
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S16 (2024) 2309-2323

A Review of Techniques for Clarifying

Black Box Models

Kirti Namdev1, Gur Sharan Kant2, Kavi Bhushan2

1Research Scholar, M. Tech (CSE), SCRIET, Chaudhary Charan Singh University, Meerut,

U.P., India
2Assistant Professor, M. Tech (CSE), SCRIET, Chaudhary Charan Singh University,

Meerut, U.P., India

Email: kirti18namdev@gmail.com

In the past, a number of techniques for automatically creating test cases have been presented. The

majority of these procedures, however, are structural testing methods that necessitate knowledge of

the program's underlying operations. The combined practical coverage of all testing methods is

lower(2). Additionally, we assume a case scenario of insurance premium calculation for drivers and

derive test cases and test data for box testing methods like Branch testing, Statement testing,

Condition Coverage testing, and multiple condition coverage testing. In this paper, we conducted a

literature study on all testing techniques related to both Black box and White box testing techniques.

In a similar manner, we derive test cases and test data for the black box testing methods. This

literature research's primary objective is to provide a comprehensive explanation of various testing

methods, along with a case study and their benefits. This literature research's primary objective is

to provide a comprehensive explanation of various testing methods, along with a case study and

their benefits.

Keywords: Black box testing, All-Pair Testing, white box testing, test cases, structural testing,

and testing methodologies.

1. Introduction

One of the most popular methods for verifying and validating software quality is software

testing. The process of running a program or system with the goal of identifying errors is

known as software testing[1]. It is estimated to be costly and labor-intensive, contributing

more than half of the overall cost of software development. One important step in the software

development life cycle (SDLC) is software testing[2]. It aids in developing a developer's

confidence that a software achieves its goals. To put it another way, it's the process of running a

program with the goal of identifying faults 3. Black box testing is frequently used for validation in

the Verification and Validation (VCV) language (i.e. are we producing the proper software?)

and verification (i.e., are we constructing the software correctly?) is frequently accomplished

through white box testing. This study highlights the importance of looking into different testing

methods in the field of software testing; to get reviews from the state-of-the-art, we did a literature

review[4].

http://www.nano-ntp.com/

 A Review of Techniques for Clarifying Black… Kirti Namdev et al. 2310

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

2. LITERATURE SURVEY FOR BLACK BOX TESTING

Numerous techniques for automatically generating test cases have been put forth in the past.

However, the majority of these methods are structural testing methods that necessitate

knowledge of the program's internal operations[5]. The practical coverage of all testing methods

combined is lower. In this paper, we carried out a review of the literature on all testing methodologies

that are connected to both Black and White box testing methodologies. In addition, we make the

assumption that a driver's insurance premium is calculated in this scenario and obtain the test cases

and test data for White box testing methodologies like Branch testing, Statement testing, the test

cases and test data for black box testing techniques like boundary value analysis and equivalency

partitioning are derived similarly for condition coverage testing and multiple condition

coverage testing[6]. One of the most popular methods for confirming and validating software

quality is software testing. The process of running a program or system with the goal of identifying

errors is known as software testing. It is estimated to be costly and labor- intensive, making up

more than half of the overall cost of software development. One important step in the software

development life cycle (SDLC) is software testing[2]. It aids in building a developer's confidence

that a software accomplishes its goals. To put it another way, it's the process of running a

program with the goal of identifying faults (Biswal et al. 2010). Black box testing is frequently used

for validation in the Verification and Validation (VCV) language (i.e. are we producing the

proper software?) and verification (i.e., are we constructing the program right?) is frequently

accomplished through white box testing[3]. This study highlights the importance of looking into

different testing methods in the field of software testing; to get reviews from the state-of-the-art, we did

a literature review[4].

3. METHODOLOGY

An application's functionality, security, performance, and other elements can be assessed using

black box testing, a type of testing in which the underlying workings of the system are not known. One

type of automated black box security testing is dynamic code analysis[10]. The foundation of white

box testing is an application's internal architecture. It can be used for low-level tasks like integration

and unit testing, among others. Boundary value analysis, decision table testing, state transition

testing, equivalency partitioning, and other techniques are examples of black box techniques. Let's

say you are testing the checkout procedure on an e-commerce website. You must evaluate the user

experience like a black box tester without being aware of the underlying code. When a consumer

adds things to their cart and pays, for example, you may verify that the checkout process is seamless.

Syntax testing is the option that is not a black box technique. Syntax testing is a white box technique

that looks at the system's core components to examine the code's correctness and structure[8]. The

process of testing a system without being aware of its internal code or implementation specifics is

known as "black box" testing. Making ensuring the system works properly from the user's point

of view is the aim[1].

