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Achieving high accuracy and stability in data clustering remains a complex challenge, requiring 

innovative techniques to optimize feature weighting and clustering performance. This study 

introduces an enhanced ensemble clustering framework based on Heuristic Windowed K-Point 

(HWKP) Clustering, incorporating an adaptive optimization mechanism and Aggregated Decision 

Fusion (ADF) for improved cluster stability. The proposed approach refines feature selection by 

employing a fitness-guided feature weighting strategy, leveraging Mutual Information (MI) scores 

to dynamically assign optimal weights. The ADF technique integrates multiple clustering outputs, 

applying a majority voting-based strategy to generate a more robust and reliable final partition. 

Experimental validation on benchmark datasets, including a lung cancer dataset, demonstrates the 

superiority of HWKP-ADF over conventional clustering techniques in terms of accuracy, stability, 

and computational efficiency. The proposed method effectively handles noisy, high-dimensional 

datasets, achieving notable improvements across performance metrics such as accuracy, precision, 

recall, F1-score, RMSE, ARI, and AMI. By integrating heuristic windowed clustering with adaptive 

decision fusion, this approach offers a scalable and high-performance solution for complex 

clustering problems, paving the way for further advancements in ensemble clustering 

methodologies. 

Keywords: Ensemble Clustering, Heuristic Windowed K-Point Clustering, Aggregated 

Decision Fusion, Adaptive Feature Weighting. 

 

 

1. Introduction 

Clustering is a powerful technique widely applied across various domains, including biology, 

information retrieval, image processing, and data classification. Its primary aim is to 

categorize similar data points into cohesive groups based on specified criteria. However, each 

clustering method is subject to its own biases, as different algorithms optimize distinct criteria. 

A significant challenge in applying single clustering algorithms arises from the absence of 

ground truth labels, which complicates the validation of clustering results [1]. To address these 

challenges, the concept of clustering ensembles—often referred to as consensus clustering or 

ensemble clustering—has emerged. This approach combines multiple base clusterings into a 
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single consensus clustering, revealing the underlying structure of the data and yielding more 

reliable results [2][3][4]. 

A clustering ensemble method typically consists of two phases: generation and consensus 

function. During the generation phase, various base clusterings are produced from the same 

dataset using conventional clustering techniques. These base clusterings may be generated 

through different parameter initializations of the same algorithm [5], the application of 

alternative clustering algorithms [6], or by combining multiple weak clustering algorithms [7], 

along with techniques such as random projection and data resampling [8]. In the consensus 

function phase, these base clustering are aggregated into a matrix to enhance the accuracy of 

the final clustering outcome [9][10]. 

In this study, we propose a novel substantial weighted hybrid flower pollination technique 

(HWKPA) that forms an ensemble clustering framework utilizing an adaptive weights 

consensus function and two similarity measures. The framework consists of three primary 

stages: first, data preprocessing is undertaken to organize the data; second, k consensus 

clusters are constructed by assessing the similarity of the initial clusters and adaptively 

aggregating the most similar ones; and third, potential clusters are identified based on selected 

items, and their quality is evaluated. The final clustering result is derived through substantial 

voting that minimally impacts the cluster quality. Additionally, to maintain data integrity when 

discarding unsuitable clusters, the object neighborhood similarity for uncertain items is 

incorporated into the process. 

The principal contributions of this research include: 

• Development of HWKPA: We introduce the HWKP algorithm, which leverages a 

hybrid co-association matrix from the ensembles to construct the consensus clustering. This 

matrix enables the dynamic selection of the optimal clustering strategy. 

• Effective Fitness Function: We design a robust fitness function for evaluating the 

performance of the ensemble methods. 

• Comprehensive Evaluation: We assess the proposed algorithm lung cancer dataset, 

sourced from the UCI Machine Learning Repository. 

By addressing the limitations of existing clustering techniques through our novel ensemble 

framework, we aim to enhance clustering accuracy and reliability, paving the way for further 

advancements in the field. 

