Machine Learning-Based Facial Skin Condition Detection, Analysis and Product Recommendation

Dr. R. Raja Kumar¹, PVS. Bhoomika², M. Vinod Kumar², A. Afrin², P. Jayadeep²

¹Professor, Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, India.

²Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, India.

Email: rajakumar.rajaboina@gmail.com,

Thisproject leverages advancements in artificial intelligence to create an end-to-end system for skin condition detection and personalized skincare product recommendations tailored to Indian environmental conditions. A Convolutional Neural Network(CNN) model accurately detects skin conditions such as acne, dark spots, come done, and clear skin from user-uploaded images. Post-detection, a recommendation engine suggests appropriate skincare products, curated for the Indian market. The system integrates a Flask web application for seamless user interaction, offering a comprehensive solution from diagnosis to product recommendation. This project showcases the potential of AI in enhancing personalized dermatological care, making it more accessible and effective.

Keywords: Convolutional Neural Network (CNN), Flask web application, Personalized skin care recommendations, Recommendation engine, Skin condition detection.

1. Introduction

In modern society people are becoming more and more mindful of keeping their skin healthy. This is largely in part due to pollution, stress, and poor eating habits, leading people to find themselves dealing with skin conditions like acne, come done, and dark spots. The traditional way of treating and diagnosing skin conditions is to go visit a dermatologist, a process that is time consuming and costly. To solve this problem, our project focuses on the power of deep learning coupled with data science to create an intelligent system that is able to estimate the conditions of the skin, taking images as a basis. It can accurately recognize and identify people's skin conditions and recommend the most appropriate cosmetic products for them,

making skin care more tailored to their needs and easier to do.In the project described. We consider three major components: estimating severity of skin condition (the factor), suggesting suitable cosmetic products (the market system), and consulting with a doctor (the feedback system).

We employ Mobile Net, a form of convolutional neural networks (CNN) to test the images uploaded by users for maximum precision in estimating the underlying condition. Based on the condition that is identified, the appropriate skincare product is recommended using a recommendation engine that takes the form of user models and the status of products. Besides, through an embedded email service, people can also consult with skin specialists whenever necessary and receive expert advice.

Combining complex machine learning and easy-to-use interfaces, the project is designed to change the way people treat certain skin diseases by offering a whole new level of care management and BETTER SKIN for users with different needs.

Our project proposes a solution to the common skin conditions management problem by focusing on machine learning. The system includes Mobile Net, a CNN that gathers images of the user's skin and makes predictions about acne, comedowns, and dark spots among other conditions. This feature is enhanced with a product recommendation system that recommends products appropriate for the diagnosed condition and patient's skin type. The combination of these features makes it possible to provide both a skincare diagnosis and a skincare treatment in a more integrated manner.

The recommendation engine uses a detailed data framework that links the users' characteristics to various products based on the features of these products. The system, which uses backward normalization of user input into the database of skincare products, guarantees high performance and relevance of suggested items.

This tailoring of recommendations not only improves user satisfaction but also increases the chances of the users getting better treatment results and better skin health and confidence thereafter.

As well as automated predictions and recommendations, the project features a consultation where users can consult with qualified dermatologists. To accomplish this, an integrated email service is provided enabling the users to write emails on their queries and get suggestions from qualified professionals. Thus, leveraging machine learning and specialists, the project becomes broad, easy-to-use, and effective means of dealing with skin problems.

2. Related Work

In the study of Kim et al. [1] (2023), it was proposed a deep learning-based skincare recommendation system with a focus on AI-based approaches for analyzing cosmetic ingredients and skin conditions. Their model employs facial images which are then processed using the convolutional neural network to extract the skin conditions present on a person's face and these are then matched with databases of cosmetic ingredients to give targeted product recommendations. This work brings out the significance of combining deep learning and a specific field of knowledge in order to achieve a greater degree of individualization in

the domain of skin care.

