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The Industrial Internet of Things (IIoT) represents a convergence of 

interconnected devices     and systems aimed at enhancing industrial operations 

through advanced data analytics, automation, and real-time monitoring. The 

Adaptive Secure Hierarchical Consensus (ASHC) algorithm is a  novel consensus 

mechanism designed specifically for IIoT systems. ASHC integrates a 

Hierarchical Blockchain Structure (HBS), Real-Time Adaptive Optimization 

Algorithm (RTAOA), and Multi-Layer Parallel Processing (MLPP) to address 

the critical needs of IIoT environments. The HBS organizes transactions into tiers 

based on their criticality, ensuring that high-security transactions are handled 

with utmost immutability while optimizing the processing speed for less critical 

data. RTAOA continuously evaluates and dynamically adjusts network 

parameters to maintain optimal performance without centralized control. MLPP 

leverages parallel processing and advanced caching techniques to maximize 

throughput and minimize latency. Comprehensive analysis and experimental 

results demonstrate that ASHC significantly enhances the efficiency, scalability 

and security of IIoT systems, providing a scalable and adaptable solution capable 

of managing high transaction volumes and complex data operations. This 

innovative approach positions ASHC as a transformative advancement for the 

future of IIoT networks.  
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1. Introduction 

The goal of the Industrial Internet of Things (IIoT) is to establish interconnected industrial 

systems by bringing together a variety of technologies, including sensors, communication 

networks and data analytics.   Improved operational efficiency, predictive maintenance, and 

real-time monitoring are made possible by these systems in a number of industries, including 

manufacturing, energy, transportation, and healthcare (Li, Da Xu, & Zhao, 2015).  Industries 

can use IIoT to integrate cyber-physical systems and obtain increased productivity, lower 

operating costs, and better decision-making abilities.  

IIoT has many benefits, but putting in place a trustworthy and effective consensus process in 

these systems is not without its difficulties. In IIoT contexts, traditional consensus algorithms 

like Proof of Work (PoW) and Proof of Stake (PoS) frequently fail because of their high energy 

consumption, latency problems, and restricted scalability (Nguyen & Kim, 2018). For 

instance, PoW is unfeasible for IIoT devices with limited resources since it necessitates 

significant processing power (Eyal et al., 2016). Nevertheless, although being more energy-

efficient, PoS is still susceptible to security flaws like long-range attacks and centralization 

hazards (Bentov et al., 2014).  

There are advancements in transaction throughput and latency using advanced consensus 

techniques such as Delegated Proof of Stake (DPoS) and Practical Byzantine Fault Tolerance 

(PBFT). But as mentioned by Castro and Liskov (2002) and Larimer (2020), DPoS  can result 

in the concentration of power within a small number of delegates, while PBFT’s  scalability is 

constrained by message overhead. Given these constraints, a novel consensus method that is 

scalable, efficient, and secure enough to meet the unique requirements of  IIoT systems is 

clearly needed.  

The Adaptive Secure Hierarchical Consensus (ASHC) method is presented as a solution to the 

major problems that current consensus mechanisms in IIoT systems face. ASHC integrates 

three essential elements to offer a safe, scalable, and effective solution:  

1. The Hierarchical Blockchain Structure (HBS) part of the system classifies transactions 

into criticality-based tiers. While less important transactions are targeted for processing 

quickly, high-security transactions are handled with the highest immutability.  

2. Algorithm for Real-Time Adaptive Optimization (RTAOA): Without depending on 

centralized control, this system automatically modifies settings to maintain optimal 

functioning while continuously assessing network performance.  

3. Multi-Layer Parallel Processing (MLPP): MLPP reduces latency and maximizes 

throughput by utilizing advanced caching techniques and parallel processing. This ensures that 

complicated data operations and large transaction volumes are handled efficiently.         

This research attempts to offer a transformative consensus mechanism that improves the 

security, scalability, and efficiency of IIoT networks, opening the door for more durable and 

dependable industrial systems.  

 

 



267 Jeenath Laila N et al. Enhancing IIoT Systems with Adaptive Secure...                                                                                  
 

Nanotechnology Perceptions Vol. 18 No.3 (2022) 

2. Literature Review  

The increasing number of Industrial Internet of Things (IIoT) devices being deployed has 

made the development of efficient, scalable, and secure consensus algorithms crucial. 