 

2. Related Works 

Multiple Classifier Systems (MCS) concentrates on increasing the diversity of ensemble by 

employing local experts to apply labels towards instances guided by a strategy of partitioning 

defined by decision trees [11]. This ensemble utilizes mapping based on these tree-based 

partitions (rather than the traditional Euclidean distance) to overcome the curse of 

dimensionality. The Partly-Informed Sparse Autoencoder (PISAE), which is exploited to 

decrease the communication of data in Wireless Sensor Networks by reconstructing the sensor 

dataset with only prime number input features [12]. Using K-Medoid, an approach clustering 
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the node and Bacteria Foraging Optimization and Harmony Search optimizing cluster head 

(CH) based energy balance. 

Consensus Clustering of Spectral Clustering for Non-Intrusive Load Monitoring (NILM) A 

consensus clustering method is proposed to merge two spectral clustering methods, called SC-

M and SC-EV [13]. The resulting approach aims at improving the accuracy of device 

disaggregation in NILM applications. The Iterative Combining Clusterings Method (ICCM) 

is an iterative process that uses many clustering algorithms and then votes on which sub 

clusters are best [14]. Based on gene expression and real-world datasets, ICCM showed large 

improvements of robustness and stability verified by impressive better internal- and external 

clustering metrics. Consensus clustering based on k-means (KCC) is an efficient consensus 

clustering approach, which reformulates computationally expensive clustering into a 

generalized utility k-means problem. KCC, which is proposed in this paper [15] and performs 

scalability clustering timely for large-scale data set clusters quickly and accurately from the 

view of direct graph-based cluster similarity measure. Evaluation on real-world datasets not 

only demonstrates its adaptability, but also KCC outperforms these alternative procedures in 

terms of computing time. 

Subspace Division Data Clustering (SDDC) solves a series of high-dimensional clustering 

problems and determines minimum redundancy and maximum mutual information for 

subspace partitioning [16]. A K-means clustering, based on the data feature correlations, will 

create separate subspaces that although fall within a multi-dimensional area are not 

overlapping with one another. It groups clustering solutions by applying size, coverage and 

diversity metrics to create a consensus solution in its Multi-objective Optimization framework 

[17]. The algorithm filters clustering solutions with the strong agreement between solutions 

from which one finds a serious risk of degradation in accuracy. 

The Consistency Cluster Consensus with MapReduce approach applies the mapreduce 

framework to ending up versatile clusters by now using a new membership similarity measure 

[18]. After primary clusters are turned into binary form, for the highly similar clusters 

consensus is performed or high cluster similarity getting emphasised. Cytometry clustering is 

sensitive to hyperparameters and algorithm assumptions. Consensus Clustering for Cytometry 

Data tackles this problem by placing the clustering process into a consensus clustering 

framework [19]. 

Brain tissue segmentation using consensus clustering Modelling for Fuzzy Consensus 

Clustering (FCC) to Segment Brain Tissue from MRI Our approach combines some existing 

fuzzy clustering techniques and aggregate outputs using a voting schema [20]. Three-Level 

Weighted Clustering Ensemble enhances the clustering agreement from three levels: points, 

clusters and partitions [21]. In the first step, an adjacency matrix is produced from base 

clusterings by using their majority vote and subsequently these are weighted to produce refined 

consensus. 

First, k-means is used to produce base clusters (elements inside the same cluster should be as 

similar), and after that meta-clustering performs the re-clustering of primary clusters so that 

clustering agreement can be improved [22]. It is designed in such a way that it still has the 

speed of k-means but would not face limitation if clusters are non-spherical. Single Cell RNA 
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Sequencing for Gene Clustering processes scRNA-seq data, addressing the drop-out 

challenge—cases where misrecorded lowly expressed genes as zeros [23]. 

Hydrograph Clustering with Self-Organizing Maps (SOM) uses feature-based clustering to 

represent dynamic groundwater patterns identified using SOM [24]. Adaptive Local Force 

Clustering for Gene Expression Data improves cancer gene clustering by adapting local 

features to establish the definition of cluster centroids through two local criteria—Centrality 

and Coordination [25]. 

