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This work solves issues including light absorption, scattering, and low visibility 

characteristic in underwater environments by means of a deep learning-based 

method, therefore improving underwater image quality. The aim is to increase 

image quality and detail, therefore enabling underwater photos more suited for 

study. The approach consists of gathering several datasets including raw 

underwater photos and their matching ground-truth images, preprocessed for best 

use. Images are downsized to a standard (256, 256) resolution; thereafter, 

histogram equalization, contrast stretching, and CLAHE help to enhance images. 

By increasing local and global contrast these preprocessing methods help to 

improve image visibility. Performing the enhancement task is the WaterNet 

model, a network of convolutional neural networks (CNN) with an encoder-

decoder architecture and remaining connections in order to preserve low-level 

characteristics. Having been trained using a mean squared error (MSE) loss 

function, the model is optimized using an Adam optimizer with a learning rate 

scheduler. With a startling accuracy of 91.08% with minimum error, results 

reveal WaterNet beats existing models such DeepLab v2 and Logistic Regression 

in terms of photo improvement capability. These findings show the effectiveness 

of the WaterNet model, hence they offer a workable approach for useful 

underwater image enhancement applications. 

Keywords: Underwater, Image Enhancement, Deep Learning, Convolutional 

Neural Networks, Color Restoration, Contrast Enhancement, Noise Reduction, 

Image Processing 

 

 

1. Introduction 

Driven by the need to improve the quality of images acquired in challenging underwater 

environments, underwater picture enhancement using deep learning has evolved into a 
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promising field inside computer vision. For underwater photographers, many factors—

including light absorption, scattering, and water's natural turbidity—all of which affect image 

clarity and visibility—cause tremendous challenge. In marine and oceanographic research, 

where tasks including underwater navigation, environmental evaluation, and monitoring of 

marine life depend on high-quality images, these challenges are particularly important. 

Traditional image enhancement techniques sometimes find it difficult to sufficiently address 

these problems since they depend on basic filters and adjustments that cannot fit the complex, 

dynamic character of underwater landscapes. Deep learning can learn complex patterns from 

large databases, hence it offers a more flexible and efficient solution to these challenges [1]–

[5].  

 

Figure 1 Under water image enhancement 

Learning the basic characteristics of underwater images has helped convolutional neural 

networks (CNNs) and other deep learning models to demonstrate amazing ability in enhancing 

image quality. These models may spot automatically occurring low contrast, haze, and colour 

degradation, then act to either enhance or restore the photo's visual quality. Generative 

Adversarial Networks (GANs) and Autoencoders have especially drawn attention for their 

ability to generate clear, high-quality images from distorted inputs, therefore suitable for 

underwater image augmentation. Deep learning techniques One of the primary advantages for 

underwater image enhancement is the ability of deep learning to control the non-linear 

interactions between light and water factors. Deep learning models differ from conventional 

approaches in not depending on assumptions about water conditions or hand adjustment of 

parameters. Rather, they can be taught on vast collections of underwater photos so that the 

models pick up the particular distortions and noise patterns seen in such surroundings [6]–

[11]. Deep learning methods thus provide more strong and scalable solutions for improving 

photographs in many underwater environments, including muddy waters, varied depths, and 

illumination conditions. Combining deep learning-based techniques with other computational 

approaches including image segmentation, feature extraction, and object detection helps to 

improve underwater image quality and usefulness even more. Underwater image 

enhancement, for instance, can be coupled with real-time video processing systems for 

autonomous underwater vehicles (AUVs), therefore enabling better navigation and interaction 

with their environment. In marine research, the improved photos can help to increase 
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environmental monitoring, habitat mapping, and species identification accuracy. Though the 

area has made great progress, computing efficiency and the requirement for huge, annotated 

datasets for training deep learning models remain problems. Still, the continuous advancement 

in this field promises to transform underwater imaging greatly. Deep learning methods will 

probably become the norm for underwater picture enhancement with ongoing developments 

in algorithms and processing capability since they provide better, more accurate visual data 

for a wide spectrum of uses, from industrial operations to scientific study. Advanced neural 

networks combined with underwater image processing methods will keep stretching the 

envelope of what is feasible in this particular field [12]–[16]. 

