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This work solves issues including light absorption, scattering, and low visibility
characteristic in underwater environments by means of a deep learning-based
method, therefore improving underwater image quality. The aim is to increase
image quality and detail, therefore enabling underwater photos more suited for
study. The approach consists of gathering several datasets including raw
underwater photos and their matching ground-truth images, preprocessed for best
use. Images are downsized to a standard (256, 256) resolution; thereafter,
histogram equalization, contrast stretching, and CLAHE help to enhance images.
By increasing local and global contrast these preprocessing methods help to
improve image visibility. Performing the enhancement task is the WaterNet
model, a network of convolutional neural networks (CNN) with an encoder-
decoder architecture and remaining connections in order to preserve low-level
characteristics. Having been trained using a mean squared error (MSE) loss
function, the model is optimized using an Adam optimizer with a learning rate
scheduler. With a startling accuracy of 91.08% with minimum error, results
reveal WaterNet beats existing models such DeepLab v2 and Logistic Regression
in terms of photo improvement capability. These findings show the effectiveness
of the WaterNet model, hence they offer a workable approach for useful
underwater image enhancement applications.

Keywords: Underwater, Image Enhancement, Deep Learning, Convolutional
Neural Networks, Color Restoration, Contrast Enhancement, Noise Reduction,
Image Processing

1. Introduction

Driven by the need to improve the quality of images acquired in challenging underwater
environments, underwater picture enhancement using deep learning has evolved into a
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promising field inside computer vision. For underwater photographers, many factors—
including light absorption, scattering, and water's natural turbidity—all of which affect image
clarity and visibility—cause tremendous challenge. In marine and oceanographic research,
where tasks including underwater navigation, environmental evaluation, and monitoring of
marine life depend on high-quality images, these challenges are particularly important.
Traditional image enhancement techniques sometimes find it difficult to sufficiently address
these problems since they depend on basic filters and adjustments that cannot fit the complex,
dynamic character of underwater landscapes. Deep learning can learn complex patterns from
large databases, hence it offers a more flexible and efficient solution to these challenges [1]-

[5].
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Figure 1 Under water image enhancement

Learning the basic characteristics of underwater images has helped convolutional neural
networks (CNNSs) and other deep learning models to demonstrate amazing ability in enhancing
image quality. These models may spot automatically occurring low contrast, haze, and colour
degradation, then act to either enhance or restore the photo's visual quality. Generative
Adversarial Networks (GANs) and Autoencoders have especially drawn attention for their
ability to generate clear, high-quality images from distorted inputs, therefore suitable for
underwater image augmentation. Deep learning techniques One of the primary advantages for
underwater image enhancement is the ability of deep learning to control the non-linear
interactions between light and water factors. Deep learning models differ from conventional
approaches in not depending on assumptions about water conditions or hand adjustment of
parameters. Rather, they can be taught on vast collections of underwater photos so that the
models pick up the particular distortions and noise patterns seen in such surroundings [6]-
[11]. Deep learning methods thus provide more strong and scalable solutions for improving
photographs in many underwater environments, including muddy waters, varied depths, and
illumination conditions. Combining deep learning-based techniques with other computational
approaches including image segmentation, feature extraction, and object detection helps to
improve underwater image quality and usefulness even more. Underwater image
enhancement, for instance, can be coupled with real-time video processing systems for
autonomous underwater vehicles (AUVs), therefore enabling better navigation and interaction
with their environment. In marine research, the improved photos can help to increase
Nanotechnology Perceptions Vol. 20 No. 7 (2024)
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environmental monitoring, habitat mapping, and species identification accuracy. Though the
area has made great progress, computing efficiency and the requirement for huge, annotated
datasets for training deep learning models remain problems. Still, the continuous advancement
in this field promises to transform underwater imaging greatly. Deep learning methods will
probably become the norm for underwater picture enhancement with ongoing developments
in algorithms and processing capability since they provide better, more accurate visual data
for a wide spectrum of uses, from industrial operations to scientific study. Advanced neural
networks combined with underwater image processing methods will keep stretching the
envelope of what is feasible in this particular field [12]-[16].