 

3. Proposed Model 

The proposed methodology introduces a robust ensemble clustering framework that leverages 

a hybrid approach for improved cluster quality. First, the HWKP Algorithm generates initial 

base clusterings, with each feature weighted based on its Mutual Information (MI) score, 

enhancing feature relevance. To refine these cluster configurations, the ADF optimizes the 

clustering by exploring the solution space and avoiding local optima through global and local 

pollination steps as shown in Fig 1.  

 

Figure 1: Overall Architecture of Proposed Model 

Finally, a Consensus Voting Mechanism constructs a consensus matrix to aggregate these 

refined clusterings into a single, coherent final partition, ensuring robustness by selecting the 

most common cluster assignments. This integrated approach offers significant improvements 

in accuracy, stability, and computational efficiency, as demonstrated on datasets such as lung 

cancer. 

3.1 Data Collection and Preprocessing 

The PLCO Cancer Screening Trial Dataset is a comprehensive resource created by the 

National Cancer Institute, designed to investigate the effectiveness of cancer screening in 
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reducing mortality for prostate, lung, colorectal, and ovarian cancers. This dataset 

encompasses a wide array of information related specifically to lung cancer screening results 

and patient outcomes, making it a valuable asset for research into early detection and risk 

assessment. The dataset includes numerous features, such as demographic information (e.g., 

age, gender, smoking history), health metrics, and results from screening tests, which can 

provide insights into risk factors and patterns associated with lung cancer development. 

Identify Missing Values: Determine which features have missing values. 

Mean/Median Imputation: Replace missing values with the mean (or median) of the feature. 

𝒳missing =
1

N
∑ 𝒳i

N
i=1                                                   (3.1) 

Where N is the number of non-missing values. 

Mode Imputation: For categorical features, replace missing values with the mode (most 

frequent value). 

Normalization: Scale each feature to a [0,1] range to remove differences in feature magnitude. 

𝒳norm =
𝒳−𝒳min

𝒳max−𝒳min
                                                    (3.2) 

where 𝒳min and 𝒳max are the minimum and maximum values of the feature. 

Standardization: Scale features to have a mean of 0 and a standard deviation of 1, often 

beneficial for distance-based clustering algorithms. 

𝒳std =
𝒳−μ

σ
                                                           (3.3) 

where μ is the mean and σ is the standard deviation. 

One-Hot Encoding: Transform categorical variables into binary vectors. For a categorical 

variable with k classes, create k new binary features. 

Label Encoding: Assign a unique integer to each category in the variable. 

Category A → 0, Category B → 1, Category C → 2                      (3.4) 

These steps result in a clean and standardized dataset suitable for clustering. Each processed 

feature is scaled or encoded to minimize biases due to differing scales, which helps clustering 

algorithms perform more accurately. 

3.2 Feature Weighting Using Mutual Information (MI): 

Mutual Information (MI) measures the dependency between two random variables. In 

clustering, MI can be used to evaluate the relevance of each feature with respect to the 

clustering target, helping determine weights for features based on how much information each 

one contributes to distinguishing between clusters. 

Mutual Information (MI): 

MI between two random variables X (feature) and Y (target or cluster labels) quantifies the 

amount of information obtained about one variable through the other. For each feature Xi and 

clustering target Y: 
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MI(Xi, Y) = ∑ ∑ p(x, y)y∈Yx∈XI
log (

p(x,y)

p(x) p(y)
)                            (3.5) 

where: p(x, y) is the joint probability distribution of Xi and Y, p(x) and p(y) are the marginal 

probability distributions of Xi and Y. 

Interpret MI Values: 

The MI score MI(Xi, Y),indicates the relevance of feature Xi for clustering. Higher values mean 

a stronger dependency between the feature and clustering outcome, making it more valuable 

for the clustering process. To make MI values comparable across features normalize them. If 

MI(Xi, Y) scores are calculated for each feature i, a normalized weight Wi for each feature can 

be determined by: 

Wi =
MI(Xi,Y) 

∑ MI(Xj,Y)n
j=1

                                                       (3.6) 

where n is the total number of features. The result is a set of weights W that sum to 1 and can 

be used to prioritize features in the clustering algorithm. Use the normalized weights Wi to 

scale each feature in the clustering process. Higher-weighted features (i.e., those with higher 

MI values) will contribute more significantly to the distance calculations or clustering criteria, 

enhancing clustering accuracy by emphasizing relevant features. 