4. SOLVE THE BLACK BOX ISSUES

Various problem categories were identified as a result of a thorough examination and study of

the literature. We are able to differentiate between explanation design and reverse engineering

2311 Kirti Namdev et al. A Review of Techniques for Clarifying Black...

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

at a very high level. In the first instance, the challenge is to reconstruct an explanation for the

decision records generated by a black box decision maker. In real life, the original dataset used to

train the black box is typically unknown (figure 1). To build, reverse engineering is required. The

Open the Black Box Problems can be divided into two parts[9]: the Black Box Explanation

problem, which explains how the decision system produced particular results, and the

Transparent Box Design problem, which involves developing a transparent classifier that

directly addresses the same classification issue. Additionally, the Black Box Explanation

problem can be further subdivided into three categories: Model Explanation, which explains the

entire logic of the obscure classifier; Outcome Explanation, which aims to explain the rationale

behind the decisions made regarding a particular object; and Model Inspection, which aims to

comprehend how the black box behaves internally when altering the input. At the conclusion

of this section, specifics on reverse engineering techniques also referred to in the literature as post

hoc interpretability are covered[10]. In the second scenario, the work entails creating an

interpretable predictor model together with its justifications using a dataset of training decision

records. We are able to further divide the first category into three distinct problems model

explanation, result explanation, and model inspection by carefully examining the state of the

art [11].

Figure 1. Crack the black box issues Classification

Remembering the idea of the "motivation" for an explanation that was covered in the previous

part, the goal of the model explanation issue is to comprehend the general reasoning behind the

black box, whereas the goal of the result explanation problem is to better understand the relationship

between the information from a record and the final conclusion. Lastly, the model inspection

problem is rather ambiguous and contingent upon the purpose of the particular paper being

examined. Each of these issues can be viewed as a particular instance of a generic categorization

problem, all of which aim to provide an accurate and comprehensible predictive model[12]. The

following sections contain specifics on the formalization.

4.1 Black Box Testing

Software may be tested effectively via black box testing[1]. Manual testing includes black box testing.

Test engineers handle it. Black box testing involves implementing several test cases to test the

software's functionality without reviewing the code. We test the software's functionality. Black

 A Review of Techniques for Clarifying Black… Kirti Namdev et al. 2312

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

box testing aids in identifying problems or defects in software. In this kind of testing, the tester

concentrates on verifying the functionality in accordance with the project's requirements rather than

viewing the internal workings of the software. Black box testing falls into various areas. We enter

data into the program and verify that it is working. We test the program by entering both accurate and

inaccurate data and observing how it responds. We shall examine the advantages of black box

testing in this study article. Without black box testing, software development is not complete as

we cannot evaluate the program's quality. Every time software is developed, it is crucial to assess its

quality to determine whether or not it is user-ready. To do this, we employ black box testing. Software

testing that involves denying the test engineer access to the system's code is known as "black box"

testing. By entering inputs and observing the outcome, the primary objective is to verify that the

application is operating properly; the system's treatment of the inputs is not taken into account.

Among the techniques needed to carry out black box testing are requirements analysis, Recognize

the system requirements, test cases, and technical needs[8]. This makes figuring out the intended

actions and outcomes for each system function easy (Table 1). Clearly state the testing goals,

which should include verifying that the application meets the requirements and contrasting the

system's behavior with the expected results. Equivalency Tests for Design Dividing the input data

into classes with the presumption that each class would yield identical results is known as class

partitioning. Boundary value analysis is used to test the limits of input values, including those that

are just below, at, and above a limit. In order to accommodate input combinations, testing

decision models creates decision tables. When testing for phase changes, the system's stages

and transitions between them are noted[20]. Error speculating and testing plausible hypotheses

regarding potential origins of errors. At random Use random input during testing to look for

unexpected system behavior. Test Setting Prepare the test environment (hardware, software,

network conditions, etc.) and set up the test arrangements.

Table 1: Black Box Testing[6]

Aspect Description

Objective To evaluate the effectiveness, advancements, and applications of black box testing techniques.

Key Focus Areas Test case generation, test coverage, defect detection efficiency, automation tools, and testing frameworks.

Techniques Reviewed Functional testing, equivalence partitioning, boundary value

analysis, decision table testing, and state transition testing.

Research Trends

Integration of AI/ML for test case generation and automation.- Use of model-based testing for complex
systems.- Enhanced tools for real-time testing.

Domains of Application Software development, cybersecurity, mobile application testing, IoT systems, and embedded systems.

Challenges Identified Lack of transparency in testing outcomes, handling of dynamic systems, scalability, and dependency on

accurate specifications.

Advancements New automation frameworks, improved algorithms for test case prioritization, and better defect detection
mechanisms.