1.1 Background and Contextual Framework 

1.1.1 Historical Overview and Evolution of the Topic 

Beginning with the introduction of simple optical devices for underwater photography in the 

middle of the 20th century, underwater picture improvement has evolved. Early efforts 

concentrated on enhancing visibility in photos taken at extreme depths, when absorption of 

light changed the scene's original colours and textures. Originally, photographers used basic 

techniques like filters and hand tweaks to improve contrast and lower color loss, but these 

approaches typically yielded poor results, particularly in deeper and murkier seas. As late 20th-

century digital imaging technology developed, scientists investigated increasingly complex 

image processing methods [17]–[19].  

Algorithms meant to offset colour loss and improve visibility in underwater images were 

histogram equalization and white balance correction. Still, these methods battled problems 

including noise, turbidity, and the different conditions of underwater habitats. With the 

emergence of deep learning in the 2010s, the real revolution occurred. Especially 

convolutional artificial neural networks (CNNs), deep learning models permit automatic 

extraction of characteristics and complicated picture restoration. These models might be taught 

to increase contrast, restore natural colour, and reduce noise using vast datasets of underwater 

pictures. Under deep learning, submerged picture enhancement evolved from a manual, 

algorithmic approach to an adaptive, data-driven process providing more exact and efficient 

solutions for numerous underwater photography needs [20]. 

1.1.2 Relevance to Current Research Landscape 

Underwater image development is still a top priority of research especially in fields such 

marine biology, underwater robotics, and environmental monitoring. Deep learning 

developments have considerably increase the importance of this work in addressing the issues 

of poor vision, colour exaggeration, and picture degradation in underwater environments. The 

intricacy of underwater environments renders conventional image processing techniques 

usually unable to generate suitable results [21]–[25]. Particularly deep neural networks 

(CNNs), deep learning models present a possible substitute by automating a better procedure 

and adjusting to different underwater conditions. The focus of the current research scene is on 

building robust, real-time systems able of operating in diverse settings, from deep, muddy 

oceans to pristine coastal waters. These advances define better accuracy and efficiency of 

undersea exploration, navigation, and surveillance. Moreover, the coupling of deep learning 

with developing technologies including autonomous submersible cars ( AUVs) improves 
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opportunities for real-time image augmentation, thereby raising its value in marine research 

and protection [26]–[29]. 

 

2. Literature Review  

Xingyang 2024 et al. a fresh UIE approach grounded on image-conditional diffusion 

transformer (ICDT). Using the degraded underwater image as the conditional input, our 

approach generates latent space from which ICDT is applied. In a denoising diffusion 

probabilistic model (DDPM), ICDT substitutes a transformer for the traditional U-Net 

backbone, therefore inheriting positive scalability from transformers. While concurrently 

greatly speeds the sampling procedure, we train ICDT using a hybrid loss function including 

variances to get superior log-likelihoods. We evaluate ICDT scalability empirically and 

compare with previous research in UIE using the Underwater ImageNet dataset. Apart from 

good scaling characteristics, our main model, ICDT-XL/2, surpasses all comparative 

techniques in obtaining state-of- the-art (SOTA) quality of image improvement[30]. 

Cong 2024 et al. In computer vision research, underwater image enhancement (UIE) poses a 

great difficulty. There is still a complete and methodical assessment lacking even with the 

invention of several UIE algorithms. We present a thorough summary of the UIE work from 

many angles in order to inspire next developments. First we present the physical models, 

methods of data creation, assessment criteria, and loss functions. Second, using six elements—

network architecture, learning strategy, learning stage, auxiliary tasks, domain perspective, 

and disentanglement fusion—we classify and describe contemporary methods based on their 

contributions. Thirdly, a thorough and objective comparison is not now accessible due to the 

different experimental setups in the current literature[31]. 