3.3 Generation of Base Clustering (HWKP): 

Generating diverse base clustering is crucial in ensemble clustering to improve robustness. 

The HWKP Algorithm adapts the weights of each feature, based on their Mutual Information 

scores, to improve clustering accuracy and create varied clustering configurations. 

1. Initialize Clusters: 

Choose k initial cluster centroids, C1, C2, … , Ck, using different initialization strategies (e.g., 

random initialization, k-means++, or weighted random sampling) to create diversity across 

base clusterings. 

2. Compute Distance with Weighted Features: 

For each data point xi and cebtroid Cj, calculate the weighted Euclidean distance Dij between 

xi and Cj. The distance for data point xi (with features xi1, xi2, … , xim) to  centroid Cj (with 

coordinates ci1, ci2, … , cim) is: 

Dij = √∑ Wf(xif − cjf)
2m

f=1                                            (3.7) 

where: Wf  is the weight for feature f (determined using Mutual Information as explained 

previously), m is the number of features. 

3. Assign Data Points to Nearest Cluster: 

Assign each data point xi to the cluster with the nearest centroid based on Dij. This step forms 

the initial clusters for each initialization. 
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4. Recalculate Centroids with Nearest Cluster: 

For each cluster, update the centroid Cj by taking the weighted mean of all data points in that 

cluster: 

cif =
∑ Wf∙xifxi∈Cj

∑ Wfxi∈Cj

                                                (3.8) 

where cifis the f-th feature of centroid Cj and xif is the f-th feature of data point xi in cluster Cj . 

5. Iterate Until Convergence: 

Repeat steps 2-4 until the centroids stabilize (i.e., there is minimal change in centroids or 

cluster assignments between iterations). 

6. Generate Multiple Base Clusterings: 

Repeat the algorithm with different initializations or variations in k (the number of clusters), 

weighting schemes, or subsets of features. This variety in clustering configurations enhances 

the ensemble’s robustness. 

By generating base clusterings using these different settings, the ensemble captures diverse 

perspectives of the data structure, making the final consensus clustering more reliable and 

robust. This HWKP approach ensures that the clustering process emphasizes the most relevant 

features while creating varied and meaningful clusters. 

3.4 ADF for Enhanced Clustering 

The ADF is an optimization algorithm inspired by the natural pollination process. It enhances 

clustering by refining the solutions (cluster configurations) generated by the HWKP Algorithm 

to avoid local optima and achieve a more globally optimal solution. 

In the context of ensemble clustering, ADF is used to explore and refine base clusterings 

generated in the previous steps. This step operates iteratively over the generated base 

clusterings, aiming to improve each clustering configuration by treating the centroids as 

individual "flowers" undergoing pollination. 

3.4.1 Define Pollination Types: 

Global Pollination: This type mimics cross-pollination where pollinators (e.g., bees) carry 

pollen across flowers. Here, centroids are updated based on the best solution in the population 

to explore solutions globally. 

𝒳i
t+1 = 𝒳i

t + L(𝒳∗ − 𝒳i
t)                                                 (3.9) 

where: 𝒳i
t+1 is the updated centroid in the next iteration, 𝒳i

t is the current centroid position, 

𝒳∗ is the current best solution (best centroid configuration), L is a scaling factor derived from 

a Lévy distribution, which helps ensure a large step size for global exploration. 

3.4.2 Lévy Flight Mechanism: 

The Lévy distribution generates step sizes for global pollination, allowing large jumps in the 

search space to avoid local optima. The step length L is drawn from a Lévy distribution: 
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L ∼ Leˊvy(λ),            λ = −2                                         (3.10) 

This mechanism supports exploration by moving centroids over large distances, increasing the 

chance of finding globally optimal clusters. 