Traditional consensus methods, such as Proof of Work and Proof of Stake, have been studied 

and applied extensively, but the algorithms have a number of shortcomings when applied to 

IIoT environments, such as low throughput and high energy consumption. This review of the 

literature examines recent advancements and consensus-building techniques meant to address 

these issues.  

Traditional Consensus-Building Techniques As with Bitcoin, Proof of Work has been essential 

to the development of blockchain technology. However, because of its high computing 

requirements, it is not suitable for IIoT devices with little resources. PoW’s long confirmation 

times and energy inefficiency make it unscalable for IIoT applications (Nguyen & Kim, 2018). 

Proof of Stake  which selects validators based on their network stake, improves Proof of labor 

by reducing the need for expensive computational labor. PoS increases energy efficiency, but 

there are still security issues including long-range assaults and centralization hazards (Bentov 

et al., 2014).  

Delegated Proof of Stake (DPoS), used by BitShares and other platforms, enhances PoS by 

designating a small number of nodes to manage validation, hence increasing transaction speed. 

However, DPoS might see less decentralization because authority usually centers  around a 

small number of delegates (Larimer, 2020). Permissioned blockchain networks can benefit 

from the application of Practical Byzantine Fault Tolerance  due to its strong consistency and 

low latency. Despite being economical, PBFT’s scalability is limited by its exponentially 

growing communication overhead as the number of nodes increases (Castro & Liskov, 2002). 

Recent research has focused on creating innovative and hybrid consensus techniques that are 

appropriate for the unique needs of IIoT systems.  

Hybrid consensus algorithms leverage the distinct benefits of each consensus methodology to 

merge multiple protocols. For instance, some hybrid algorithms combine PoW and PoS 

elements to increase security and efficiency. These hybrid techniques may be more effective 

in meeting the diverse and evolving needs of IIoT contexts (Nguyen & Kim, 2018; Xiong et 

al., 2022).  

A evaluation of decentralized IIoT secure blockchain middleware is provided within the 

framework of Industry 5.0’s resilient manufacturing. The study emphasizes the benefits of 

blockchain’s auditing and tamper-proof characteristics over existing centralized IIoT 

frameworks’ security flaws. This paper proposes a revolutionary four-layer blockchain  

middleware architecture for IIoT applications that examines enabling technologies, ob-  

stacles, and future possibilities. The goal of the project is to lay the groundwork for the  

integration of blockchain middleware into IIoT systems in order to improve manufacturing  

security and resilience. (Leng et al.,2022).  

In order to promote Industry 4.0, blockchain technology—a decentralized, secure, and 

auditable solution for information exchange—is becoming more and more integrated with IIoT 

networks. In order to solve problems like block time reduction and transaction throughput 

enhancement, this paper advocates for reinforcement learning (RL) methodologies and 
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highlights opportunities for improvement in blockchain-enabled IIoT networks. In comparison 

to the greedy strategy, a case study employing Q-learning shows decreased transmission 

delays and fewer forking events. The results demonstrate how well RL approaches function to 

optimize blockchain-IIoT networks and offer recommendations for future research paths to 

further this integration. (Jameel et al., 2020)  

IIoT resource limitations might result in the development of botnets and Distributed Denial of 

Service (DDoS) attacks. This study suggests a Digital Framework for early bot identification 

in a Smart Factory setting that is enabled by blockchain technology.  The framework examines 

device data and packet headers using Digital Twins (DT) and Deep Learning to find suspicious 

connections. Smart Contracts provide safe data synchronization and stop malicious node 

participation by authenticating DT and Packet Auditor (PA) interactions. In comparison to 

other approaches, the framework performs better in botnet identification while improving data 

integrity and privacy. (Salim et al., 2022)  

Proof of Reputation (PoR) integrates reputation-based systems into the consensus  process. 

PoR incentivizes nodes to behave decently by linking their validation power to their reputation 

score, which is established by their prior deeds and network contributions.  

This tactic can strengthen security and lessen the possibility of Sybil attacks in IIoT networks 

(Li et al., 2018).  Federated and consortium blockchains offer a viable solution for IIoT 

applications by combining aspects of public and private blockchains. These blockchains are 

supervised by a consortium of reputable entities, providing a middle ground between 

centralization and decentralization. They make consensus procedures scalable, safe, and 

efficient for industrial applications (Yin et al., 2018; Zhu et al., 2017).  

