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Advanced agriculture has the potential to enhance profitability, increase reliability, and optimize 

the utilization of time and resources. This provides fundamental advantages for farmers and broader 

societal benefits globally. The identification of plant infections poses challenges for farmers. If the 

discovered infection is incorrect, there will be a significant loss in crop production and an inefficient 

assessment of the market. Precision farming also entails the reduction of pesticides and diseases by 

accurately determining the requisite quantity of pesticides. Precision farming is transitioning from 

traditional approaches to innovative techniques, resulting in advancements across multiple 

agricultural industries. The primary objective of this study is to investigate enhanced plant disease 

detection via deep learning algorithms for precision agriculture. This study is conducted utilizing 

the Python programming environment. The collection has 24 unique classes, with each folder 

including photos of either damaged or healthy leaves. This study indicates that Mobile Net is 

engineered for high accuracy while minimizing the number of parameters and computing 

complexity, rendering it suitable for real-world applications where performance and efficiency are 

paramount. Obsolete models such as Dense Net, VGG, or other antiquated architectures may not 

attain same accuracy because to their greater parameter sizes and less effective feature extraction 

capabilities. Mobile Net (94%) surpasses the Old Model (90%) by a margin of 4%. This implies 

that Mobile Net, as a contemporary design built for efficiency and accuracy, delivers superior 

performance in classification tasks. This study advances precision agriculture by enhancing early 

detection of plant diseases via deep learning, resulting in more effective crop management and 

heightened agricultural yield.  

Keywords: Plant Disease; Detection; Deep Learning Algorithms; Precision; Agriculture; 

Accuracy.  

 

 

1. Introduction 

The current development in agricultural evolution is known as precision farming. An increase 

in agricultural yield can be achieved by the application of science and technology through the 

use of precision agriculture [1]. Precision farming also entails reducing the quantity of 

pesticides and illnesses that are used by accurately targeting the amount of pesticides that are 
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required. Precision farming has evolved as an improvement in a variety of agricultural fields 

as a result of the transition from traditional farming methods to the new approaches associated 

with precision farming [2, 3]. The techniques of deep learning are utilized in precision 

agriculture, and the approach that it takes in the field of crop protection is effective enough to 

boost the growth of crops. The diseased leaf can be identified through the use of image 

analysis, which could also be used to measure and locate the boundary of the damaged area in 

order to appropriately identify the object [4]. The diagram that follows provides an illustration 

of how deep learning can be utilized in precision agriculture. 

 

Figure.1 Applications of deep learning in precision agriculture [5] 

This research aims to construct an enhanced deep learning system for the accurate early 

detection of plant diseases to enhance precision agriculture. The research effort intends to 

accurately identify disease patterns by utilizing high-resolution imagery and advanced deep 

learning algorithms, thereby facilitating prompt and informed crop treatment decisions for 

farmers. This strategy seeks to diminish crop losses, lessen reliance on chemical treatments, 

and enhance overall crop output and quality, thereby fostering more sustainable farming 

practices. This section elaborates on the relevant literature pertaining to this study in detail. 

 

2. Literature Review 

The subsequent table elucidates the previous literature pertinent to the topic of enhanced plant 

disease detection using deep learning algorithms for precision agriculture in depth. 

Table.1 Related works 

AUTHORS AND YEAR METHODOLOGY FINDINGS 

Umamageswari et al., (2022) [6] The study used convolutional neural 

networks (CNNs) to classify plant 
diseases from leaf photos by training the 

model on a huge dataset of diseased leaf 

images. 

The suggested approach accurately 

identified and classified leaf diseases, 
exceeding established methods in 

precision and efficiency. 
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Chin et al., (2023) [7] Drone-based photography and machine 

learning techniques were utilized to 
gather and analyse aerial crop photos to 

detect and classify plant diseases across 

broad agricultural areas. 

The drone-based detection system 

identified plant diseases across broad 
areas with great accuracy and 

efficiency, providing a scalable 

precision agricultural solution. 

Parez et al., (2023) [8] Focusing on disease-symptom-related 

visual elements in plant photos with 

vision transformers improved disease 
detection accuracy. 

For real-time plant disease 

identification in precision agriculture, 

the vision transformer-based technique 
outperformed standard models in 

detection accuracy and processing 

efficiency. 

Dey et al., (2024) [9] CNNs were used to evaluate picture 
data for precision agriculture plant 

disease identification and classification. 

The deep learning-based system 
accurately detected and classified plant 

diseases, highlighting its potential to 

improve early intervention and crop 
management. 

Akintuyi (2024) [10] Using self-learning algorithms to assess 

real-time agricultural data, adaptive AI 
systems optimize farm operations by 

adapting to changing conditions. 

The study demonstrated that self-

learning algorithms improve precision 
agriculture operational efficiency by 

enabling adaptive decision-making that 

boosts crop yields and resource 
management. 