According to Lee et al. [2] (2022) for the skincare product recommendation computer vision and machine learning techniques were employed. In their work, medical-grade skin analysis capabilities, such as acne detection and skin types, were emphasized. By using the computer vision classification techniques, they have shown that it is possible to discriminate small details of skin that can help produce better recommendations, which in turn increases the likelihood and efficacy of the product used by the consumers

According to Gupta and Singh [3] (2024) they used CNNs and YOLOv4 for feature extraction of facial images to create an image-processing-based recommendation system for skincare products. Their approach demonstrated the versatility of object detection algorithms like YOLOv4 in dermatology which aids to accurately locating targeted facial areas in order to verify and analyze skin conditions such as dryness

According to Zhang et al. [4] (2023), medical diagnosis is becoming more effective with the integration of many features during skin assessment using a machine learning system. Their work relied on several supervised learning algorithms that enabled the classification of various skin types and severity of acne lesions. AI targeting complex models when provided with huge datasets showed great potential in dermatoscopy that enables innovative insights that are at par with those given by qualified dermatologists.

Rajegowda et al. [5] (2024) also developed a system for recommending skincare regimes with the aid of Artificial Intelligence (AI) which was embedded in Extended Reality (XR) platform. This integrated systems offers an incredible experience when users are able to get live analysis of the skin and the required products in the virtual environment. This novel application of XR in dermatology increased the overall use of AI combined with entertainment and healthcare aspects for better interaction with users.

Zheng et al. [6] (2022), attempted the problem of extracting skin features from images of people of different color shades and ages. Their method, based on the Unet++ architecture, was found to be beneficial in skin feature analysis even in poorly controlled environments. Their two-phase annotation scheme simplified and enhanced the training process so that their model generalizes well within diverse peoples, thereby filling an important gap in the dermatological AI research field.

Meel and Bodepudi [7] (2021) presented Melatect, a machine learning model that is capable of identifying malignant skin growths known as malignant melanoma. This model is integrated into a mobile application and was able to detect malignant lesions with high accuracy. Their work showed how important AI can be for the health of the population since it enables the early diagnosis of potential life-threatening diseases of the skin. Making advanced dermatological healthcare easily accessible to the general crowds.

Sonntag et al. [8] (2020) came with The Skincare Project, a deep learning system aimed at diagnosing malignant skin lesions. This system connected the patients to the dermatologists by providing an AI enabled decision support system which combined images and the patients' histories. Their system recorded remarkable rate of accuracy in the diagnosis stressing on the importance of application of machine learning in the field of dermatology.

Shah [9] (2023) proposed a hybrid recommendation which utilizes KNN, CNN and transfer *Nanotechnology Perceptions* Vol. 20 No. 7 (2024)

learning for better individualized skincare. By implementing EfficientNet B0 in transfer learning, Shah's work was able to realize enhanced accuracy during skin type classification. The combination of conventional and deep learning especially in this case emphasizes the need for hybrid solutions for complex dermatological issues as well as for better recommendation systems.

Lastly, Kim [10] (2024) also sought for and developed AI solutions for matching foundation shades and recommending beauty products. They developed a unique procedure which used a specific machine learning algorithm to look at the client's face and skin color when applying foundation to ensure a perfect match for each individual. This application was not only an example of the use of AI in the cosmetics industry but also established a new standard of individualization and accuracy of the proposed beauty products.

3. Methodology

Data Collection:

The project starts with gathering a set of images of facial skins of different people with varying conditions like acne, dark spots and comedowns. In this manner a diverse spectrum of skin colors and types is obtained. Moreover, the data on skincare products such as their ingredients, what benefits they have and what skin types are suited for them is also collected to develop the recommendation engine. The importance of well-labeled data is emphasized as it ensures accurate predictions and appropriate recommendations of products.

Model Training:

The Mobile Net convolutional neural network CNN is used for identifying skin types conditions because of its high accuracy and efficiency in performing image classification tasks. Transfer learning allows to use the Mobile Net pre-trained weights and adjusts the model to the skin conditions classification task. This technique reduces the amount of computations required for extensive processes and speeds the training while being non-inferior in terms of accuracy.

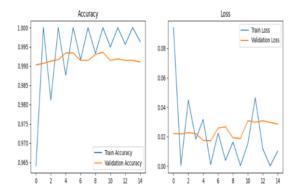
For this task, we employed a pre-trained MobileNet architecture that was enhanced using transfer learning. Global Average Pooling and Dense layers were applied in order to fine-tune the model. During the training session, both accuracy and loss for the training and validation datasets were noted (for a duration of 15 epochs).