Du 2024 et al. In aquatic situations, light absorption and scattering causes visual degradations 

in underwater photographs. Existing underwater image enhancement (UIE) algorithms find it 

difficult to precisely estimate important parameters including depth and veiling light. A 

physical model-guided framework simultaneously training a Deep Degradation Model (DDM) 

using any advanced UIE model. The DDM comprises factor, depth estimation, and veiling 

light sub-networks for these values provide physical limitations on the enhancement process, 

therefore enhancing the precision of image restoration. Also offers UIEConv, a 

straightforward yet powerful UIE model with a dual-branch architecture that makes use of 

local and global elements. Extensive studies conducted in real underwater environments show 

the efficiency of the framework, including uses in deep-sea scenarios with synthetic light 

sources[32]. 

Singh 2024 et al. Low illumination, fluorescence, absorption, and scattering all affect 

underwater image quality. Although many new underwater picture improvement techniques 

manage all degradation challenges using a single deep network, this work suggests a more 

efficient solution. The first contribution is an iterative approach identifying and fixing a 

prevalent deterioration condition in the image. The framework takes poor illumination, low 

contrast, haziness, blurring, noise, and colour imbalance across three channels under 

consideration as eight degradation conditions. A deep network is intended to identify the 

dominating condition; so, a customized network is chosen depending on the particular 
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deterioration. Training these specialized networks requires the development of condition-

specific datasets from high-quality pictures in the UIEb and EUVP databases. On both UIEB 

and EUVP datasets, experimental results reveal that this methodology beats nine baseline 

techniques[33]. 

Khan 2024 et al. Autonomous underwater vehicles suffer from underwater images' colour 

distortion, haze, and limited visibility resulting from light refraction and absorption. 

Underwater picture enhancement using a Multi-Domain Query Cascaded Transformer 

Network is presented to solve these problems. The method presents a Multi-Domain Query 

Cascaded Attention mechanism combining aspects of global illumination and localized 

transmission. Whereas a hybrid Fourier-Spatial Up-sampling Block increases feature 

resolution, a spatio-spectro fusion-based attention block improves feature propagation. Using 

synthetic and real-world underwater picture datasets, the technique shows better performance 

by ablation research and comparison analysis[34]. 

Authors/year Method/model Research gap Findings 

Xiuwen/2024 [35] Framework improves 

underwater photographs 
with multiple degrees of 

grading. 

 

Insufficient complete 

answers for multi-degraded 
underwater picture 

improvement. 

For multi-degraded photos, 

proposed method beats 
state-of- the-art approaches. 

 

Zhang/2024 [36] WWPF enhances 

underwater image quality. 

Lack of efficient fusion 

techniques for complete 

underwater image 

improvement. 

WWPF outperforms state-

of-the-art methods in 

underwater image 

enhancement. 

Xinping/2024[37] Multi-scale fusion enhances 

underwater image quality. 

Limited methods addressing 

color deviation, blur, and 

contrast in underwater 
images. 

Proposed method improves 

color, contrast, brightness, 

and detail in underwater 
images. 

Liu/2024 [38] CLIP-UIE improves 

underwater image 

enhancement. 

Lack of real reference 

images limits underwater 

image enhancement 
performance. 

CLIP-UIE enhances 

underwater images with 

faster, more natural results. 

Wang/2023 [39] TUDA reduces domain 

gaps, improving underwater 
image enhancement quality. 

Lack of methods addressing 

inter-domain and intra-
domain gaps in UIE. 

TUDA outperforms existing 

methods, enhancing both 
visual and quantitative 

quality. 

 

 

3. Methodology 

This study employs a systematic approach to enhance underwater images using advanced 

preprocessing techniques and deep learning models. The methodology encompasses data 

collection, preprocessing, and model evaluation. Datasets of raw underwater images and their 

ground-truth references are sourced from repositories such as Kaggle and GitHub, ensuring 

diverse environmental conditions. Preprocessing steps like image resizing, normalization, and 

contrast enhancement (using CLAHE, contrast stretching, and histogram equalization) 

standardize inputs and improve setting 
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Figure 2 Proposed Flowchart 

3.1 Data Collection  

Collect datasets including raw underwater photographs affected by light absorption and 

scattering, together with matching ground-truth images taken in controlled situations to act as 

references, for an underwater image enhancement challenge. To guarantee resilience, these 

datasets—which can be obtained from publicly accessible sources like Kaggle, GitHub, or 

academic institutions—should feature a wide spectrum of photos taken at many depths and 

under different water conditions. With all photos scaled to a goal size of (256, 256) to 

standardize input dimensions for model training and evaluation activities including colour 

correction and clarity improvement, the dataset should comprise a mix of poor-quality 

underwater images and clear reference images. 