The open, distributed, and diverse nature of the Industrial Internet of Things makes the 

installation of trusted communication difficult. By offering a tamper-proof frame-work for 

monitoring hardware products—from chips to full equipment—and enhancing productivity 

through smart contracts, blockchain technology provides a solution to these problems. In order 

to promote constructive network collaboration between normal and aberrant nodes, this 

research suggests a reputation system.  The goal of a credit-based incentive system with reward 

and punishment components is to influence behavior and strengthen the network’s 

cooperative qualities. The main benefit is that consensus states can be enhanced by using the 

reputation-based incentive module on cutting-edge PoX protocols, or PoRX. The reputation 

scheme’s administration and implementation chal-  lenges, as well as the need to ensure 

scalability in large-scale IIoT networks, are drawbacks.  According to experimental findings, 

the suggested plan successfully promotes cooperation, which is advantageous for the IIoT 

network. (Wang et al., 2020)  

The immutability, decentralization, and tamper-proof properties of blockchain technology 

improve security and are highly advantageous to the Industrial Internet of Things. In order to 

provide safe device connectivity, data exchange, and access management, this research 

suggests using a permissioned blockchain for the IIoT. When compared to public blockchains, 

the primary benefit is increased security and control over IIoT ecosystems.  Nonetheless, 

drawbacks include the difficulty of administering permissioned blockchains and possible 

centralization concerns. The study also explores potential integration paths and offers a 

thorough overview of current blockchain-based solutions.  (Yeasmin et al., 2020).  



269 Jeenath Laila N et al. Enhancing IIoT Systems with Adaptive Secure...                                                                                  
 

Nanotechnology Perceptions Vol. 18 No.3 (2022) 

 To guarantee safe data transfer in smart city applications, a lightweight blockchain-  based 

data consensus technique for IIoT is suggested. To achieve data consistency, it makes use of 

a two-path routing transmission scheme and a distributed ledger over several edge gateways. 

The primary benefit is a lower average hop count, which lowers the possibility of data theft 

while maintaining high data accuracy, low energy usage, and short latency. Nevertheless, 

potential scalability problems and the difficulty of putting the two-path routing scheme into 

practice could be drawbacks. The efficacy of the method in augmenting IIoT safety and 

reliability is validated by simulation results. (Zhang et al., 2020).  

The comparative research emphasizes how consensus mechanisms must be continuously 

innovated in order to meet the changing IIoT issues. Researchers may create more reliable, 

effective, and scalable solutions by utilizing the advantages of current algorithms and 

incorporating cutting-edge techniques like ASHC. This will open the door for the broad use of 

blockchain technology in industrial applications.  

 

3. Proposed System  

Industrial Internet of Things (IIoT) systems are intended to have improved performance, 

security, and scalability thanks to the Adaptive Secure Hierarchical Consensus (ASHC) 

algorithm. Three essential elements are combined to do this: Multi-Layer Parallel Processing 

(MLPP), Real-Time Adaptive Optimization Algorithm (RTAOA), and Hierarchical 

Blockchain Structure (HBS).  

Hierarchical Blockchain Structure (HBS)  

Depending on how important a transaction is, it can be categorized into multiple tiers using 

the Hierarchical Blockchain Structure shown in Figure 1, which guarantees the best processing 

and security for each category. Every tier has a unique blockchain setup that is tailored to meet 

its requirements.  

 

Figure 1. Hierarchical Blockchain Structure 

Transaction Classification  
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Based on their criticality, the Transactions on the blockchain are divided into three tiers: High 

Criticality Transactions, Medium Criticality Transactions, and Low Criticality Transactions. 

High Criticality Transactions These transactions require the highest level of security and 

immutability, just like financial transactions, safety-critical industrial operations, and sensitive 

data exchanges.  These transactions typically involve crucial procedures and private 

information that could have disastrous consequences in the event of a breach.  

Strong, immutable blockchains that record transactions of utmost importance include robust 

redundancy and security measures. This ensures that these transactions are protected against 

tampering and unauthorized access. Medium Criticality Transactions Despite the fact that 

these transactions are important,  they do not require the same level of security as regular 

operating data or non-essential business operations. The transactions achieve a balance 

between security and the need for faster processing. A medium-criticality blockchain 

maintains moderate redundancy and security for its transactions.  This blockchain allows 

transactions to be completed faster without compromising a reasonable level of security 

because it is intended for faster processing.  