3.4.3 Local Pollination: 

In local pollination, nearby flowers exchange pollen, emulating self-pollination. This 

mechanism exploits local search and refines the current clustering solution by adjusting 

centroids based on neighboring centroids within the clustering. 

𝒳i
t+1 = 𝒳i

t+∈ (𝒳i
t − 𝒳k

t)                                   (3.11) 

Where: 𝒳i
t and 𝒳k

t are randomly selected centroid positions (flowers) within the 

neighbourhood, ∈ is a random number from a uniform distribution [0,1] that controls the step 

size for local ad 

3.4.4 Switching Probability: 

To balance exploration (global pollination) and exploitation (local pollination), a switching 

probability p (typically between 0.1 and 0.3) is used. At each iteration, a random number 

determines whether the algorithm performs global or local pollination: 

If r < p,  apply global pollination;  otherwise,  apply local pollination  (3.12) 

where r is a random number from a uniform distribution [0,1]. 

3.4.5 Iterate Until Convergence: 

The pollination process repeats, updating the centroids iteratively, until there is minimal 

change in cluster assignments or a predefined number of iterations is reached. 

3.4.6 Refinement of Base Clusterings: 

Each refined clustering solution (updated by ADF) represents an improved base clustering. 

These refined clusterings are used in the ensemble to form a consensus result, which ultimately 

increases the robustness of the final clustering output. 

3.5 Consensus Voting Mechanism for Ensemble Clustering 

The final step in ensemble clustering is the Consensus Voting Mechanism, which aggregates 

the refined base clustering from the ADF into a single, unified clustering result. This approach 

uses a consensus matrix and a major voting consensus function to derive a coherent final 

partition. 

3.5.1 Construct a Consensus Matrix: 

The consensus matrix M is created by examining agreements between pairs of data points 

across all base clusterings. For N data points and B base clusterings, the matrix M is an N × N 

matrix where each entry Mi,j reflects the proportion of base clusterings in which points i and j 

belong to the same cluster. Calculate each entry Mi,j as: 

Mi,j =
1

B
∑ δi,j

(b)B
b=1                                            (3.13) 
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where: B is the number of base clustering, δi,j
(b)

= 1 if points i and j are in the same cluster in 

the b-th base clustering, otherwise δi,j
(b)

= 0. 

3.5.2 Determine Cluster Assignments Using Majority Voting: 

• The consensus matrix is used to partition the data by grouping points that 

frequently co-occur in the same cluster. 

• A threshold value (e.g., 0.5) can be applied Mi,j to determine if points should be 

assigned to the same final cluster. For example, if Mi,j > 0.5, then points i and j are likely to 

belong to the same cluster in the final partition. 

• This can be done using clustering techniques such as Hierarchical Clustering on 

the consensus matrix. 

3.5.3 Apply Major Voting Consensus Function: 

For each data point xi, the final cluster label Li is determined by taking the most frequent 

cluster assignment across all base clusterings: 

Li = arg max
k

∑ ∥ (Ci
(b)

= k)B
b=1                            (3.14) 

where: Ci
(b)

 is the cluster label for xi, in the b-th base clustering, ∥ (∙) is an inducator function 

that is 1 if Ci
(b)

= k and 0 otherwise, k represents possible cluster labels. 

3.5.4 Resulting Final Partition: 

The final cluster assignments Li for each data point form a unified clustering partition. This 

final partition reflects a consensus view of the data structure, leveraging the diversity and 

refinement from the ensemble’s base clustering. The Consensus Voting Mechanism 

aggregates the individual clustering results to produce a final partition that is more robust and 

stable. By using the consensus matrix to measure pairwise co-occurrence and a major voting 

function, this approach effectively consolidates the diverse base clustering into a coherent final 

result that captures the most agreed-upon clusters across the ensemble. 

Algorithm 1 Ensemble Clustering Algorithm 

1: Input: Dataset X, number of cluster k, base clusterings B 

2: Output: Final Cluster labels 

3: Data Processing 

4: for each feature in X do 

5:     Clean and scale data. 