3.2 Data Preprocessing 

Underwater picture enhancement depends critically on data preparation to guarantee high-

quality input for deep learning models. It begins with image scaling to a fixed objective size 

of (256, 256), therefore standardizing the dataset & allowing computationally reasonable 

training. Pixel values are scaled from 0 to 255 down to a range of 0 to 1 following 

normalization, therefore enhancing model convergence by providing consistent input values 

and so avoiding issues including gradient explosion. Using CLAHE to boost local contrast and 

visibility in underwater images with insufficient illumination and contrast by varying the 

lightness vector in the LAB colour space While contrast stretching further increases visibility 

by expanding the intensity range, making details more conspicuous, histogram equalization 

modifies brightness levels in order to enhance global contrast, therefore making small 

elements simpler to notice. Finally, dividing a dataset into the training, validation, and test sets 

provides consistent model evaluation and helps to prevent overfitting, hence enhancing model 

robustness for pragmatic applications. 
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1. Image Resizing 

Standardizing input dimensions rely mostly on shrinking underwater images to a specified 

goal size of (256, 256). It ensures constant dimensions for all images, which is absolutely 

essential for fit with machine learning models and batch processing. Multiple models have 

different required input shapes; scaling helps to obtain this. This method also reduces 

computational complexity by downing large images or upscaling smaller ones while 

maintaining aspect ratio as appropriate. Standardizing helps the model to be free from input 

variation and concentrate on learning important features from the data instead. Resizing 

underlines significant aspects in underwater image enhancement operations and guarantees 

that the images are controllable in terms of memory and processing resources. Resizing is also 

applied in the loading pipeline to ensure efficiency and stop the loss of any required properties, 

hence maintaining generality and overall model performance. 

2. Normalization 

Normalizing pixel intensity levels in images essentially scales them within a 0–1 range. 

Usually spanning 0 to 255, dividing the original pixel values by 255 helps one do this. Projects 

involving underwater image improvement depend on standardizing the input data to ensure 

uniformity over the dataset. Normalizing all pixel values to a single size accelerates model 

convergence during training since inputs of like scale enable more efficient optimization. This 

phase also lowers the likelihood of gradient explosion or vanishing gradients, hence generating 

more consistent and fast training. Normalized photos let the model grasp underlying patterns 

and characteristics instead of depending on the raw data scale. Normalizing helps the model 

to process and enhance images similarly in underwater environments, where light conditions 

and colour intensities vary dramatically. 

    3. Contrast Enhancement Using CLAHE 

Applied to raise visibility in underwater images, Contrast Limited Adaptive Histogram 

Equalization ( CLAHE) is a targeted contrast enhancement technique Targeting the L-

channel—which stands for feeling light— CLAHE runs in the LAB colour range. By matching 

the histogram over tiny, localized areas, CLAHE enhances details without excessively-

amplifying noise or artefacts in homogeneous areas. Underwater images can exhibit low 

contrast due to light attenuation and dispersion; CLAHE addresses this by selectively 

brightening dark areas while preserving brilliant sections. Under poor lighting, this generates 

photos with improved contrast and detail even. CLAHE especially helps underwater 

environments where the global contrast enhancement may cause over-saturation or loss of 

detail. Reducing the amplification in any local location ensures balanced enhancement over 

the picture. This approach is better appropriate for deep learning applications and consequently 

essential for underwater photo preparation. 