Tools Reviewed Selenium, Appium, TestComplete, Postman, and others tailored for black box testing.

Metrics Evaluated Test coverage, defect density, execution time, and resource utilization.

Future Directions - Greater focus on AI-driven black box testing.- Enhancing cross- platform testing capabilities.- Improving test

automation reliability.

Impact Assessment Annual review assesses the adoption and return on investment (ROI) of black box testing methods in software quality
assurance.

2313 Kirti Namdev et al. A Review of Techniques for Clarifying Black...

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

• Working of Black Box Testing

Black box testing has the primary benefit of removing the requirement for testers to possess both

programming language and implementation expertise[13]. Programmers and testers are not

connected to one another when doing black box testing. The fact that testing is done from the

perspective of the user is an additional benefit. Finding any ambiguities or contradictions in the

requirements specifications is one of black box testing's major benefits.[1] The steps that describe

how Black Box Testing operates are as follows:

Step 1 Input The system's requirements and functional specifications are looked at. Source

code for application blocks and high-level design documentation are also looked at. The tester

selects valid input and discards invalid input.

Step 2 Processing Unit: Don't worry about how the system operates within. A processing unit tester

creates and runs test cases using the chosen input. In addition, the tester does internationalization testing,

load testing, stress testing, and security reviews. Defects will be rectified and retested if they are found.

Step 3 Output: Following all of the testing, the tester creates the final report and obtains the desired

output[6].

• Combining Structural and Functional Techniques

In addition, testing entails outlining appropriate inputs, running the software over the input, and

analyzing the results. The "Software Configuration" includes source code, design specifications,

requirements specifications, and more. The "Test Configuration" consists of testing tools, test

cases, and test plans and procedures. A testing technique outlines the approach taken in testing to

choose input test cases and analyze test outcomes, and it is based on the testing information flow.

A software system's quality can be revealed by a variety of methods, and testing methods fall into two

main categories: structural and functional.[1]

The software application or system being tested is viewed as a "black box" in functional testing.

The requirements or design specifications of the software item being tested determine which test

cases are used for functional testing. Expected results can include hand-calculated values, simulated

results, requirement/design specifications, and what are commonly referred to as test oracles. The

primary focus of functional testing is the software entity's external behavior. The software entity

is considered a "white box" in structural testing. The software entity's implementation determines

which test cases are chosen. Such test cases are chosen with the intention of triggering the

execution of particular locations inside the software entity, such as particular statements, program

branches, or pathways[6]. A set of coverage criteria is used to assess the anticipated outcomes.

Path coverage, branch coverage, and data-flow coverage are a few types of coverage criteria.

Structural testing draws attention to the software entity's internal organization.

 A Review of Techniques for Clarifying Black… Kirti Namdev et al. 2314

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

• Types of Black Box Testing

Figure 2. Types of Black Box Testing

1) Functionality testing : Testing each and every function of the software is called

functionality testing. It can be done using both manual and automation checks if each function is

working according to the requirement or not. When we test each and every component thoroughly

against requirement specification is called as functionality testing[8] (Figure 2).

2) Reliability testing: In reliability testing we check how good a software performs over time

or under special conditions. This helps test engineers to figure out bugs in the software (Table 2).

3) Exploratory testing: In this testing, test engineers explore a system without writing any specific

test cases this is called Exploratory testing. Some of the examples of exploratory testing are

Intentionally breaking the software, entering unexpected data, Exploring edge cases, etc.

4) Integration testing: Testing the data flow between the modules is called as integration

testing. If module A is able to send data and module B is able to receive the data, then integration

testing between modules A and B is passed[13].

5) System testing : System testing is end-to-end testing where the test environment is similar to

the production environment. Navigating through all the features and check the end feature is

working or not is called as end-to-end testing. When doing end-to-end testing we will not be

worrying about functionality testing and integration testing, because before we start end-to-end

testing, we have already done FT C IT[13].

6) Acceptance testing: It is end-to-end testing done by the engineers sitting at the customer’s

place wherein they consider real-time end-to-end business scenarios, and check whether

software is capable of handling it or not. Under business pressure software company must push

the software with lots of defects to avoid that the customer will do the acceptance testing. [1]

7) Usability testing: It is also known as yellow box testing, GUI and cosmetic testing. Testing the

user-friendliness of an application is called as usability testing. In this, we check whether the look or

2315 Kirti Namdev et al. A Review of Techniques for Clarifying Black...

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

feel of the application is good or not. We will check whether it is easy to understand or not. [14]

8) Performance testing: Testing the ability and response time of an application by applying

load is called performance testing. It is also known as Base line, Spike line and Bottleneck testing.