Low Criticality Transactions Transactions that are less important and can ignore brief delays 

or periodic anomalies include sensor data, ordinary logs and non-sensitive communications. 

Typically, the transactions involve routine tasks and less sensitive data. Low-criticality 

transactions are stored in a sort of adaptable, high-throughput data structure called a directed 

Acyclic Graph (DAG). This structure can efficiently manage large numbers of less significant 

actions due to its scalability and fast processing. Let Ti represent the transaction and Ci be the 

criticality score of the transaction. The criticality score can be determined based on predefined 

parameters like data sensitivity, real-time requirements, and potential impact. 

Ci = α1 · Si + α2 · Ri + α3 · Ii (1) 

where Si: Sensitivity of the transaction, Ri: Real-time requirement of the transaction, Ii: 

Impact of the transaction on the overall system, α1,α2,α3:  Weight coefficients for each 

parameter. 

Based on the criticality score Ci, transactions are classified into tiers: 

• High Criticality (Ci ≥ θH) 

• Medium Criticality (θM ≤ Ci < θH) 

• Low Criticality (Ci < θM)

  

Where θH and θM are the thresholds for high and medium criticality, respectively. 
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Security Protocols  

Each tier has a different level of security protocols. Let S(Ti) represent the security measures 

applied to transaction Ti. The security level can be defined by the encryption strength, number 

of confirmations and consensus algorithms used. 

S(Ti) = β1 · Ei + β2 · Ni + β3 · Ci (2) 

Where Ei: Encryption strength for the transaction, Ni: Number of confirmations required, Ci: 

Consensus algorithm complexity, β1,β2,β3 : Weight coefficients for each security parameter. 

For different tiers: 

• High Criticality:  SH(Ti)  

• Medium Criticality:  SM(Ti)  

• Low Criticality:  SL(Ti) 

The relationship between them is:  

SH(Ti) > SM(Ti) > SL(Ti) 

 

 

 
 

 

 

 

 

 

 
 

 

function security_level(transaction 

T_i): criticality = 

classify_transaction(T_i) if 

criticality == "High Criticality": 
return calculate security level using: 
security_level = β1 * encryption_strength(E_i) + 

β2 * confirmations(N_i) + β3 * 

consensus_complexity(C_i) 

else if criticality == "Medium 

Criticality": return calculate 

security level using: 

security_level = β1 * encryption_strength(E_i) + β2 * 

confirmations(N_i) + β3 * consensus_complexity(C_i) * 

0.7 
else: 

return calculate security level using: 
security_level = β1 * encryption_strength(E_i) + β2 * 

confirmations(N_i) + β3 * consensus_complexity(C_i) * 0.5 
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Processing Efficiency  

The processing efficiency of transactions in HBS can be analyzed by considering the 

transaction processing time P(Ti) and the overall system throughput λ. For each tier, the 

processing time is influenced by the security protocols and transaction load: 

P(Ti) = f (S(Ti), Li)         (3) 

Where Li: Load or number of transactions in the tier, f: Function representing the relationship 

between security protocols and load on processing time. The throughput λ is the rate at which 

transactions are processed in the system: 

 

Where N: Number of transactions For high, medium, and low criticality tiers, the through- put 

can be represented as: 

 

The overall system throughput Λ is the sum of throughputs from all tiers: 

Λ = λH + λM + λL                                                                 (8) 

Processing time PH(Ti) for high-criticality transactions may take longer than usual because of 

the extra security checks required, which call for strong security procedures. However, the 

integrity and dependability of the system depend on these transactions being processed 

effectively. Medium criticality transactions optimize PM(Ti) to maintain a decent through-put 

while still adhering to appropriate security procedures. This creates a balance between security 

and speed. Higher throughput λL is achieved by processing less sensitive transactions with 

less criticality more quickly. To manage high transaction volumes effectively, this layer 

frequently makes use of the adaptability and scalability of topologies like Directed Acyclic 

Graphs (DAG).  

The total system throughput Λ offers a thorough assessment of the system’s efficiency by 

adding up the throughputs from each tier. By taking a comprehensive approach, the system is 

guaranteed to be able to manage large amounts of transactions while upholding the essential 

security requirements across various transaction criticality tiers.    
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Optimization  

The system may dynamically modify the parameters in response to real-time conditions, 

ensuring optimal performance. Let O stand for the optimization function, which seeks to strike 

a balance between efficiency and security. 