    4. Contrast Stretching 

One global improvement method that spreads pixel intensity values over the whole dynamic 

range of 0 to 255 is contrast stretching. Because of inadequate lighting and scattering effects, 

underwater photographs can have a limited intensity range that produces low contrast and 

reduced features. By widening the range between the minimum and maximum intensities, 

contrast stretching modifies the intensity values such that brighter portions are more vivid and 
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darker areas are more distinct able. This method maintains the relative intensity variations 

across pixels, therefore preserving the general structure and content of the image. Contrast 

stretching greatly enhances visibility in aquatic situations, therefore enabling deep learning 

models to interpret small characteristics more clearly. The method guarantees high-quality 

data for training by computationally improving the clarity of input photos and therefore 

increasing their efficiency. Contrast stretching enhances image enhancing tasks' 

interpretability and efficiency as a preprocessing step. 

   5. Histogram Equalization 

By spreading the intensity levels of an image, histogram equalization creates a more 

homogeneous histogram, therefore improving the global contrast of underwater pictures. This 

method is applied to the V-channel in the HSV colour space, which denotes brightness, 

therefore assuring that low intensity parts become more visible. Underwater photographs often 

suffer from unequal illumination and colour distortion, therefore reducing contrast and poor 

visibility. By balancing the proportion of bright and dark areas, histogram equalizing enhances 

the general image quality. This method highlights hidden details and makes structural elements 

more clear by raising contrast in areas where intensity variations are minute. Although 

worldwide in character, it enhances localized methods such as CLAHE by serving as a 

benchmark. Histogram equalization improves the whole visual quality of the dataset and 

guarantees improved feature extraction by the model for underwater picture preprocessing. 

3.3 EDA(Exploratory Data Analysis)) 

 

Figure 3 Sample images 

Figure 3 highlights the need of efficient enhancement approaches to improve clarity of picture 

and contrast by showing sample photographs from the dataset displaying underwater 

difficulties such light scattering, colour distortion, and low visibility. 
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Figure 4 Average Brightness Distribution 

Figure 4 shows average brightness distribution emphasizes changes brought about the aquatic 

environment. Mostly lower brightness levels highlight the requirement of enhancing methods 

to increase visibility. 

 

Figure 5 Enhanced CLAHE images 

Figure 5 shows photos improved by CLAHE, which preserves details while enhancing contrast 

and brightness—especially in darker areas. It addresses low visibility and inadequate 

illumination, hence highlighting underwater elements. 

 

Figure 6 Color Intensity Distribution across Channels 
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Figure 6 illustrates colour intensity distribution among the three colour channels, therefore 

stressing dominance & imbalances in colours and leading enhancing methods to balance and 

raise general image quality. 

 

Figure 7 RGB channel Mean Intensity Graphs 

Figure 7 displays mean levels of intensity for RGB channels, therefore stressing variances and 

colour balance. These discoveries expose possible colour distortions, which directs enhancing 

techniques for better visual clarity and colour correction. 

 

Figure 8 RGB Channel Mean Distribution 

Figure 8 shows The geographic distribution of mean value of intensity for RGB channels 

exposes possible distortions and changes in colour balance. This study helps assess methods 

for upgrading to guarantee better visual consistency. 

 

Figure 9 Correlation Heatmap of RGB Channels 
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Figure 9 displays RGB channels' correlation heat map reveals correlations between colour 

intensities. High correlations point to similar trends; lower values show different behavior, 

which directs colour improvement techniques. 

 

Figure 10 Color Intensity Distribution of Enhanced images (CLAHE) 

Figure 10 displays the distribution of colour intensity of photographs improved by CLAHE. 

With increased visibility & detail in both dark and bright areas, the graph shows increases in 

colour contrast, therefore displaying a more consistent intensity range across the image. 

 

Figure 11 Enhanced Image Comparison Using Various Techniques 

Figure 11 compares aquatic photos improved by histogram equalisation, contrast stretching, 

and CLAHE. It emphasises how well each technique enhances under various underwater 

environments visibility, contrast, and detail. 

3.4 Model Implementation 

The WaterNet model is a hybrid model based on convolutional neural networks (CNN) 

intended for image enhancing activities including underwater image enhancement. Together 

with a residual connection to attain effective learning and improved results, it combines 
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encoding, bottleneck, & decoding phases. The architecture is broken out technically in great 

detail below: 

1. Input Layer 

• Input Shape: (256, 256, 3) The model accepts RGB images with dimensions 256x256 

pixels, where each channel corresponds to red, green, and blue. 