There are several performance testings tools like J- meter, Neo-load, Load Runner, etc. We have

different types of performance testing like Load testing, Stress testing, Volume testing, Soak

testing. [15]

9) Accessibility testing : In this type of testing, human examine a website to check if it has any

accessibility issues. This process takes up a lot of time and still testers are not able to catch the bugs.

Some of the major examples of accessibility testing are Keyboard navigation, Screen reader, Closed

captions, Motion sensitivities, etc. [16]

10) Smoke testing: Testing the basic or critical features of an application before we do thorough

testing is called as smoke testing. Here we will test only basic and criitical features. We will take

every basic feature and test only for 1 or 2 important scenarios. Here we should do only positive

testing. Smoke testing Is also known as Sanity testing, Dry run testing, Skim testing, Build verification

testing, Confident testing and Health check of the product. [17]

11) Adhoc testing: Testing the application randomly is called as Adhoc testing, where we don’t

refer to any kind of formal documents like test cases and test scenarios. It is also known as Negative

testing, out of box testing, Monkey testing and gorilla testing. Chances are their end user’s use the

software randomly and they might find defects, in order to avoid that we should do Adhoc testing.

There are different types of adhoc testing like Buddy testing, Pair testing, and monkey testing.[18]

Table 2. Types of testing

Technique Description Applicable Domains Purpose

Regression Testing

Verifies that changes or updates
have not adversely affected

existing functionalities.

Software Development,
IT Systems

Ensures system

reliability and

stability after

updates.

Load Testing

Assesses system

performance under

expected peak loads.

Web Applications, IT

Infrastructure

Ensures system can handle

anticipated user traffic or data load.

Penetration Testing

Simulates cyberattacks to
 identify

vulnerabilities in a

system.

Cybersecurity, IT Systems

Identifies potential security
weaknesses and ensures

compliance with

regulations.

Compliance Testing

Checks adherence to legal,
 regulatory, or

standards requirements.

Healthcare, Finance,
Manufacturing

Ensures alignment with
 industry

standards (e.g.,

GDPR, ISO,
HIPAA).

Performance Testing

Evaluates system

responsiveness, stability, and

scalability under

various conditions.

IT Systems,
Engineering, Networks

Optimizes system

efficiency and
identifies bottlenecks.

 A Review of Techniques for Clarifying Black… Kirti Namdev et al. 2316

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

12) Compatibility testing : Testing the functionality of an application in different hardware

and software environments is called as Compatibility testing. It is also known as configuration

testing or portability testing. Chances are that developers develop the software only for one platform.

Test engineer would test the software in the same platform. Once after the software is tested in the base

platform then only test engineer will test the software in different platform by doing compatibility

testing.[19]

• Black Box Testing Method

Analysis of Boundary Values-Because programmers frequently make mistakes on the boundary

of the input domain or equivalency classes, bugs tend to collect at boundaries and lurk in corners. This

means that more systems have a tendency to fail on boundaries. An approach of testing called

boundary value analysis focuses on additional information on testing at boundaries or the

selection of extreme boundary values. Maximum, minimum, slightly inside/outside borders,

usual values, and error values are examples of boundary values.[13]

Equivalency Partitioning-Equivalence partitioning is a black box testing technique that separates a

software unit's input data into data partitions from which test cases can be generated. It lowers the

quantity of test cases. When using equivalency class partitioning, an equivalence class is created from

the inputs for which the system's behavior is known or anticipated to be comparable. A collection of

states that are either valid or invalid for input conditions is represented by an equivalence class. An

input condition is usually a Boolean condition, a set of related values, an array of values, or a specific

numeric value. The next challenge is to choose the test cases appropriately after we have chosen

the equivalency classes for each input[1].

Fuzz testing is frequently used as a black box software testing technique that uses automated

or semi-automatic data injection with malformed or semi-malformed data to uncover

implementation issues. Fuzzing is also used to check software for security. There are two types

of fuzzing programs:

Mutation-based: these fuzzers create test data by altering an existing data sample.

Generation-based: Fuzzers that are based on models of input define new test data. Fuzzing can

also indicate which program component needs more care, such as through partial rewrites, code

audits, or the use of static analysis. Bugs like memory leaks and assertion failures are discovered

with fuzz testing. Two limitations of protocol fuzzing are that a protocol fuzzer replays and modifies

requests in real time by sending faked packets to the tested application[21].

4.2 All-Pair Testing

Test cases are created using the Black Box test design technique to run every possible discrete

combination of each pair of input parameters. It is necessary to test every pair of values in pairwise

testing[23]. We have a * b pair between each pair of parameters, as if there were "a" parameters with

"b" values. Having a set of test cases that cover every pair is the primary goal of pairwise testing. The

set of test cases will cover (p-1) + (p-2) + - - = p (p-1)/2 pairs since there are "p" parameters as is.