 

Where γ is a balancing factor between throughput and security. 

function optimize_performance(transactions): 

overall_throughput = calculate overall throughput 

using: 

overall_throughput(high_critical_transactions, 

medium_critical_transactions, 

low_critical_transactions) total_security = sum of 

security levels for all transactions return optimize 

using: 

optimization_function = maximize (overall_throughput - 

gamma total_security) 

 
 
 
 

 

* 

 
 
 
 
 
 

 
 

3.2. Real-Time Adaptive Optimization Algorithm (RTAOA) 
  

 
 

With a focus on Industrial Internet of Things (IIoT) contexts, the Real-Time Adap-   
 

   tive Optimization Algorithm shown in Fugure 2 is a dynamic mechanism that   
  improves the security, performance and adaptability of blockchain networks. In 
order 

  

to ensure optimal operation without depending on centralized control, RTAOA 
continu- 

  

function processing_time(transaction Ti) : 
security = security_level(Ti) 

load = get_load(classi f y_transaction(Ti)) 

return_calculate_processing_time_using : 

processing_time = f unction(security, load) 

f unction_throughput(transactionTi) : 

number_o f _transactions = get_number_o f _transactions(Ti) 

return_calculate_throughput_using : 

throughput = number_o f _transactions/processing_time(Ti) 

f unction_overall_throughput(high_critical_transactions, medium_critical_transactions, 

low_critical_transactions) : 

return_calculate_overall_throughput_using   : 

overall_throughput_ = _throughput(high_critical_transactions)     + 

throughput(medium_critical_transactions)   +   throughput(low_critical_transactions) 
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ously monitors network conditions and makes real-time parameter adjustments. The 
key 

  

components of RTAOA are as follows:   

3.2.1. Network Evaluation 
  

 

RTAOA continuously collects network metrics, including throughput, latency, and   
 

security levels. A network of sensors and monitoring devices dispersed throughout 
the 

  

IIoT system are used to accomplish this.To find trends, spot abnormalities, and 
forecast 

  

future network conditions, the gathered data is instantly examined using 
sophisticated 

  

analytics and machine learning algorithms.   
Let:   
• T(t) represent the transaction throughput at time t.   

• L(t) represent the network latency at time t. 

• S(t) represent the security level at time t. 

 

Figure 2. Real-Time Adaptive Optimization Algorithm 

Dynamic Adjustment  

Based on real-time analysis, RTAOA adjusts network parameters dynamically to main-  
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tain optimal performance. The key parameters include:  

• α: A weight factor for throughput.  

• β: A weight factor for latency.  

• γ: A weight factor for security.  

The adjustments are made to maximize throughput while minimizing latency and maintaining 

a desired security level. Let α(t), β(t) and γ(t) be the dynamic weight factors at time t.  

Optimization Function  

The optimization function combines the evaluated metrics and adjusted parameters to find the 

optimal configuration. 

O(t) = α(t) · T(t) − β(t) · L(t) + γ(t) · S(t)              (10) 

where:  

• O(t): The optimization value at time t.  

• α(t) · T(t): The weighted throughput.  

• −β(t) · L(t): The weighted latency (negative sign to indicate minimization). 

• γ(t) · S(t): The weighted security level. 

Feedback Mechanism 

The algorithm is guaranteed to adjust in response to real-time alterations in the network’s state 

via the feedback mechanism. Based on the current optimization value, the feedback loop 

updates the parameters and weight factors continually.  

Multi-Layer Parallel Processing  

The Industrial Internet of Things solutions are intended to perform, scale, and operate more 

efficiently with the help of Multi-Layer Parallel Processing (MLPP) shown in Figure 3. By 

combining load balancing, sophisticated caching, and parallel processing, MLPP 

accomplishes this. 
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Figure 3. Multi-Layer Parallel Processing 

The key components in MLPP are as follows:  

 Parallel Processing Layers  

Multiple layers of parallel processing units (PUs) are used in MLPP in order to handle  

multiple jobs at once. In order to ensure effective resource usage, each layer is optimized  

for a certain set of tasks.  

• Layer 1 (Input Layer): Responsible for receiving and preprocessing incoming data. 

• Layer 2 (Processing Layer): Handles the main computation and data processing tasks. 

• Layer 3 (Output Layer): Manages the aggregation and final output of processed data. 