2. Encoder Block 

• Convolutional Layer: 

o A Conv2D layer with 64 filters of size (3, 3) is applied, followed by the ReLU 

activation function. This layer extracts spatial features while maintaining spatial resolution 

using padding. 

• Batch Normalization: 

o Applied to normalize the feature maps, improving convergence and reducing 

internal covariate shift during training. 

• MaxPooling Layer: 

o Downsampling the feature map by a factor of 2 ((2, 2) pool size), reducing the 

spatial resolution and preserving important features. 

3. Bottleneck Block 

• Convolutional Layer: 

o A Conv2D layer with 128 filters of size (3, 3) and ReLU activation captures more 

abstract features. 

• Batch Normalization: 

o Normalizes the feature map for stable gradient updates in deeper layers. 

4. Decoder Block 

• Upsampling Layer: 

o UpSampling2D increases the resolution of feature maps by a factor of 2, restoring 

the spatial dimensions. 

• Convolutional Layer: 

o A Conv2D layer with 64 filters of size (3, 3) and ReLU activation reconstructs 

features at a higher resolution. 

• Batch Normalization: 

o Ensures that the upsampling feature maps are properly scaled and stable. 

5. Residual Connection 

• A residual shortcut connection is introduced between the input image and the decoder 

output: 
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o The input image is resized using a Conv2D layer with 64 filters of size (1, 1). This 

step matches the dimensions of the decoder's output. 

o The resized input and decoder output are combined using an element-wise 

addition (Add). This residual connection helps in retaining low-level features, ensuring that 

the model focuses on learning enhancement without completely altering the original structure. 

6. Output Layer 

• Convolutional Layer: 

o A Conv2D layer with 3 filters (corresponding to RGB channels) and sigmoid 

activation produces the final enhanced image. 

o The sigmoid activation ensures the output pixel values are in the range [0, 1]. 

7. Loss Function 

• The Mean Squared Error (MSE) is used as the loss function: 

o MSE penalizes the difference between the predicted and ground truth pixel values, 

ensuring accurate image reconstruction. 

8. Optimizer 

• Adam Optimizer: 

o The learning rate is set to 1e-4, providing efficient and adaptive gradient updates 

for faster convergence. 

9. Learning Rate Scheduler 

• ReduceLROnPlateau Callback: 

o Monitors the validation loss and reduces the learning rate by a factor of 0.5 if the 

performance plateaus for 50 epochs. 

o The minimum learning rate is capped at 1e-6. 

10. Training 

• The model is trained for 100 epochs with a batch size of 32. Both the input (X_train) and 

output (X_train) consist of the same dataset for autoencoder-based training, where the goal is 

to reconstruct the enhanced version of the input. 

11. Advantages of the WaterNet Model 

1. Hybrid Residual Architecture: 

o Combines low-level and high-level features, leading to better preservation of fine 

details in the enhanced images. 

2. Efficient Feature Extraction: 

o Encoder-decoder structure allows for efficient hierarchical feature extraction and 

reconstruction. 
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3. Stability During Training: 

o Batch normalization layers ensure stable training and faster convergence. 

4. Focus on Image Enhancement: 

o Residual learning allows the model to focus on enhancing the degraded 

components of the image without altering non-degraded regions. 

12. Hyperparameters 

Table.2 Model Summary 

Layer Name Layer Type Output Shape Parameters 

Input Layer Input (256, 256, 3) 0 

Encoder Conv2D Conv2D (64 filters) (256, 256, 64) 1,792 

Encoder BatchNorm Batch Normalization (256, 256, 64) 256 

Encoder MaxPooling MaxPooling2D (2×2) (128, 128, 64) 0 

Bottleneck Conv2D Conv2D (128 filters) (128, 128, 128) 73,856 

Bottleneck BatchNorm Batch Normalization (128, 128, 128) 512 

Decoder UpSampling UpSampling2D (256, 256, 128) 0 

Decoder Conv2D Conv2D (64 filters) (256, 256, 64) 73,792 

Decoder BatchNorm Batch Normalization (256, 256, 64) 256 

Residual Conv2D Conv2D (64 filters, 1×1) (256, 256, 64) 4,160 

Residual Addition Add (256, 256, 64) 0 

Output Conv2D Conv2D (3 filters) (256, 256, 3) 1,731 

Total Parameters: 156,355  

• Trainable Parameters: 155,971 

• Non-trainable Parameters: 384 

 