Loss Function: Categorical cross-entropy was used as the loss function because it is well suited for tasks that have multiple classes.

Optimizer: It is is important to mention that the Adam optimizer was used with a learning rate of 0.001. Adam is a sophisticated variant of Stochastic Gradient Descent which incorporates the advantages of two Optimizers. Specifically, Gating and RMSProp.

Batch Size: The batch size in this case was 16, and images in both training and validation datasets were resized to 150x150 before they were passed through the network.

The following figure depicts relationship between the validation accuracy/loss and training accuracy/loss graphs across several epochs for the neural network:



Graph Interpretation:

Accuracy:

The training accuracy has consistently remained minimum in the range of 96-99 as indicated in the graphs which is a good sign as it shows that the model has adequately fit the training parameters for the data.

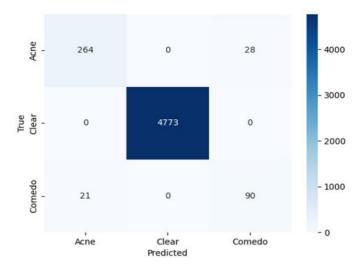
However, this value eventually reaches a fixation of about 98% showing only moderate improvement which is a suitable outcome as it indicates that the model does do a good job of generalizing the data

Loss:

Based on the results shown in the models, the average training loss does seem to be random at first however the values indicated do keep on reducing during the epochs = which showcases an improvement of the model. The validation loss indicates values in the range of 0.02 to 0.04 showing strong generalization capabilities without the model being over adaptive to training.

Based on these findings one can say that the model does adequately manage to learn and classify the different images by hitting the desired parameters of accuracy and validation loss with no overfitting.

In this section, we place emphasis on the evaluation of the model's performance using the confusion matrix after training it. The confusion matrix below presents the comparison between the predictions made by the model and the true labels in the test dataset.



Explanation of Confusion Matrix:

The confusion matrix is an important resource that shows the effectiveness of the classification model in question. It contains a summary of all classes including true positive, false positive, true negative, and false negative prediction of the groups.

Acne: True predictions for Acne were 264, and 28 samples were incorrectly predicted to be Comedo.

Clear: The model performed remarkably well in the prediction of Clear class, where it gave an above 99% accuracy of 4773 correct predictions against zero errors.

Comedo: Our model was able to correctly class 90 samples as Comedo and in turn misclassified 21 samples for this group as Acne.

It can be noted from the confusion matrix that the model has accuracy for the class Clear which is predominant in the whole types of data set with a few errors made in the classification of Acne and Comedo.

Image Preprocessing:

Then, there are several techniques that should be applied to images in order to increase the performance of the model and bring some conditional invariance to the problem.

The goal of this project is to develop an artifact capable of reproducing images. In this case, image preprocessing is as important as preparing the data in the right quality and format to be able to train the model well. Here are the key steps in the preprocessing pipeline that were undertaken on the input images before they were supplied to the deep learning model:

Image Rescaling: Image Rescaling is the first step for standardizing the pixel values. The usual raw pixel value of images is in the range of 0 to 255. The data was normalized by dividing the images by 255 in order to restrict all the pixel values to be within the range of [0, 1]. This process of normalization is found to be useful as it minimizes the time required to converge the model structures during the training since it guarantees that the input data is more uniform which helps the gradients not to become too high during backpropagation.

Nanotechnology Perceptions Vol. 20 No. 7 (2024)

Image Resizing: All the input images were resized to dimensions of 150x150 pixels. This step is important as it is always expected of deep learning models to receive a defined size input due to the deep learning models workloads, and all images may not have the same size. By resizing all other images to defined dimensions, the model can optimally manage the workload.

Batch Processing

The algorithm utilizes the flow_from_directory function to efficiently load and train the dataset. Memory consumption is minimized by utilizing batch processing in which only a fraction of the data (a batch) is loaded into memory – allowing the model to accommodate larger datasets. Images were placed in folders and consequently the model was able to load and process it in batches of 16.