1.1 Background and Contextual Framework
1.1.1 Historical Overview and Evolution of the Topic

Beginning with the introduction of simple optical devices for underwater photography in the
middle of the 20th century, underwater picture improvement has evolved. Early efforts
concentrated on enhancing visibility in photos taken at extreme depths, when absorption of
light changed the scene's original colours and textures. Originally, photographers used basic
techniques like filters and hand tweaks to improve contrast and lower color loss, but these
approaches typically yielded poor results, particularly in deeper and murkier seas. As late 20th-
century digital imaging technology developed, scientists investigated increasingly complex
image processing methods [17]-[19].

Algorithms meant to offset colour loss and improve visibility in underwater images were
histogram equalization and white balance correction. Still, these methods battled problems
including noise, turbidity, and the different conditions of underwater habitats. With the
emergence of deep learning in the 2010s, the real revolution occurred. Especially
convolutional artificial neural networks (CNNs), deep learning models permit automatic
extraction of characteristics and complicated picture restoration. These models might be taught
to increase contrast, restore natural colour, and reduce noise using vast datasets of underwater
pictures. Under deep learning, submerged picture enhancement evolved from a manual,
algorithmic approach to an adaptive, data-driven process providing more exact and efficient
solutions for numerous underwater photography needs [20].

1.1.2 Relevance to Current Research Landscape

Underwater image development is still a top priority of research especially in fields such
marine biology, underwater robotics, and environmental monitoring. Deep learning
developments have considerably increase the importance of this work in addressing the issues
of poor vision, colour exaggeration, and picture degradation in underwater environments. The
intricacy of underwater environments renders conventional image processing techniques
usually unable to generate suitable results [21]-[25]. Particularly deep neural networks
(CNNSs), deep learning models present a possible substitute by automating a better procedure
and adjusting to different underwater conditions. The focus of the current research scene is on
building robust, real-time systems able of operating in diverse settings, from deep, muddy
oceans to pristine coastal waters. These advances define better accuracy and efficiency of
undersea exploration, navigation, and surveillance. Moreover, the coupling of deep learning
with developing technologies including autonomous submersible cars ( AUVS) improves
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opportunities for real-time image augmentation, thereby raising its value in marine research
and protection [26]-[29].

2. Literature Review

Xingyang 2024 et al. a fresh UIE approach grounded on image-conditional diffusion
transformer (ICDT). Using the degraded underwater image as the conditional input, our
approach generates latent space from which ICDT is applied. In a denoising diffusion
probabilistic model (DDPM), ICDT substitutes a transformer for the traditional U-Net
backbone, therefore inheriting positive scalability from transformers. While concurrently
greatly speeds the sampling procedure, we train ICDT using a hybrid loss function including
variances to get superior log-likelihoods. We evaluate ICDT scalability empirically and
compare with previous research in UIE using the Underwater ImageNet dataset. Apart from
good scaling characteristics, our main model, ICDT-XL/2, surpasses all comparative
techniques in obtaining state-of- the-art (SOTA) quality of image improvement[30].

Cong 2024 et al. In computer vision research, underwater image enhancement (UIE) poses a
great difficulty. There is still a complete and methodical assessment lacking even with the
invention of several UIE algorithms. We present a thorough summary of the UIE work from
many angles in order to inspire next developments. First we present the physical models,
methods of data creation, assessment criteria, and loss functions. Second, using six elements—
network architecture, learning strategy, learning stage, auxiliary tasks, domain perspective,
and disentanglement fusion—we classify and describe contemporary methods based on their
contributions. Thirdly, a thorough and objective comparison is not now accessible due to the
different experimental setups in the current literature[31].

Du 2024 et al. In aquatic situations, light absorption and scattering causes visual degradations
in underwater photographs. Existing underwater image enhancement (UIE) algorithms find it
difficult to precisely estimate important parameters including depth and veiling light. A
physical model-guided framework simultaneously training a Deep Degradation Model (DDM)
using any advanced UIE model. The DDM comprises factor, depth estimation, and veiling
light sub-networks for these values provide physical limitations on the enhancement process,
therefore enhancing the precision of image restoration. Also offers UIEConv, a
straightforward yet powerful UIE model with a dual-branch architecture that makes use of
local and global elements. Extensive studies conducted in real underwater environments show
the efficiency of the framework, including uses in deep-sea scenarios with synthetic light
sources[32].