4. Result & Discussion 

The performance evaluation highlights the effectiveness of preprocessing techniques and deep 

learning models in enhancing underwater images. Models trained on preprocessed datasets 

demonstrated significant improvements in metrics like PSNR, SSIM, and MSE compared to 

unprocessed data. CLAHE and contrast stretching notably enhanced visibility and detail in 

degraded images. Normalization contributed to faster convergence and stable training. 

Qualitative analysis showed clearer edges and reduced haze in enhanced outputs. Emphasizing 

adaptation, model resilience was tested over several water conditions and depths. The results 

demonstrate that deep learning paired with thorough preprocessing efficiently restores 

underwater image quality, therefore guaranteeing useful application in real-world conditions. 
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1. Accuracy 

In respect to the total number of examples, accuracy evaluates a model's ability to produce 

correct forecasts. In photo improvement, it measures the exactly recreated pixel to ground-

truth reference ratio. Although accuracy can be changed for image tasks involving comparing 

pixel values or qualitative findings, it is mainly related with classification tasks. Great 

accuracy points to effective alignment with the desired result and improvement. Its value might 

be limited, though, in more complicated processes like underwater photo restoration, in which 

perceptual quality is more crucial. Thus, often accuracy is combined with measurements like 

SSIM or MSE to provide a more holistic evaluation of model performance. 

Accuracy =  
TP+TN

TP+TN+FP+FN  
     (1) 

2. Loss 

In respect to the general count of events, accuracy evaluates a model's ability to produce 

correct forecasts. In picture improvement, it counts the ground-truth references to exactly 

recreated pixels. Accuracy can be changed for image tasks to compare values of pixels or 

qualitative outcomes, even though it is usually related with classification tasks. Good 

alignment with the desired output and augmentation is shown by great accuracy. Its value 

could be limited, though, in more difficult tasks like underwater image restoration, in which 

perceptual quality is more crucial. To provide a more all-around evaluation of model 

performance, accuracy is thus sometimes coupled with measurements such as SSIM or MSE. 

Loss = −
1

m
∑ 𝒴i. log (𝒴i)m

i=1     (2) 

3. MSE 

MSE measures, on images, the average squared variance among expected and actual pixel 

values. It penalizes significant differences more heavily, so it is susceptible to substantial 

reconstruction errors. Lower MSE indicates better alignment of the ground-truth reputation, 

thereby indicating more restoration accuracy in underwater image improvement. Conversely, 

MSE stresses pixel-wise variations—which might not exactly correspond with human-

perceived quality. Notwithstanding this limitation, it is nevertheless an important indicator of 

the overall quality of enhanced images since it improves the complementing perceptual 

measurements. Mathematical simplicity and straightforwardness of MSE define 

benchmarking model performance in picture restoration applications. 

MSE =
1

n
∑ (Yi − Ŷi)

2n
i=1                                            (3) 

4. R2 

Ground-truth variance in the prediction performance of a model is evaluated by its coefficient 

of determination, R². R² provides information on the prediction strength of the model by 

showing the fraction of variance in pixel values it describes, therefore guiding image 

enhancement. Negative values indicate poor alignment with the starting image; a R² value 

nearer 1 indicates exceptional accuracy and efficient restoration. Since R² catches more broad 

patterns in the data than pixel-based measurements like MSE, it is useful for assessing model 

generalization. It provides a statistical evaluation of the model's preservation of visual aspects, 
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therefore augmenting earlier evaluations. 

n(∑ xy−(∑ x)(∑ y)

√[n ∑ x2−(∑ x)2] [n ∑ y2−(∑ y)2]
                                                 (4) 

• Performance Graphs 

 

Figure 12 Accuracy vs Epochs 

Figure 12 shows the link among training epochs and model accuracy. Reflecting the learning 

& convergence over time, accuracy increases gradually from fast early gains followed by slow 

stabilization. 