Research Gap 

Considering progress in deep learning for plant disease identification, comprehension of the 

subtle distinctions across disease kinds, symptoms, and their disparate effects on crop yield 

and quality remains inadequate. Contemporary models frequently emphasize the recognition 

of observable symptoms but are deficient in distinguishing between diseases exhibiting 

analogous symptoms or evaluating their impacts on crop yield [11,12]. This gap underscores 

the necessity for a more holistic, symptom-aware deep learning methodology that not only 

properly identifies diseases but also offers insights into disease severity and probable yield 

loss, facilitating more informed decision-making in precision agriculture. 

 

3. Methodology 

This study utilizes a CNN model to categorize plant illnesses using a structured collection of 

damaged and healthy leaf photos from various plant types. The subsequent parts delineate the 

technique, encompassing data pre-processing, model construction, training and optimization, 

and performance evaluation. 

Dataset Structure and Preparation 

The collection contains 24 folders of photos grouped by plant species and sickness or health. 

Each folder contains photos of disease signs or healthy leaf traits, organized by 

Plant_Name___Disease Name. Examples are Apple___Apple_scab for Apple Scab and 

Tomato healthy for healthy tomato leaves. This clear arrangement lets the CNN model train 

from labelled examples to detect healthy and unhealthy leaves for each plant kind. Each image 

is scaled to 128x128 or 224x224 pixels for CNN processing to ensure consistency. 

Standardizing pictures is necessary for stable model training. Normalizing pixel values to a 0-

1 range speeds CNN model convergence by standardizing scale and reducing computation. 
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Data Augmentation and Class Balancing 

When classes have different numbers of photos, data augmentation is used to improve model 

generalizability. Image diversity from rotation, flipping, brightness modification, and zooming 

lets the model learn from real-world variables like lighting and viewing angles. This phase 

prevents overfitting by preventing the model from becoming overly tuned to certain patterns 

in a small dataset. Class balancing is achieved by oversampling underrepresented classes or 

enhancing photos to provide a more evenly distributed dataset for better training 

generalization. 

CNN Model Architecture 

CNN architecture captures and classifies complex plant leaf visual characteristics. Early 

convolutional layers identify edges and textures, while deeper layers catch complicated 

disease-specific patterns. The architecture sequences convolutional and pooling layers to 

condense the image into useful features while lowering computing effort. Pooling layers down 

sample feature maps, keeping critical information while reducing spatial dimensions, saving 

time and computational cost. After numerous convolutional and pooling layers, fully linked 

layers’ map features to 24 class labels. The final layer arrangement reads extracted patterns 

and predicts plant kinds and diseases. 

Training and Optimization 

Prediction error is calculated by comparing projected outputs to actual labels in the CNN 

model trained with a backpropagation technique and cross-entropy loss function. Gradient 

descent optimization modifies layer weights to minimize error over iterations. Performance is 

improved by tuning learning rate, batch size, and epochs. The fully connected layers use 

dropout regularization to enforce redundancy in the network's learning routes and prevent 

overfitting by randomly deactivating a fraction of neurons during training. 

Evaluation and Model Validation 

This stratified strategy divides data into training, validation, and testing sets to ensure equitable 

class representation for model evaluation. To avoid overfitting, validation accuracy is 

evaluated using early stopping criteria to cease training when improvements stagnate. The 

model's accuracy, sensitivity, specificity, and F1 score are measured on the test set to evaluate 

its classification capacity across plant diseases. 

This approach trains for plant disease identification using a well-structured dataset, data 

augmentation, and a properly built CNN architecture. In precision agriculture, the CNN model 

tuned for various visual feature extraction can generalize to unseen data for early identification 

and disease management. This research's methodology flowchart is illustrated below. 
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Figure.2 Step by step implementation of the proposed methodology 

 

4. Results and Discussions 

The dataset used for plant disease detection consists of 5,648 images divided into 24 classes, 

each representing a specific plant disease or a healthy state for plants such as apples, corn, 

potatoes, and tomatoes. During training, the images are processed in batches of 20, with each 

image standardized to a size of 224x224 pixels and formatted in RGB colour channels. Each 

batch is labelled by class numbers, as seen in the provided example of class labels (e.g., [11, 

5, 12, 8]), which allow the model to learn associations between images and their respective 

disease or health status. Of the total images, 226 are allocated for training and 57 for validation, 

enabling the model to evaluate its performance on unseen data after each epoch to promote 

better generalization and reduce overfitting. The loss and accuracy over epochs are illustrated 

in figure below. 
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Figure.3 Loss and Accuracy over Epochs 

Mostly influenced by MobileNetV2, the neural network's architecture has a features and 

classifier portion for plant disease classification. Multiple convolutional layers handle input 

pictures using batch normalization and the ReLU6 activation function to induce non-linearity 

and stabilize training in the features portion. A Conv2dNormActivation in the first layer 

reduces an RGB image with a 3x3 kernel to 32 channels, halving its size. An Inverted Residual 

layer (a core MobileNetV2 block) minimizes computation by depth wise convolution Ing each 

input channel, then pointwise convolution to compress them from 32 to 16. Another Inverted 

Residual layer expands channels using 1x1 convolution, depth wise convolution, batch 

normalization, and ReLU6 activation to improve feature extraction. The classifier section 

includes a Dropout layer to prevent overfitting by randomly deactivating neurons during 

training and a Linear layer that takes 1280 input features from the feature section and generates 

25 output features for classification, allowing the network to predict 25 plant disease and 

healthy classes. 