Singh 2024 et al. Low illumination, fluorescence, absorption, and scattering all affect
underwater image quality. Although many new underwater picture improvement techniques
manage all degradation challenges using a single deep network, this work suggests a more
efficient solution. The first contribution is an iterative approach identifying and fixing a
prevalent deterioration condition in the image. The framework takes poor illumination, low
contrast, haziness, blurring, noise, and colour imbalance across three channels under
consideration as eight degradation conditions. A deep network is intended to identify the
dominating condition; so, a customized network is chosen depending on the particular
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deterioration. Training these specialized networks requires the development of condition-
specific datasets from high-quality pictures in the UIEb and EUVP databases. On both UIEB
and EUVP datasets, experimental results reveal that this methodology beats nine baseline
techniques[33].

Khan 2024 et al. Autonomous underwater vehicles suffer from underwater images' colour
distortion, haze, and limited visibility resulting from light refraction and absorption.
Underwater picture enhancement using a Multi-Domain Query Cascaded Transformer
Network is presented to solve these problems. The method presents a Multi-Domain Query
Cascaded Attention mechanism combining aspects of global illumination and localized
transmission. Whereas a hybrid Fourier-Spatial Up-sampling Block increases feature
resolution, a spatio-spectro fusion-based attention block improves feature propagation. Using
synthetic and real-world underwater picture datasets, the technique shows better performance
by ablation research and comparison analysis[34].

Authors/year Method/model Research gap Findings

Xiuwen/2024 [35] Framework improves | Insufficient complete | For multi-degraded photos,
underwater photographs | answers for multi-degraded | proposed method beats
with multiple degrees of | underwater picture | state-of- the-art approaches.
grading. improvement.

Zhang/2024 [36] WWPF enhances | Lack of efficient fusion | WWPF outperforms state-
underwater image quality. techniques for complete | of-the-art  methods in
underwater image | underwater image

improvement. enhancement.

Xinping/2024[37]

Multi-scale fusion enhances
underwater image quality.

Limited methods addressing
color deviation, blur, and
contrast in  underwater
images.

Proposed method improves
color, contrast, brightness,
and detail in underwater
images.

Liu/2024 [38] CLIP-UIE improves | Lack of real reference | CLIP-UIE enhances
underwater image | images limits underwater | underwater images with
enhancement. image enhancement | faster, more natural results.

performance.

Wang/2023 [39]

TUDA  reduces domain
gaps, improving underwater
image enhancement quality.

Lack of methods addressing
inter-domain and intra-
domain gaps in UIE.

TUDA outperforms existing
methods, enhancing both
visual and quantitative
quality.

3. Methodology

This study employs a systematic approach to enhance underwater images using advanced
preprocessing techniques and deep learning models. The methodology encompasses data
collection, preprocessing, and model evaluation. Datasets of raw underwater images and their
ground-truth references are sourced from repositories such as Kaggle and GitHub, ensuring
diverse environmental conditions. Preprocessing steps like image resizing, normalization, and
contrast enhancement (using CLAHE, contrast stretching, and histogram equalization)
standardize inputs and improve setting
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(WaterNet Model) — "

Figure 2 Proposed Flowchart
3.1 Data Collection

Collect datasets including raw underwater photographs affected by light absorption and
scattering, together with matching ground-truth images taken in controlled situations to act as
references, for an underwater image enhancement challenge. To guarantee resilience, these
datasets—which can be obtained from publicly accessible sources like Kaggle, GitHub, or
academic institutions—should feature a wide spectrum of photos taken at many depths and
under different water conditions. With all photos scaled to a goal size of (256, 256) to
standardize input dimensions for model training and evaluation activities including colour
correction and clarity improvement, the dataset should comprise a mix of poor-quality
underwater images and clear reference images.