 

Figure 13 Loss vs Epochs 

Figure 13 depicts the correlation of training epochs and loss. Effective learning and error 

reduction during training are indicated by the graph's constant declining loss values as epochs 

advance. The flattening of the curve across time points to model convergence and stability. 

This tendency validates the capacity of the model to maximise performance. 
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Figure 14 Original VS Predicted Image 

Figure 14 presents a comparison between the expected and actual pictures proving the model's 

success. The original picture shows usual underwater aberrations including low contrast and 

colour loss. Nevertheless, the expected image reflects the strong performance of the model in 

underwater image enhancement since it displays notable improvements in clarity, contrast, and 

colour balance. 

• Original Image Vs Enhanced Images  

 

Figure 15 Image Enhancement: Before and After 

Figure 15 displays underwater graphic changes. Whereas the "after" image displays gains in 
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brightness, clarity, and colour correction, showing enhancing effectiveness, the "before" image 

shows poor contrast & colour distortion. 

Table 2: Performance Evaluation of Model 

Model  Accuracy Loss MSE R2 

WaterNet Hybrid Model  91.08 0.007 0.007 0.98 

 

Figure 16 performance Graph 

In underwater picture enhancing applications, the WaterNet Hybrid Model shows 

extraordinary performance. With an amazing accuracy of 91.08%, it shows dependability in 

handling underwater photos. The low prediction errors and effective learning capacity of the 

model shown by its loss value of 0.007 throughout training. Moreover observed at 0.007, the 

Mean Squared Error (MSE) underlines its precision in reducing pixel-wise variations between 

ground-truth and projected images. Reflecting strong predictive power, this model's R-squared 

(R²) score of 0.98 reveals its great capacity for explicating the variance in data. These results 

confirm WaterNet's dependability in rapidly improving underwater image quality. 

Table 3: Comparative Analysis between Existing Model and Proposed Model 

Model  Accuracy  References  

DeepLab v2  67 [40] 

Proposed Logistic Regression 91.8 ------- 
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Figure 17 Comparative Analysis Graph 

Comparative analysis of DeepLab v2 with the suggested Logistic Regression model reveals 

interesting advances in underwater picture processing. DeepLab v2 proves its ability in 

handling underwater image challenges by leaving possibility for development even if it 

exhibits an accuracy of 67%. Conversely, with a 91.8% accuracy, the suggested logistic 

regression model shows to be more efficient in addressing underwater photo improvement 

tasks. This development suggests that in some cases logistical regression, with its simplicity 

and flexibility, might produce significant results. The comparison highlights the importance 

of building models especially for the unique challenges of underwater environments to 

increase performance. 

 

5. Conclusion 

Underwater picture enhancement is eventually a multi-stage process covering data acquisition 

to preprocessing and the employment of advanced models as WaterNet to deliver optimal 

outcomes. Generated during the data collecting phase are raw underwater images affected by 

components including light scattering and absorption, as well as matched ground-truth images 

recorded under controlled conditions. This ensures a large collection of underwater 

circumstances, therefore enabling the model to learn from diverse environments. 

Preprocessing techniques like picture scaling, normalizing, and contrast enhancement—

including CLAHE or histogram equalization—much improve the quality of the input images 

by increasing visibility, retention of features, and guarantees consistency throughout the 

dataset. These preprocessing steps ensure that the model might correctly handle the images 

and provide the foundation for efficient model development. The hybrid design of the 

WaterNet model—which mixes encoder-decoder layers and residual connections—helps 

significantly in underwater picture enhancing activities. The model's exceptional performance 

highlights its durability and ability to enhance underwater images with an accuracy of 91.08% 
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and little prediction errors. Moreover, the comparison with other models as DeepLab v2 and 

Logistic Regression highlights the better results produced by the WaterNet model. It is a 

consistent fix for improving underwater image quality since it can tackle the specific 

challenges given by underwater environments, such low contrast and insufficient illumination. 

This emphasizes the significance of developing tailored models to maximize the effectiveness 

of underwater photo enhancement techniques and their pragmatic applications. 
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