Categorical Label Encoding

To facilitate the training process, other images in the dataset relative to (Acne, Clear, Comedo) were also placed in corresponding folders. This makes it easier for the preprocessor function to label an image as belonging to a specific category. The labels were also converted into one-hot encoded vectors suitable for the multi-class classification problem through the argument class_mode='categorical'.

Feature Normalization:

To recommend relevant products to a customer, the normalized data of product features is achieved through simple scaling methods. This practice guarantees that every product characteristic, for instance compatibility with dry or oily skin, is uniformly scaled which means that in comparison, user's skin profiles can be easily included. Normalized features allow the recommendation engine to retrieve correct and precise matching of products that suit the users average conditions or skin needs perfectly.

At the outset, the key product characteristics referring to the skin type were defined. These characteristics decided whether the item is fit for use on combination, dry, oily or sensitive skin and if it can be used on acne prone skin. All of the above characteristics were coded as binary in the dataset (1: compatible, 0: not compatible). Such data being clean and structured made it easier for the recommendation engine to determine the skincare characteristics of the various items.

The dataset underwent a cleanup process which was meant to eliminate any data inconsistency. For instance, unit column titles were stripped of extra spaces while product titles were converted to strings in order to prevent inconsistencies. These steps in the preparation stage made certain that the feature columns to be normalized were in proper shape and also that the data was organized so that thorough analysis and recommendation could be done.

Standardization of Product Features Using StandardScaler

Reviewing the emphasis put by set Eco-soil international on normalizing the product features there is application of the StandardScaler from sklearn.preprocessing. This method standardizes the product features by adjusting the mean with 1 standard deviation. It is customary for every set of recommendations to apply the StandardScaler so that all features

of a product warrant the same degree of attention in the recommendation cross which precludes one feature from prevailing over the others due to variance in the scale however.

Normalizing User Profiles for Comparison

After calibrating the product features, it was important to highlight the transformation for user profiles in the same way. The system provides an interface to users in a form, where users elaborate on the type of skin that they have, say dry skin or acne prone skin. These user text inputs are decoded into and appropriate binary numbers, either 1 or 0, and then scaled again according to the same scaling factor which was applied to product features.

This at the same time is significant for the reason that it aligns the user's skin profile and the product features into one ratio thus allowing the recommendation system to be able to properly find characteristics that fit the user. For instance, if a user's skin is oily and prone to acne, they may potentially have a 'normal' profile which will get compared with the characteristics of each repository that is 'normalized' to improve recommendation retrieval.

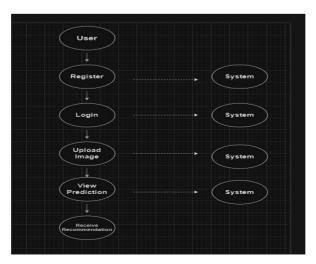
Recommendation System:

The use of recommendation systems based on the cosine similarity algorithms enables user profiles to match with the appropriate skincare products. To achieve a particular recommendation for a user, the system looks at how closely the user comes in providing input information and attributes of the product—the skin type, condition and so on. Because of the statistical techniques employed here, the recommended products become relevant and have a high likelihood of working, which increases the satisfaction of users and the effectiveness of the treatment.

Consultation Module:

For cases requiring enhanced guidance, the possibility of email consultation is included in the software. Platform users have a formal form capturing their problems, which is sent to dermatologists for consultation. This combination of AI-assisted forecasting and consulting doctors creates a more complete scope of reliable health care

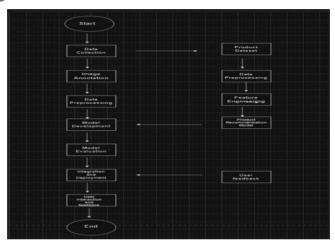
Use Case Diagram:



Nanotechnology Perceptions Vol. 20 No. 7 (2024)

This diagram illustrates how a person communicates with the system of an image classification and recommendation engine. It all starts with a user account registration, then, a user logs in to the system. When the user is logged in, he or she needs to upload an image that is to be analyzed, in all probabilistic sense, it may be an image of skin. Once the image is uploaded, the system processes this image and provides a prediction to the user as to what may be the condition of his or her skin; for example, if the skin shows signs of acne or is clear of any blemishes or has a comedo. There are sometimes recommendation systems which work as well and in this case the recommendation could involve further insights on the condition, treatment options or other related similar images.