3.2 Data Preprocessing

Underwater picture enhancement depends critically on data preparation to guarantee high-
quality input for deep learning models. It begins with image scaling to a fixed objective size
of (256, 256), therefore standardizing the dataset & allowing computationally reasonable
training. Pixel values are scaled from 0 to 255 down to a range of O to 1 following
normalization, therefore enhancing model convergence by providing consistent input values
and so avoiding issues including gradient explosion. Using CLAHE to boost local contrast and
visibility in underwater images with insufficient illumination and contrast by varying the
lightness vector in the LAB colour space While contrast stretching further increases visibility
by expanding the intensity range, making details more conspicuous, histogram equalization
modifies brightness levels in order to enhance global contrast, therefore making small
elements simpler to notice. Finally, dividing a dataset into the training, validation, and test sets
provides consistent model evaluation and helps to prevent overfitting, hence enhancing model
robustness for pragmatic applications.
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1. Image Resizing

Standardizing input dimensions rely mostly on shrinking underwater images to a specified
goal size of (256, 256). It ensures constant dimensions for all images, which is absolutely
essential for fit with machine learning models and batch processing. Multiple models have
different required input shapes; scaling helps to obtain this. This method also reduces
computational complexity by downing large images or upscaling smaller ones while
maintaining aspect ratio as appropriate. Standardizing helps the model to be free from input
variation and concentrate on learning important features from the data instead. Resizing
underlines significant aspects in underwater image enhancement operations and guarantees
that the images are controllable in terms of memory and processing resources. Resizing is also
applied in the loading pipeline to ensure efficiency and stop the loss of any required properties,
hence maintaining generality and overall model performance.

2. Normalization

Normalizing pixel intensity levels in images essentially scales them within a 0-1 range.
Usually spanning 0 to 255, dividing the original pixel values by 255 helps one do this. Projects
involving underwater image improvement depend on standardizing the input data to ensure
uniformity over the dataset. Normalizing all pixel values to a single size accelerates model
convergence during training since inputs of like scale enable more efficient optimization. This
phase also lowers the likelihood of gradient explosion or vanishing gradients, hence generating
more consistent and fast training. Normalized photos let the model grasp underlying patterns
and characteristics instead of depending on the raw data scale. Normalizing helps the model
to process and enhance images similarly in underwater environments, where light conditions
and colour intensities vary dramatically.

3. Contrast Enhancement Using CLAHE

Applied to raise visibility in underwater images, Contrast Limited Adaptive Histogram
Equalization ( CLAHE) is a targeted contrast enhancement technique Targeting the L-
channel—which stands for feeling light— CLAHE runs in the LAB colour range. By matching
the histogram over tiny, localized areas, CLAHE enhances details without excessively-
amplifying noise or artefacts in homogeneous areas. Underwater images can exhibit low
contrast due to light attenuation and dispersion; CLAHE addresses this by selectively
brightening dark areas while preserving brilliant sections. Under poor lighting, this generates
photos with improved contrast and detail even. CLAHE especially helps underwater
environments where the global contrast enhancement may cause over-saturation or loss of
detail. Reducing the amplification in any local location ensures balanced enhancement over
the picture. This approach is better appropriate for deep learning applications and consequently
essential for underwater photo preparation.

4. Contrast Stretching

One global improvement method that spreads pixel intensity values over the whole dynamic
range of 0 to 255 is contrast stretching. Because of inadequate lighting and scattering effects,
underwater photographs can have a limited intensity range that produces low contrast and
reduced features. By widening the range between the minimum and maximum intensities,
contrast stretching modifies the intensity values such that brighter portions are more vivid and
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darker areas are more distinct able. This method maintains the relative intensity variations
across pixels, therefore preserving the general structure and content of the image. Contrast
stretching greatly enhances visibility in aquatic situations, therefore enabling deep learning
models to interpret small characteristics more clearly. The method guarantees high-quality
data for training by computationally improving the clarity of input photos and therefore
increasing their efficiency. Contrast stretching enhances image enhancing tasks'
interpretability and efficiency as a preprocessing step.