Let  

L1,L2,L3 represent the input, processing and output layers respectively. PUi,j represent the j-

th processing unit in the i-th layer. For each layer i: Li=PUi,1,PUi,2,. . . ,PUi,ni  Where ni is 

the number of processing units in layer i.  

Task Scheduling and Distribution  

For MLPP to work, effective task distribution and scheduling are essential. The system assigns 

tasks to various processing units according to their workload, capacity, and job priority using 

algorithms.  

• Task Queue: A queue Q(t) that holds incoming tasks, prioritizing them based on 
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predefined criteria like urgency, resource requirements etc.  

• Scheduler: An algorithm that assigns tasks from the task queue to available processing 

units, optimizing for load balance and processing speed.  

Let: Ti represent the i-th task. Q(t)=T1,T2,. . . ,Tm be the task queue at time t. The scheduler 

assigns tasks to processing units based on their current load Lj(t) and capacity Cj: 

 

Advanced Caching Strategies  

In MLPP, caching is essential for lowering latency and increasing throughput.  A number of 

sophisticated caching strategies are used:  

Hierarchical Caching uses a multi-layer cache hierarchy with L1, L2, and L3 caches. Data that 

is requested frequently is kept in the smallest and fastest L1 cache, while less frequently 

accessed data is kept in larger and slower L2 and L3 caches. In IIoT systems, this lowers 

latency and expedites data retrieval.  

Let CL1 represent the Level 1 cache (fastest and smallest), CL2 represent the Level 2 cache 

(moderate speed and size), CL3 represent the Level 3 cache (slowest and largest).  

The size and access time for each cache level can be defined as:  

Size(CL1) < Size(CL2) < Size(CL3)  

Access Time(CL1)<Access Time(CL2)<Access Time(CL3)  

Data placement is determined by access frequency P(di):  

• For CL1: If P(di) > θL1, then di is placed in CL1.  

• For CL2: If θL2 < P(di) ≤ θL1, then di is placed in CL2.  

• For CL3: If P(di) ≤ θL2, then di is placed in CL3.  

Thresholds θL1 and θL2 are used to determine which data items are placed in each cache  

level.  

Predictive Caching reduces retrieval delay by using algorithms to estimate the data that will 

be needed next and pre-fetch it into the cache. Let P(di) be the predicted access probability of 

data di. The decision to pre-fetch data di into the cache is based on its predicted access 

probability: If P(di)>threshold, then pre-fetch di into the cache  

Cache Coherence guarantees data consistency in a multi-core system across all caches. For 

IIoT systems to preserve data integrity across numerous nodes and devices, this is essential. 

Let V(di) represent the version of data di in a cache.  

Cache coherence requires:  

V(di)L1 = V(di)L2 = V(di)L3 
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When data di is updated in one cache, it must be updated in all caches: Update V(di) in  

CL1,CL2,CL3 Least Recently Used (LRU) a caching technique that makes sure regularly 

visited material stays in the cache by replacing the least recently used items first. For a cache 

Ck with nk data items, the LRU replacement policy is defined as: Replace dLRU if 

min(Access Time(dLRU ))  

Where dLRU is the data item with the smallest access time in Ck.  

Write-through caches to guarantee data integrity, write data right away to both the cache  

and main memory.  

Write-through: D(t)=d1,d2,. . . ,dn (written to cache and main memory)  

Write-back cachesIn order to balance performance and data integrity, write data to the  

main memory only after it has been removed from the cache.  

Write-back: D(t)=d1,d2,. . . ,dn (written to cache, written to main memory on eviction)  

Load Balancing and Optimization makes certain that the workload is split equally among  

the processing units in order to prevent bottlenecks and optimize the use of available  

resources.  

• Dynamic load balancing: Workloads are redistributed as necessary based on a 

continuous assessment of each processing unit’s load.  

• Optimization Algorithms: The optimization strategies take into account aspects such 

as processing speed, power consumption, and resource utilization in order to optimize the 

overall performance of the system.  

Let W1 represent the workload on processing unit PU1. Load balancing aims to maintain:     

n 

∑ Wi(t) = constant (12) 

i=1 

Dynamic load balancing redistributes tasks based on current load: Redistribute PUi if     

W1(t)>average load Optimization function O considering multiple factors:  

O max  n    Pi Power Consumption! (13) 

= ∑ Ci − λ · 

Where Pi: Processing speed of unit i, Ci: Capacity of unit i, λ: Weight factor for power 

consumption.  