Architectural design and intended use cases distinguish Dense Net and Mobile Net, 

particularly in resource efficiency and performance. Dense Net uses max pooling for down 

sampling and densely connected layers to improve gradient flow and feature reuse, improving 

training on smaller datasets but increasing computational burden and memory usage as model 

depth increases. Mobile Net, on the other hand, uses depth wise separable convolutions to 

reduce parameters and computational costs while maintaining efficiency through adjustable 

width and resolution multipliers, making it adaptable to hardware constraints. Both 

architectures use pooling layers for down sampling, but Mobile Net’s convolutional structure 

is more efficient and versatile for low-resource environments, making it the best choice for 

plant disease detection because it balances speed, accuracy, and computational demands. 

Mobile Net’s architecture and optimizations improve its performance in modern jobs, 

confirming its prominence in modern applications over Dense Net. 
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Figure.4 Training Accuracy Comparison: Dense Net and Mobile Net 

Mobile Net’s accuracy is higher because depth wise separable convolutions and adaptive 

scaling algorithms allow it to capture complicated dataset patterns without overfitting. Dense 

Net, however resilient, may struggle with high-resolution photos because to its more complex 

architecture, which might slow data processing. In situations requiring precision and 

computing efficiency, Mobile Net excels. 

 

Figure.5 Accuracy Comparison: Dense Net Vs Mobile Net 

Mobile Net, with 3.50 million parameters, shows that a modern architecture can outperform 

Dense Net, which has 7.98 million parameters, with fewer resources. This efficiency makes 

Mobile Net better for resource-constrained applications like mobile devices, while Dense Net 

is better for workloads with plenty of computational capacity and less speed. 
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Figure.6 Parameter Comparison: Dense Net Vs Mobile Net 

Mobile Net’s faster inference time of 0.0991 seconds compared to Dense Net’s 0.3019 seconds 

makes it suitable for real-time applications like plant disease detection on mobile or edge 

devices that require immediate predictions. Mobile Net’s lower model size and fewer 

parameters reduce computational cost and speed up processing. 

 

Figure.7 Inference Speed Comparison: Dense Net Vs Mobile Net 

Mobile Net’s accuracy of 94% surpasses Dense Net’s 89%, indicating its superior performance 

for the plant disease prediction task. Furthermore, with only 3.5 million parameters compared 

to Dense Net’s 7.98 million, Mobile Net demonstrates a more efficient balance between model 

size and accuracy, highlighting its effectiveness in maintaining high performance while 

minimizing complexity. 
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Figure.8 Accuracy Vs Model Size Comparison 

Mobile Net demonstrates superior efficiency in both model size and inference time while 

achieving an impressive accuracy of 94%, making it a standout choice for applications 

requiring rapid processing and minimal resource consumption. In contrast, Dense Net, with its 

bulkier architecture, achieves a lower accuracy of 89%, reflecting its older design principles 

that prioritize accuracy over computational efficiency. Additionally, Reset follows with an 

accuracy of 87%, indicating that while it offers benefits in certain deep learning tasks, it still 

falls short compared to Mobile Net’s optimized performance. Efficient Net, another modern 

architecture, achieves a commendable accuracy of 93%, showcasing its effectiveness but still 

not surpassing Mobile Net in efficiency and speed. Overall, Mobile Net’s combination of high 

accuracy and low computational demand makes it an ideal candidate for deployment in 

environments where resources are limited and timely predictions are essential, particularly in 

the context of real-time applications like plant disease detection. 

 

Figure.9 Accuracy comparison of different models on plant disease dataset 
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Mobile Net, with an impressive accuracy of 94%, outperforms older models, which generally 

achieve around 90%, by a notable 4% margin. This enhancement indicates that Mobile Net, as 

a modern architecture, is specifically optimized for both efficiency and accuracy, resulting in 

superior classification performance. Its design focuses on achieving high accuracy while 

maintaining a compact number of parameters and lower computational complexity, making it 

exceptionally suited for real-world applications where efficient performance is crucial. In 

contrast, older models like Dense Net and VGG often struggle to reach the same accuracy 

levels due to their larger parameter sizes and less efficient feature extraction methods, which 

can lead to increased computational demands and slower inference times. Therefore, Mobile 

Net represents a significant advancement in the quest for effective and efficient deep learning 

solutions. 

 

Figure.10 Accuracy Comparison: Mobil Net Vs Old Model 

 

5. Conclusion 

In conclusion, Mobile Net outperforms past models in accuracy and efficiency, obtaining 94% 

compared to 90% in previous architectures. For real-world applications that require efficiency, 

its design promotes fewer parameters and reduced computational complexity. Modern 

optimizations make Mobile Net a top classifier, especially in resource-constrained 

applications. 
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