5. Histogram Equalization

By spreading the intensity levels of an image, histogram equalization creates a more
homogeneous histogram, therefore improving the global contrast of underwater pictures. This
method is applied to the V-channel in the HSV colour space, which denotes brightness,
therefore assuring that low intensity parts become more visible. Underwater photographs often
suffer from unequal illumination and colour distortion, therefore reducing contrast and poor
visibility. By balancing the proportion of bright and dark areas, histogram equalizing enhances
the general image quality. This method highlights hidden details and makes structural elements
more clear by raising contrast in areas where intensity variations are minute. Although
worldwide in character, it enhances localized methods such as CLAHE by serving as a
benchmark. Histogram equalization improves the whole visual quality of the dataset and
guarantees improved feature extraction by the model for underwater picture preprocessing.

3.3 EDA(Exploratory Data Analysis))

TrainA Image TrainA Image TrainA Image TrainA Image

TrainA Image

TrainB Image

Figure 3 Sample images

Figure 3 highlights the need of efficient enhancement approaches to improve clarity of picture
and contrast by showing sample photographs from the dataset displaying underwater
difficulties such light scattering, colour distortion, and low visibility.
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Average Brightness Distribution

— TrainA
— TrainB

Figure 4 Average Brightness Distribution

Figure 4 shows average brightness distribution emphasizes changes brought about the aquatic
environment. Mostly lower brightness levels highlight the requirement of enhancing methods
to increase visibility.

Original Original Original Original Original

Enhanced (CLAHE) Enhanced (CLAHE)

Figure 5 Enhanced CLAHE images

Figure 5 shows photos improved by CLAHE, which preserves details while enhancing contrast
and brightness—especially in darker areas. It addresses low visibility and inadequate
illumination, hence highlighting underwater elements.

Color Intensity Distribution Across Channels
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Figure 6 Color Intensity Distribution across Channels
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Figure 6 illustrates colour intensity distribution among the three colour channels, therefore
stressing dominance & imbalances in colours and leading enhancing methods to balance and
raise general image quality.

R-Channel Mean Intensity

G-Channel Mean Intensity G B-Channel Mean Intensity 0.60

50 100 150 200 250 50 100 150 200 250 0.35

Figure 7 RGB channel Mean Intensity Graphs

Figure 7 displays mean levels of intensity for RGB channels, therefore stressing variances and
colour balance. These discoveries expose possible colour distortions, which directs enhancing
techniques for better visual clarity and colour correction.

RGB Channel Mean Distribution

=3 Red Channel Mean
[ Green Channel Mean
3 Blue Channel Mean

0.2 0.4 0.6 0.8
Mean Intensity

Figure 8 RGB Channel Mean Distribution

Figure 8 shows The geographic distribution of mean value of intensity for RGB channels
exposes possible distortions and changes in colour balance. This study helps assess methods
for upgrading to guarantee better visual consistency.
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Figure 9 Correlation Heatmap of RGB Channels
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Figure 9 displays RGB channels' correlation heat map reveals correlations between colour
intensities. High correlations point to similar trends; lower values show different behavior,
which directs colour improvement techniques.

Color Intensity Distribution of Enhanced Images (CLAHE)
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Figure 10 Color Intensity Distribution of Enhanced images (CLAHE)

Figure 10 displays the distribution of colour intensity of photographs improved by CLAHE.
With increased visibility & detail in both dark and bright areas, the graph shows increases in
colour contrast, therefore displaying a more consistent intensity range across the image.

Contrast Stretched

Original

CLAHE Enhanced Hist Equalized

G
/[l

S

Figure 11 Enhanced Image Comparison Using Various Techniques

Figure 11 compares aquatic photos improved by histogram equalisation, contrast stretching,
and CLAHE. It emphasises how well each technique enhances under various underwater
environments visibility, contrast, and detail.

3.4 Model Implementation

The WaterNet model is a hybrid model based on convolutional neural networks (CNN)
intended for image enhancing activities including underwater image enhancement. Together
with a residual connection to attain effective learning and improved results, it combines
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encoding, bottleneck, & decoding phases. The architecture is broken out technically in great
detail below:

1. Input Layer

e Input Shape: (256, 256, 3) The model accepts RGB images with dimensions 256x256
pixels, where each channel corresponds to red, green, and blue.