Pairwise testing is usually used in conjunction with other quality assurance methods like code

review, unit testing, and fuzz testing because no testing method can detect every flaw[24,25].

This is a recognized method for maintaining a fair number of test cases while validating a finite

number of parameters with a finite number of values[26,13].

2317 Kirti Namdev et al. A Review of Techniques for Clarifying Black...

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

4.3 White-Box Testing

The primary purpose of white box testing is to find logical mistakes in the software code. It is

employed for code debugging, identifying sporadic typos, and exposing false programming

presumptions[6]. White box testing is carried out on implementable code and low-level designs. In

particular, unit, system, and integration testing can be used at any stage of system development.

Other development artifacts, including as requirements analysis, design, and test cases, can benefit

from white box testing[1,16] (Figure 3).

Static white box testing is one of the white box testing approaches. Desk

inspection, code walkthrough, and formal inspections White box testing for structures are

Coverage and control flow testing, Basic path testing, Loop testing, Data flow testing. Static White

Box Testing: This type of testing is done before the code is run or finished and only includes the

product's source code, not the binaries or executable. Only specific individuals are involved in static

white box testing in order to identify code flaws. Static testing's primary goal is to verify that the code

complies with the functional requirements, design, coding standards, all covered functionalities, and

error handling. The main method of testing the code is desk checking. Before the code is compiled

or run, programmers will perform static checking. If an error is discovered, the author will review

it and fix it[15,16]. During this process, the code is compared to the requirements specification

or design to ensure that the designed code complies with client ad hoc requests. A team of

technical experts examines the code throughout this testing procedure, which is also referred to

as a technical code walkthrough. One kind of semi- formal review method is this one. High-level staff

members like technical leads, database administrators, and one or more peers participate in the

code walkthrough process. Participants in this technical code walkthrough ask the author questions

about the code, and the author responds by explaining the reasoning. If there are any errors in

the reasoning, the code is fixed right away. Inspection is a structured, effective, and cost- effective

way to identify mistakes in code and design. The goal of this official review is to find any errors,

infractions, or negative consequences. "A defect is an instance in which a requirement is not

satisfied," states M. E. Fagan. A systematic method for identifying flaws in the supplied source

code is the Fagan inspection procedure. [17,18]

• Types of White Box Testing

Figure 3. Types of White Box Testing

 A Review of Techniques for Clarifying Black… Kirti Namdev et al. 2318

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

a) Path testing :To make sure that every potential operational path is assessed in light of the

input conditions and the associated outputs the system generates, path testing entails

developing test cases. It is predicated on how the system responds to various input combinations

and the outputs that result, rather than delving into the internal workings (as in white-box

testing). Making ensuring the system manages all functional paths appropriately depending on

inputs, expected behavior, and outputs is the aim of path testing in black-box testing. From the

standpoint of the user, it assists in identifying unexpected behavior, edge cases, and path-related flaws,

guaranteeing that the program functions properly in a variety of situations. Test cases might be based

on user actions or system processes and are intended to cover many situations (or paths) across

the functionality of the program. These test cases, which aim to confirm that the system operates

as intended across several paths, are frequently developed from requirements, use cases, or user

stories. It helps guarantee that every important user path and flow has been extensively evaluated

from the viewpoint of the end user. can spot features that are missing, functional

problems, or unresolved edge cases that other testing methods might miss. enhances the user

experience by verifying that the system appropriately responds to various user inputs and

circumstances.

b) Conditional testing: In white-box testing, conditional testing is concerned

with evaluating the code's various conditions (such as if, else, switch, or any decision points) to

make sure the system responds appropriately to varied input scenarios. Verifying sure the software

follows the right paths through the program based on these conditional branches is the primary

objective. In particular, conditional testing focuses on code decision points where, under

specified circumstances, the execution flow may change. Usually, if, else, switch, and ternary

operators have these. Depending on whether the condition evaluates to true or false, each condition

may cause alternative code branches to be run. Test every branch and condition that could exist: Make

sure that every potential conditional outcome—true or false—is addressed. Identify decision-

making errors: Verify that all potential logical choices made by the code are handled correctly by

the software. Expand the coverage of code: To guarantee that no branch or condition is left untested,

make sure conditional logic is well covered.

c) Loop testing: The goal of loop testing, a subset of white-box testing, is to verify that a

program's loops such as the for, while, and do-while loops—function properly under various

circumstances. It is employed to confirm that loops manage any scenario that could arise,

including those in which the loop runs zero, once, or more times, as well as boundary conditions.