Methodology Diagram:



The development and deployment of a product recommendation system is a multi-step process. The first step is collecting data. After collecting the data, if needed, images are annotated. Once all the relevant data is gathered, preprocessing is done to clean the data and make it suitable for processing. Alongside this, the product dataset is also created, markers are specially selected in order to support the model optimization. Through that, a recommendation model is trained. This model then goes through various testing in order to evaluate how effective the model is. And after the evaluations are done, the model is made available by deploying and integrating it into the system. Once the model is made available, user feedback and other interactions are recorded to enhance the model further. This process is done in numerous cycles to trim the system out to make it more efficient for the user. The entire process outlines on how the recommendation system can be integratively and systematically deployed.

4. Results & Discussion:

The project resulted in an AI-powered system for skin disease diagnosis and cosmetic recommendations, meeting the required performance metrics and having practical usability. The UI model Mobile Net, which had been trained for compression of lightweight image classification models, effectively solved the problem of diagnosing acne, dark spots, and comedowns from photographs taken by users.

Nanotechnology Perceptions Vol. 20 No. 7 (2024)

Recommendation engine further increased user satisfaction by calculating cosine similarity measure and two-way matching between each user on the skin to recommend relevant products to them. These functionalities were incorporated into a seamless Flask web application to allow easy interaction with the users, enabling them to upload images and receive appropriate recommendations in real time without stress. In addition, the consultation module provided users with the ability to send an email to dermatologists in order to obtain professional recommendations, combining the advantages of AI and practitioners.

The system performed consistency and scalability by enabling concurrent users with refrained response time. As a result, a number of strategies for structuring images and normalizing features were developed, and particularly strong encryptions provided necessary protection for users' data and privacy. The project also demonstrated how AI may change dermatology practice by making it cheaper and more accessible to the population considering the Indian environment. Providing practical recommendations and saving the need for in person visits has enhanced the inclusive and efficacy of skin health management, allowing the users to take control of their skin health with ease.

5. Conclusion:

At the end of the day, our undertaking creates added value through the combination of the power of Machine Learning and the knowledge of dermatologists. The model based on Mobile Net effectively recognizes skin disease, whereas the recommendatory aids in suggesting appropriate therapeutic skin care products which leads to increased satisfaction and effectiveness of treatment. The professional consultation in such cases further guarantees the user as an expert feedback would be in place.

References

- 1. Kim, J., Lee, S., & Park, H. (2023). Deep learning-based skincare product recommendation: A focus on cosmetic ingredient analysis and facial skin conditions. Journal of Cosmetic Dermatology.
- 2. Lee, S., Kim, J., & Yoon, K. (2022). Facial skincare products' recommendation with computer vision and machine learning techniques. Electronics, 11(1), 143.
- 3. Gupta, A., & Singh, R. (2024). Facial skincare products recommendation using image processing and CNN. Grenze International Journal of Engineering and Technology, 10(2).
- 4. Zhang, Y., Chen, W., & Li, P. (2023). System for recommending facial skincare products based on skin quality and acne status using machine learning. Sensors and Materials, 35(3).
- 5. Rajegowda, G. M., Banerjee, S., & Chatterjee, D. (2024). An AI-assisted skincare routine recommendation system in XR. arXiv Preprint.
- 6. Zheng, Q., Wang, L., & Huang, X. (2022). Automatic facial skin feature detection for everyone. arXiv Preprint.
- 7. Meel, V., &Bodepudi, A. (2021). Melatect: A machine learning model approach for identifying malignant melanoma in skin growths. arXiv Preprint.
- 8. Sonntag, D., Schütz, M., & Klein, R. (2020). The skincare project: An interactive deep learning system for differential diagnosis of malignant skin lesions. arXiv Preprint.
- 9. Shah, V. (2023). A recommendation system for facial skin care using machine learning models. GitHub Repository.
- 10. Kim, R. (2024). South Korean beauty buffs can now thank AI for the perfect foundation shade. Reuters.