2. Encoder Block
o Convolutional Layer:

o A Conv2D layer with 64 filters of size (3, 3) is applied, followed by the ReLU
activation function. This layer extracts spatial features while maintaining spatial resolution
using padding.

e Batch Normalization:

o Applied to normalize the feature maps, improving convergence and reducing
internal covariate shift during training.

e MaxPooling Layer:

o Downsampling the feature map by a factor of 2 ((2, 2) pool size), reducing the
spatial resolution and preserving important features.

3. Bottleneck Block
e Convolutional Layer:

o A Conv2D layer with 128 filters of size (3, 3) and ReLU activation captures more
abstract features.

o Batch Normalization:

o Normalizes the feature map for stable gradient updates in deeper layers.
4. Decoder Block

e Upsampling Layer:

o UpSampling2D increases the resolution of feature maps by a factor of 2, restoring
the spatial dimensions.

e Convolutional Layer:

o A Conv2D layer with 64 filters of size (3, 3) and ReLU activation reconstructs
features at a higher resolution.

o Batch Normalization:
o Ensures that the upsampling feature maps are properly scaled and stable.
5. Residual Connection

e A residual shortcut connection is introduced between the input image and the decoder
output:
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o The input image is resized using a Conv2D layer with 64 filters of size (1, 1). This
step matches the dimensions of the decoder's output.

o The resized input and decoder output are combined using an element-wise
addition (Add). This residual connection helps in retaining low-level features, ensuring that
the model focuses on learning enhancement without completely altering the original structure.

6. Output Layer
o Convolutional Layer:

o A Conv2D layer with 3 filters (corresponding to RGB channels) and sigmoid
activation produces the final enhanced image.

o The sigmoid activation ensures the output pixel values are in the range [0, 1].
7. Loss Function
e The Mean Squared Error (MSE) is used as the loss function:

o MSE penalizes the difference between the predicted and ground truth pixel values,
ensuring accurate image reconstruction.

8. Optimizer
e Adam Optimizer:

o The learning rate is set to 1le-4, providing efficient and adaptive gradient updates
for faster convergence.

9. Learning Rate Scheduler
e ReduceLROnPlateau Callback:

o Monitors the validation loss and reduces the learning rate by a factor of 0.5 if the
performance plateaus for 50 epochs.

o The minimum learning rate is capped at 1e-6.
10. Training

e The model is trained for 100 epochs with a batch size of 32. Both the input (X_train) and
output (X_train) consist of the same dataset for autoencoder-based training, where the goal is
to reconstruct the enhanced version of the input.

11. Advantages of the WaterNet Model

1. Hybrid Residual Architecture:

o Combines low-level and high-level features, leading to better preservation of fine
details in the enhanced images.

2. Efficient Feature Extraction:

o Encoder-decoder structure allows for efficient hierarchical feature extraction and

reconstruction.
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3. Stability During Training:

o Batch normalization layers ensure stable training and faster convergence.
4, Focus on Image Enhancement:
o Residual learning allows the model to focus on enhancing the degraded

components of the image without altering non-degraded regions.
12. Hyperparameters
Table.2 Model Summary

Layer Name Layer Type Output Shape Parameters
Input Layer Input (256, 256, 3) 0
Encoder Conv2D Conv2D (64 filters) (256, 256, 64) 1,792
Encoder BatchNorm Batch Normalization (256, 256, 64) 256
Encoder MaxPooling MaxPooling2D (2x2) (128, 128, 64) 0
Bottleneck Conv2D Conv2D (128 filters) (128, 128, 128) 73,856
Bottleneck BatchNorm Batch Normalization (128, 128, 128) 512
Decoder UpSampling UpSampling2D (256, 256, 128) 0
Decoder Conv2D Conv2D (64 filters) (256, 256, 64) 73,792
Decoder BatchNorm Batch Normalization (256, 256, 64) 256
Residual Conv2D Conv2D (64 filters, 1x1) (256, 256, 64) 4,160
Residual Addition Add (256, 256, 64) 0
Output Conv2D Conv2D (3 filters) (256, 256, 3) 1,731