Make that loops run the right number of times in a variety of scenarios, including edge

situations, by verifying their execution. Verify that the loop functions properly when the input is

at or close to boundary values by testing the loop's boundaries (e.g., the loop should execute at

least once or not at all).Handle Infinite Loops: Look for any potential unwanted behavior or

infinite loops. Test Boundary Conditions: Examine edge cases, like loops with a maximum

iteration of one or zero. Verify Loop Termination: Look for circumstances in which the loop might

not end or could result in an endless loop. Verify Loop with Various Inputs: For loops that handle

lists or arrays, make that the loop operates appropriately with inputs of different sizes, including empty

and single-element inputs. Nested Loops: Examine every conceivable route through the code

for nested loops, experimenting with various input combinations that impact the inner and outer

loops. Code Path Coverage: Verify that every path—including break, continue, and exit

conditions—through the loop is checked. Catches Loop- Related Bugs: Assists in identifying

2319 Kirti Namdev et al. A Review of Techniques for Clarifying Black...

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

problems including off-by-one mistakes, infinite loops, erroneous bounds, and loop conditions.

Gets better Coverage of Code: makes certain that the code inside loops is extensively tested with

varying numbers of iterations. Verifies that loops function as intended for a range of input

circumstances, guaranteeing proper program logic and performance.

d) White box testing from memory point of view- From the perspective of memory, white- box

testing is concerned with verifying how the program handles memory-related functions

including allocation, deallocation, and utilization. This method guarantees that the application uses

memory effectively and avoids issues like memory corruption, leaks, or wasteful resource

usage. With white-box testing, the tester can specifically create test cases to look at how the

program uses memory, making sure that variables, data structures, and memory management

procedures are handled correctly because they have access to the internal code. Making sure the

software runs as efficiently as possible without incurring memory-related problems is the

primary goal. Memory Allocation: Confirm that the dynamic array's memory is allocated correctly

by the realloc function. Adding items to the array and making sure the RAM is appropriately resized

are two examples of test cases. Memory Deallocation: Use free(arr) to confirm that memory is

properly released at the conclusion. Ignoring this step could result in a memory leak. Boundary

Case: Make sure reallot functions as intended when the array is empty by testing with a starting array

size of 0.Buffer Overflow: Verify that the application manages array boundaries appropriately by

preventing memory accesses beyond the array size allotted. Memory Leak: After testing, make

sure memory is appropriately released after use by using programs like Valgrind. Valgrind: A

program for identifying incorrect memory access, memory corruption, and memory leaks Address

Sanitizer: A quick memory error detector that can identify use-after-free faults and out-of-

bounds accesses. Leak Sanitizer: A program made especially to find memory leaks in

applications .During debugging, GDB (GNU Debugger) is used to watch memory and pointer

values in order to detect inappropriate memory access or pointer-related problems. Manual

Memory Management: Manual memory management in programming languages such as C and

C++ can result in complicated and prone to errors code, making it difficult to monitor memory-

related problems. Subtle Memory Leaks: It might be challenging to identify subtle memory leaks

during routine test runs since they may not be noticeable until after extended execution. Dynamic

Behavior: Extensive testing is required because memory usage patterns can alter dynamically

based on input or system state. Multi-threaded Systems: It might be difficult to identify problems

like race situations or incorrect memory access when several threads share memory.

e) White box testing from performance point of view: From a performance perspective, white-

box testing is to make sure that a software program operates effectively in terms of response time and

resource utilization (such as CPU, memory, and disk space). This kind of testing involves looking at

how the system functions internally to make sure that any performance snags, inefficiencies, or

excessive resource usage have been found and fixed. By directly examining the performance

characteristics of the code, white-box testing enables testers to optimize algorithms, data

structures, and execution paths since it grants them access to the internal code. approach

Complexity: Because of the nested loops, the aforementioned approach has an O(n^2) time

complexity. To observe how performance deteriorates, a performance test should examine the

function using both small and large lists. Optimization: Swap it out for a sorting algorithm that is

more effective, like Quick Sort or Merge Sort, which have an O(n log n) time complexity.

Profiling: As the size of the input array increases, use a profiling tool to gauge how much CPU time

 A Review of Techniques for Clarifying Black… Kirti Namdev et al. 2320

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

the bubble sort method takes.

f) Benchmarking: To compare execution times for different input sizes, benchmark the

old and new sorting algorithms after the function has been optimized. Complexity of Large

Systems: It gets more difficult to identify performance problems at the code level as systems get

more complicated. Changes to various areas of the codebase may be necessary for

optimizations. Real-World circumstances: It can be challenging to test performance in real-world

circumstances, which may not always be recreated in a test environment. Examples of these

scenarios include network conditions, concurrent users, and big databases. Maintainability and

Performance: Sometimes, readability and maintainability must be sacrificed in order to optimize

code for performance. One of the main challenges is keeping performance and

understandability in balance(16).

