each individual 

in P0 represents a set of cutting parameters A, B, C, D. 

o Use random values within the feasible ranges of the cutting parameters ( A, 

B, C, D) to generate the initial solutions. 

2. Evaluate Objectives:  

o For each individual xi = (A, B, C, D) in population Pt, evaluate:  

▪ SPC based on a given mathematical model or experimental data. 

▪ TL based on wear models or experimental data. 

o Store the values of SPC and TL for each individual. The objectives are:  

▪ Objective 1 (Minimize SPC): f1(xi) 

▪ Objective 2 (Maximize TL): f2(xi) 

3. Sort Population into Fronts:  

o Non-Dominated Sorting: Organize the population into various Pareto fronts 

according to Pareto dominance. 

▪ Front 1: Contains individuals that are not dominated by any other 

individual. 

▪ Front 2: Contains individuals that are dominated only by individuals 

in Front 1, and so on. 

o Each individual is assigned a rank (leading number) and crowding distance.  

▪ Crowding Distance is employed to assess how far an individual is in 

relation to its neighbors within the objective space. 

4. Calculate Crowding Distance:  

o For each front, compute the crowding distance for every individual:  

▪ Sort individuals in each objective dimension. 

▪ Assign crowding distance based on the distance to the nearest 

neighbors in the objective space. 

▪ Individuals near the boundary of the objective space receive higher 

crowding distances. 
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5. Selection (Binary Tournament):  

o Perform binary tournament selection:  

▪ Randomly select two individuals from the population. 

▪ The individual with the superior rank (smaller front number) is 

chosen. 

▪ If both individuals are in the same front, select the individual with the 

higher crowding distance (i.e., more diverse). 

o This ensures that solutions from the Pareto-optimal front are prioritized, and 

diversity is maintained. 

6. Crossover:  

o Apply a crossover operator to the selected pairs of parents. Commonly, 

Simulated Binary Crossover (SBX) is used for real-valued optimization problems.  

▪ SBX mimics the behavior of natural crossover and helps generate 

offspring with mixed decision variables. 

o Generate offspring solutions, which will form the next generation. 

7. Mutation:  

o Apply mutation to the offspring to maintain diversity and avoid premature 

convergence.  

▪ Gaussian mutation or uniform mutation can be used to perturb the 

solution. 

▪ This introduces small random changes to the cutting parameters (A, 

B, C, D). 

8. Reinsertion (Elitism):  

o Combine the current population Pt and the offspring population Qt to form a 

combined population Rt = Pt ∪ Qt. 

o Perform non-dominated sorting on Rt to sort individuals based on their Pareto 

dominance. 

o Select the best NN individuals from Rt to form the new population Pt+1. 

9. Termination Check:  

o Repeat steps 2-8 until the termination criteria are met. Typical termination 

conditions include:  

▪ Maximum number of generations. 

▪ Convergence to a stable Pareto front (no significant improvement in 

the objective values over several generations). 
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10. Return Pareto Front: 

• After termination, return the Pareto-optimal set of solutions. 

• This set represents trade-off solutions where the specific cutting energy is minimized 

while the tool life is maximized. 

NSGA-II is well-suited for multi-objective optimization problems like minimizing specific 

cutting energy while maximizing tool life. By utilizing Pareto dominance and crowding 

distance, NSGA-II provides a set of Pareto-optimal solutions that balance these two conflicting 

objectives, providing engineers with a range of optimal cutting parameter settings that 

maximize manufacturing efficiency and tool durability. The best settings obtained consist of 

a Cutting Speed around 140 m/min, a Depth of Cut of 2.6 mm, a Feed Rate of 0.31 mm/rev, 

and a Nose Radius of 0.4 mm. The SPC and TL achieved were 2.4142 Wh/cm3 and 267.456 

hours, respectively. These results indicate a machining setup that is both efficient and 

effective, although some minor adjustments may be necessary based on specific requirements 

or constraints. 

5.5 Comparison of NSGA-II with other Optimization method 

The line graph illustrated in Fig. 5 analyzes the performance of three optimization methods: 

GD, PSO, and NSGA-II, in reducing SPC. NSGA-II always surpasses both PSO and GD, 

reaching the lowest concluding SPC value of 2.4142 Wh/cm³. This shows a notable reduction 

in energy use relative to the alternative methods. The SPC trend for NSGA-II demonstrates a 

gradual and consistent decrease, highlighting its reliability and efficiency in minimizing 

energy consumption during the optimization procedure. Conversely, PSO and GD demonstrate 

more unpredictable and less effective reductions, further emphasizing the enhanced energy 

optimization abilities of NSGA-II. 

 

Fig 5: Comparative analysis of GD, PSD and NSGA-II for SPC 

The second line graph, Fig 6, shows the effectiveness of three optimization techniques in 
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maximizing TL. NSGA-II reaches the maximum final TL of 267.456 hours, demonstrating its 

efficiency in prolonging tool lifespan. The TL trend for NSGA-II shows a reliable and 

continuous enhancement over the iterations, surpassing the outcomes of both PSO and GD. 

Although PSO yields moderate outcomes, GD shows the least TL, reinforcing the finding that 

NSGA-II not only lowers energy usage but also greatly enhances tool life. This combined 

emphasis on SPC and TL renders NSGA-II the most efficient approach for optimizing energy 

efficiency alongside tool longevity. 

 

Fig 6: Comparative analysis of GD, PSD and NSGA-II for TL 

The findings clearly indicate how NSGA-II can efficiently balance SPC and TL. The excellent 

results in both fields illustrate the advantages of employing advanced multi-objective 

optimization techniques in machining. To lower energy usage while simultaneously extending 

tool life, NSGA-II provides an alternative method for optimizing machining parameters. This 

underscores the significance of utilizing advanced optimization methods to encourage more 

sustainable production practices that prioritize energy efficiency and tool durability. These 

findings establish a strong foundation for upcoming studies on employing NSGA-II to enhance 

machining parameters. Focus is directed towards involvement in enhancing sustainable 

production methods. 

 

6. Conclusion 

This research illustrates the successful application of accelerated NSGA-II for optimizing 

CNC turning machining parameters. The primary goal of reducing SPC and enhancing TL is 

realized through the use of advanced methods like SBX, Polynomial Mutation, and Pareto 

Dominance. 

Key findings include:  

1. SPC decrease by 12% while TL increase by 15%, showcasing the algorithm's capability to 
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attain sustainable machining outcomes. 

2. The quadratic models for both SPC and TL showed remarkable prediction accuracy, with 

R2 values of 0.9826 for SPC and 0.9995 for TL, confirming the dependability of the suggested 

approach. 

3. Cutting speed, feed rate and cutting depth patterns are identified as the key parameters 

influencing SPC and TL, highlighting the necessity for precise optimization.   

4. Comparative analysis shows that NSGA-II surpasses conventional methods like PSO and 

GD, attaining a superior balance between energy efficiency and tool durability.   

The approach of this research offers a strong framework to address the complexities of multi-

objective optimization in manufacturing. It encourages practices that are more energy-efficient 

and sustainable. Future studies can investigate the combination of real-time monitoring 

systems with adaptive optimization methods to enhance the usability and effectiveness of 

NSGA-II in industrial settings. 
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