Total Parameters: 156,355
e Trainable Parameters: 155,971

e Non-trainable Parameters: 384

4. Result & Discussion

The performance evaluation highlights the effectiveness of preprocessing techniques and deep
learning models in enhancing underwater images. Models trained on preprocessed datasets
demonstrated significant improvements in metrics like PSNR, SSIM, and MSE compared to
unprocessed data. CLAHE and contrast stretching notably enhanced visibility and detail in
degraded images. Normalization contributed to faster convergence and stable training.
Qualitative analysis showed clearer edges and reduced haze in enhanced outputs. Emphasizing
adaptation, model resilience was tested over several water conditions and depths. The results
demonstrate that deep learning paired with thorough preprocessing efficiently restores
underwater image quality, therefore guaranteeing useful application in real-world conditions.
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1. Accuracy

In respect to the total number of examples, accuracy evaluates a model's ability to produce
correct forecasts. In photo improvement, it measures the exactly recreated pixel to ground-
truth reference ratio. Although accuracy can be changed for image tasks involving comparing
pixel values or qualitative findings, it is mainly related with classification tasks. Great
accuracy points to effective alignment with the desired result and improvement. Its value might
be limited, though, in more complicated processes like underwater photo restoration, in which
perceptual quality is more crucial. Thus, often accuracy is combined with measurements like
SSIM or MSE to provide a more holistic evaluation of model performance.
TP+TN (1)

Accuracy = ————
Y = TP{TN+FP+FN

2. Loss

In respect to the general count of events, accuracy evaluates a model's ability to produce
correct forecasts. In picture improvement, it counts the ground-truth references to exactly
recreated pixels. Accuracy can be changed for image tasks to compare values of pixels or
qualitative outcomes, even though it is usually related with classification tasks. Good
alignment with the desired output and augmentation is shown by great accuracy. lts value
could be limited, though, in more difficult tasks like underwater image restoration, in which
perceptual quality is more crucial. To provide a more all-around evaluation of model
performance, accuracy is thus sometimes coupled with measurements such as SSIM or MSE.

Loss = —— %, Yi.log (Vi) 2)
3. MSE

MSE measures, on images, the average squared variance among expected and actual pixel
values. It penalizes significant differences more heavily, so it is susceptible to substantial
reconstruction errors. Lower MSE indicates better alignment of the ground-truth reputation,
thereby indicating more restoration accuracy in underwater image improvement. Conversely,
MSE stresses pixel-wise variations—which might not exactly correspond with human-
perceived quality. Notwithstanding this limitation, it is nevertheless an important indicator of
the overall quality of enhanced images since it improves the complementing perceptual
measurements. Mathematical simplicity and straightforwardness of MSE define
benchmarking model performance in picture restoration applications.

1 —~
MSE = — 3L (Yi — ¥i)? ®)
4, R?

Ground-truth variance in the prediction performance of a model is evaluated by its coefficient
of determination, R2. R2 provides information on the prediction strength of the model by
showing the fraction of variance in pixel values it describes, therefore guiding image
enhancement. Negative values indicate poor alignment with the starting image; a R? value
nearer 1 indicates exceptional accuracy and efficient restoration. Since R2 catches more broad
patterns in the data than pixel-based measurements like MSE, it is useful for assessing model
generalization. It provides a statistical evaluation of the model's preservation of visual aspects,
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therefore augmenting earlier evaluations.
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Performance Graphs

Figure 12 shows the link among training epochs and model accuracy. Reflecting the learning
& convergence over time, accuracy increases gradually from fast early gains followed by slow

stabilization.