5. TEST CASES

To verify a software application's usability, performance, functionality, and other features, test

cases are created. To determine whether an application feature acts as intended, a test case outlines

a particular scenario that includes the inputs, anticipated outcomes, and actions to be taken. Test cases

that are functional: These test cases verify that the product satisfies the requirements by validating

its essential functionality. Example: Confirming that a user can successfully log in using the right

login information. Test cases that aren't functional: Performance, usability, security, and other

non- functional needs are the main topics of these test cases. Example: Verifying whether a page

loads in less than two seconds or whether the program functions properly when loaded with a lot

of data. Test cases that are positive: These test cases examine how the program behaves in typical

or anticipated circumstances. Example: Verifying if a legitimate email address is accepted by

an email signup form. Test cases that are negative: The purpose of these test cases is to examine

how the system responds to unexpected or inaccurate inputs. Example: Examining how the system

on evaluating the input values' boundary conditions, which are frequently the values that determine

how the system behaves. Example: Examining how the system responds when a user types the

highest value permitted in a text field. Test cases for regression: To make sure the new modifications

don't adversely impact the functionality that already exists, these test cases are run following any

modifications (such as bug fixes or additions). Example: Confirming that the login process is

effective even after the addition of additional features. Examples of Smoke Tests: a simple

collection of test cases that are run to see if the application's main features are functioning. It is

frequently carried out following the deployment of a new build. Example: Confirming that basic

navigation functions and that the application launches. Examples of Sanity Tests: These are a

subset of regression tests that are used to confirm that a particular feature or bug repair functions

as intended without examining the full application. Example: Confirming the resolution of a fixed

issue, like a failed login. Test cases for integration: These test cases examine the interactions between

various system modules or components. Example: Verifying that the database and login module

communicate properly for user validation. Test cases for user interfaces (UI): These test cases verify

alignment, design, and user experience elements to make sure the user interface is operating as

intended. Example: Checking that all of the homepage's buttons, text fields, and links are accessible

and clickable. Test cases for user interfaces (UI): These test cases verify alignment, design, and

user experience elements to make sure the user interface is operating as intended. Example: Checking

2321 Kirti Namdev et al. A Review of Techniques for Clarifying Black...

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

that all of the homepage's buttons, text fields, and links are accessible and clickable. In manual testing,

test cases are essential for confirming a system's overall performance, usability, and usefulness.

They aid in making sure the program operates as intended and satisfies the project's

specifications. An effective test case should be simple to implement and monitor throughout

the testing process, with a well-defined set of processes, anticipated results, and pertinent data.

6. CURRENT TREND AND FUTURE DIRECTIONS

AI and ML are being utilized with increasing frequency in both black box and white box

testing. These technologies aid in defect prediction, test case generation automation, and test

execution optimization. While AI helps with code analysis and discovering vulnerabilities in

white box testing, it can also help replicate real-world usage scenarios in black box testing .A

major development in both types of testing is automation. Automation tools are used in black

box testing to rapidly run large numbers of tests, particularly for functional and regression

testing. Automated code analysis tools and continuous integration/continuous delivery

(CI/CD) pipelines are frequently utilized for white box testing. DevOps methods have been a

major factor in the growing popularity of the "shift left" testing methodology, which involves

testing earlier in the development cycle. Black box and white box testing are carried out

continuously throughout the development cycle with DevOps, providing quicker feedback

loops and early fault identification. Black box and white box testing are changing in order to

focus more on security testing as a result of the growing emphasis on cybersecurity. Through

ethical hacking and penetration testing, black box testing simulates the actions of malicious

attackers. Static and dynamic analysis tools are examples of white box testing tools that are

used to look for code vulnerabilities.

7. CONCLUSION

Both black box and white box testing methods were suggested in this research. A small number of

cases and examples are deemed outside the scope of this study; they are solely utilized to clearly

illustrate testing methods. Although we cover nearly every testing method associated with both black

box and white box in this study, there are a few restrictions. Our future effort will be to verify the

usability and utility of each technique from state-of-practice. We have not validated these

techniques from industrial perspectives; instead, we have only taken into consideration literature

view points, or state-of-art. I conclude that black box testing is a method of testing that concentrates on

the outputs produced in response to specific inputs and execution conditions while ignoring

the internal mechanism or structure of a system. Black box testing is used to assess if a system

satisfies predetermined functional requirements and yields the expected outcomes.