 

4. Results and Discussion  

An Industrial Internet of Things environment is setup in order to compare the performance of 

the Adaptive Secure Hierarchical Consensus algorithm against the Practical Byzantine Fault 
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Tolerance  and Delegated Proof of Stake methods. Ten high-performance servers with sixteen 

core Intel Xeon 2.3 GHz processors apiece make up this environment. High throughput and 

minimal latency were guaranteed by the establishment of a high-speed network infrastructure. 

In addition, a realistic smart manufacturing setup was simulated by connecting 1000 IoT 

sensors, including pressure, humidity, and temperature.  

Efficiency  

CPU and RAM Usage:  Efficiency is determined by how much CPU and RAM are used.  

Compared to PBFT (50% for both CPU and RAM) and DPoS (40% for both CPU and RAM), 

ASHC showed the lowest CPU and RAM utilization at 20% for both measures, suggesting 

improved efficiency.   Lower ASHC resource consumption results in lower operating expenses 

and better system performance overall as shown in Figure 4 and Figure 5. 

 

Figure 4. Efficiency CPU Usage           Figure 5. Efficiency RAM Usage 

Scalability7 

Number of Nodes:  By adding more nodes and assessing the system’s transaction capacity, 

scalability was assessed. Compared to PBFT (300 nodes) and DPoS (500 nodes), ASHC 

handled up to 1000 nodes with great efficiency.  ASHC’s exceptional scalability guarantees 

that it can accommodate extensive IIoT implementations without appreciable performance 

deterioration, as illustrated in Figure 6. 
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Figure 6. Efficiency CPU Usage                       Figure 7. Efficiency RAM Usage 

Security3 

Attack Resistance: One crucial parameter for IIoT systems is security. To determine each 

algorithm’s resilience, 100 attack attempts were simulated. With 98% assault resistance, 

ASHC was the most resilient, followed by PBFT at 95% and DPoS at 90%. As seen in Figure 

7, ASHC’s high security level guarantees that confidential industrial data is shielded from any 

cyber threats.  

Throughput9 

Transactions Per Second : Transactions processed per second served as a proxy for throughput.   

At 2000 TPS, ASHC outperformed PBFT and DPoS with far greater throughputs (300 and 150 

TPS, respectively). As demonstrated in Figure 8, high throughput is necessary for IIoT systems 

to manage massive volumes of data effectively, and ASHC’s performance guarantees prompt 

processing of industrial transactions. 
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Latency  

Transaction Confirmation Time: Latency is the amount of time that passes between the 

submission of a transaction and its confirmation. With a latency of 0.5 seconds, ASHC was 

the least late than DPoS (5 seconds) and PBFT (1 second). In IIoT systems, low latency is 

essential for real-time processing. As Figure 9 illustrates, ASHC’s short latency guarantees 

quick data handling and reaction times.  

Adaptability  

Performance Under Changing settings: Performance under various network settings was 

measured in order to evaluate adaptability. With a score of 10, ASHC had the highest 

versatility, demonstrating exceptional performance in both relaxed and hectic environments. 

DPoS scored six, while PBFT scored eight. As demonstrated in Figure 10, high adaptability 

guarantees that the consensus method can continue to operate at peak efficiency even in the 

face of changing workloads and network conditions. 

  

5. Conclusion  

Industrial Internet of Things systems benefit greatly from the performance, security, and 

scalability improvements provided by the Adaptive Secure Hierarchical Consensus (ASHC) 

method. A strong and effective consensus mechanism designed for IIoT contexts is offered by 

ASHC by combining three essential elements: Multi-Layer Parallel Processing (MLPP), Real-

Time Adaptive Optimization Algorithm, and Hierarchical Blockchain Structure. A thorough 

assessment conducted in a simulated smart manufacturing environment shows that ASHC 

performs better than both Delegated Proof of Stake  and Practical Byzantine Fault Tolerance 

in a number of crucial areas, such as efficiency, scalability, security, throughput, latency and 

flexibility. With its cutting-edge methodology, ASHC guarantees reduced resource 

consumption, increased node handling capacity, enhanced security, faster transaction 

processing, low latency, and remarkable flexibility. With these benefits, ASHC is positioned 

as a disruptive consensus algorithm that can fulfill the demanding needs of contemporary 

industrial applications and open the door for IIoT networks in the future. 
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