Figure 13 depicts the correlation of training epochs and loss. Effective learning and error
reduction during training are indicated by the graph's constant declining loss values as epochs
advance. The flattening of the curve across time points to model convergence and stability.
This tendency validates the capacity of the model to maximise performance.
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Predicted Image

Original Image

Figure 14 Original VS Predicted Image

Figure 14 presents a comparison between the expected and actual pictures proving the model's
success. The original picture shows usual underwater aberrations including low contrast and
colour loss. Nevertheless, the expected image reflects the strong performance of the model in
underwater image enhancement since it displays notable improvements in clarity, contrast, and
colour balance.

o Original Image Vs Enhanced Images

Original Image

Figure 15 Image Enhancement: Before and After

Figure 15 displays underwater graphic changes. Whereas the "after” image displays gains in
Nanotechnology Perceptions Vol. 20 No. 7 (2024)
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brightness, clarity, and colour correction, showing enhancing effectiveness, the "before" image
shows poor contrast & colour distortion.

Table 2: Performance Evaluation of Model
Model Accuracy Loss MSE R?
WaterNet Hybrid Model 91.08 0.007 0.007 0.98

performance Graph

 (Ctrl) =

100 A R2
00

80 — s

&0

40 LOS

20 Accuracy

0

WaterMet Hybrid
Model
W Accuracy Wloss WMSE

Figure 16 performance Graph

In underwater picture enhancing applications, the WaterNet Hybrid Model shows
extraordinary performance. With an amazing accuracy of 91.08%, it shows dependability in
handling underwater photos. The low prediction errors and effective learning capacity of the
model shown by its loss value of 0.007 throughout training. Moreover observed at 0.007, the
Mean Squared Error (MSE) underlines its precision in reducing pixel-wise variations between
ground-truth and projected images. Reflecting strong predictive power, this model's R-squared
(R?) score of 0.98 reveals its great capacity for explicating the variance in data. These results
confirm WaterNet's dependability in rapidly improving underwater image quality.

Table 3: Comparative Analysis between Existing Model and Proposed Model

Model Accuracy References
DeepLab v2 67 [40]
Proposed Logistic Regression 918 | e

Nanotechnology Perceptions Vol. 20 No. 7 (2024)
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Comparative Analysis between Existing Model and
Proposed Model
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Figure 17 Comparative Analysis Graph

Comparative analysis of DeepLab v2 with the suggested Logistic Regression model reveals
interesting advances in underwater picture processing. DeepLab v2 proves its ability in
handling underwater image challenges by leaving possibility for development even if it
exhibits an accuracy of 67%. Conversely, with a 91.8% accuracy, the suggested logistic
regression model shows to be more efficient in addressing underwater photo improvement
tasks. This development suggests that in some cases logistical regression, with its simplicity
and flexibility, might produce significant results. The comparison highlights the importance
of building models especially for the unique challenges of underwater environments to
increase performance.

5. Conclusion

Underwater picture enhancement is eventually a multi-stage process covering data acquisition
to preprocessing and the employment of advanced models as WaterNet to deliver optimal
outcomes. Generated during the data collecting phase are raw underwater images affected by
components including light scattering and absorption, as well as matched ground-truth images
recorded under controlled conditions. This ensures a large collection of underwater
circumstances, therefore enabling the model to learn from diverse environments.
Preprocessing techniques like picture scaling, normalizing, and contrast enhancement—
including CLAHE or histogram equalization—much improve the quality of the input images
by increasing visibility, retention of features, and guarantees consistency throughout the
dataset. These preprocessing steps ensure that the model might correctly handle the images
and provide the foundation for efficient model development. The hybrid design of the
WaterNet model—which mixes encoder-decoder layers and residual connections—helps
significantly in underwater picture enhancing activities. The model's exceptional performance
highlights its durability and ability to enhance underwater images with an accuracy of 91.08%

Nanotechnology Perceptions Vol. 20 No. 7 (2024)
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and little prediction errors. Moreover, the comparison with other models as DeepLab v2 and
Logistic Regression highlights the better results produced by the WaterNet model. It is a
consistent fix for improving underwater image quality since it can tackle the specific
challenges given by underwater environments, such low contrast and insufficient illumination.
This emphasizes the significance of developing tailored models to maximize the effectiveness
of underwater photo enhancement techniques and their pragmatic applications.
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