Equivalence portioning is one of the different ways to black box testing that I have discussed in

my work.[15] It separates the input data into data partitions from which test cases can be

generated. Analysis of boundary values: This method focuses more on testing at boundaries or

the locations where the most extreme boundary values are selected. Fuzzing: This technique is

used to test software for security issues as well as to identify implementation bugs. Cause-

effect graph: A relationship between the causes and effects is established, and a graph is generated.

Orthogonal array testing: This technique can be used to solve issues if the input domain is too big to

 A Review of Techniques for Clarifying Black… Kirti Namdev et al. 2322

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

provide thorough testing but still manageable. All pair testing: This type of testing involves creating

test cases that run every possible discrete combination of each input parameter pair. State transition

testing: test cases are created to carry out both legitimate and illegitimate state transitions.

References
1. Myers, G. J., Sandler, C., & Badgett, T. (2011). The Art of Software Testing. Wiley.

2. Pressman, R. S., & Maxim, B. R. (2014). Software Engineering: A Practitioner's Approach.

McGraw-Hill Education.

3. IEEE Standard for Software Verification and Validation. (2012). IEEE Std 1012-2012.

4. Kitchenham, B., & Charters, S. (2007). Guidelines for Performing Systematic Literature

Reviews in Software Engineering. Technical Report, EBSE.

5. Bertolino, A. (2007). Software Testing Research: Achievements, Challenges, Dreams. Future of

Software Engineering (FOSE '07), IEEE.

6. Ammann, P., & Offutt, J. (2016). Introduction to Software Testing. Cambridge University Press.

7. McGraw, G. (2004). Software Security: Building Security In. Addison-Wesley Professional.

8. Kaner, C., Falk, J., & Nguyen, H. Q. (1999). Testing Computer Software. Wiley.

9. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?": Explaining the

Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD '16), ACM.

10. Doshi-Velez, F., & Kim, B. (2017). Towards a Rigorous Science of Interpretable Machine

Learning. arXiv preprint arXiv:1702.08608.

11. Lipton, Z. C. (2018). The Mythos of Model Interpretability. Communications of the ACM,

61(10), 36–43.

12. Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions.

Advances in Neural Information Processing Systems (NeurIPS)

13. Beizer, B. (1995). Black-Box Testing: Techniques for Functional Testing of Software and

Systems. Wiley.

14. Nielsen, J. (1993). Usability Engineering. Academic Press.

15. Jain, R., & Chhabra, A. (2016). Performance Testing Guidance for Web Applications. Microsoft

Press.

16. Clark, J. (2006). Building Accessible Websites. New Riders.

17. McCaffrey, M. (2009). Software Testing: Essential Skills for First Time Testers. Cambridge

University Press.

18. Whittaker, J. A. (2009). Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to

Guide Test Design. Addison-Wesley.

19. Graham, D., Veenendaal, E., Evans, I., & Black, R. (2008). Foundations of Software Testing

ISTQB Certification. Cengage Learning.

20. Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute Force Vulnerability Discovery.

Addison-Wesley.

21. Takanen, A., DeMott, J., & Miller, C. (2008). Fuzzing for Software Security Testing and Quality

Assurance. Artech House.

22. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the

predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). ACM

23. Ostrand, T. J., & Balcer, M. J. (2005). The category-partition method for specifying and

generating functional tests. Software Testing, Verification & Reliability, 15(3), 129-153.

24. Hartman, D. (2013). Pairwise testing: The art of choosing the right test case combinations.

Software Testing, Verification & Reliability, 23(1), 1-13.

2323 Kirti Namdev et al. A Review of Techniques for Clarifying Black...

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

25. Kuhn, D. R., & Reilly, M. (2002). A practical guide to pairwise testing. Software Testing,

Verification & Reliability, 12(1), 1-15.

26. Myrick, J. A., & Zaychik, M. A. (2007). Pairwise Testing: A Comprehensive and Practical

Approach. IEEE Transactions on Software Engineering, 33(3), 3-10.

27. Black, R. (2004). Managing the Testing Process: Practical Tools and Techniques for Managing

Hardware and Software Testing. Wiley-Interscience.

28. Fagan, M. E. (1976). Design and code inspections to reduce errors in program development. IBM

Systems Journal, 15(3), 182-211.

29. Myers, G. J. (1979). The Art of Software Testing. Wiley.

30. Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold.

31. Kaner, C., Bach, J., & Pettichord, B. (2001). Testing Computer Software. Wiley.

32. Copeland, L. (2004). A Practitioner’s Guide to Software Test Design. Artech House.

33. Burnstein, I. (2003). Practical Software Testing: A Process-Oriented Approach. Springer.

34. R. S. (2014). Software Engineering: A Practitioner's Approach. McGraw-Hil