6: end for 

7: Feature Weighting with Mutual Information (MI) 

8: for each feature f do 
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9:     Calculate MI score and assign weight Wf. 

10: end for 

11: Generate Base Clusterings 

12: for b = 1 to B do 

13:     Apply Weighted K-Point with Wf. 

14:     Repeat until centroids converge. 

15: end for 

16: Optimization 

17: for each centroid Cf do 

18: if random r < p then 

19:     Golbal update with Lévy flight. 

20: else 

21:     Local update with nearby centroids. 

22: end if 

23: end for 

24: Consensus Voting 

25: for each data point xi do 

26:     Use majority vote to assign final lablel. 

27: end for 

28: Return Final cluster labels for X 

The proposed ensemble clustering algorithm begins by preprocessing the dataset for 

consistency, then calculates Mutual Information (MI) scores to assign weights to features 

based on relevance. Next, multiple base clusterings are generated using a HWKP approach, 

followed by the ADF to optimize the clusters by exploring the solution space and preventing 

local optima. Finally, a consensus voting mechanism combines results from each base 

clustering to yield a coherent, final partition, ensuring enhanced accuracy, stability, and 

robustness in the clustering outcomes. 

 

4. Results and Discussions 

The experiment was implemented in Python, utilizing its robust libraries for data science, 

clustering, and deep learning. Data preprocessing, feature selection, and the proposed 

HWKPO algorithm were conducted using Python on a system configured with 32 GB RAM, 

Intel Core i7, and an NVIDIA GeForce GTX GPU. Key libraries included Scikit-Learn for k-

means clustering and mutual information calculations, along with NumPy and Pandas for data 
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manipulation. TensorFlow and Keras were employed to build and train CNN-ELM and 

DenseNet-BC models for nutrient classification. The HWKPO algorithm iteratively optimized 

clusters by dynamically assigning feature weights based on mutual information, while 

alternating between global and local search strategies using the ADF to avoid local optima. 

The CNN and DenseNet-BC models were trained with fine-tuned hyperparameters, including 

learning rate, batch size, and epochs, to maximize accuracy and F1-score across experimental 

runs. 

Table 1: Comparative analysis of clustering methods 

Method Silhouette Score Davies-Bouldin Index NMI ARI AMI RMSE 

NILM [13] 0.67 0.82 0.63 0.58 0.60 1.10 

ICCM [14] 0.70 0.79 0.68 0.63 0.65 1.05 

KCC [15] 0.72 0.76 0.70 0.68 0.67 1.00 

FCC [20] 0.74 0.74 0.72 0.69 0.71 0.98 

PCPS [21] 0.76 0.72 0.75 0.72 0.73 0.65 

HWKPA (Proposed) 0.85 0.65 0.80 0.78 0.79 0.35 

The table 1 presents a comparative analysis of six clustering methods based on various 

performance metrics, including Silhouette Score, Davies-Bouldin Index, Normalized Mutual 

Information (NMI), Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and 

Root Mean Square Error (RMSE).  

 

Figure 2: Performance Comparison of Clustering Methods 

From the Fig 2, the proposed method demonstrates superior performance across all metrics, 
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achieving a Silhouette Score of 0.85, indicating the highest cluster cohesion and separation 

among the methods. Its Davies-Bouldin Index of 0.65, the lowest in the table, signifies 

minimal overlap between clusters, suggesting that HWKPA produces well-defined cluster 

boundaries. 

In terms of alignment with true labels, HWKPA achieves the highest NMI (0.80), ARI (0.78), 

and AMI (0.79), reflecting a high degree of clustering accuracy and stability. Furthermore, 

HWKPA attains the lowest RMSE (0.35), indicating minimal error in clustering. Compared to 

other methods like NILM, ICCM, KCC, FCC, and PCPS, HWKPA shows significant 

improvements across all metrics, establishing it as a robust and effective clustering approach 

in this analysis. The proposed HWKPA’s results suggest its capability to provide both precise 

and reliable clustering outcomes, particularly suited for complex datasets. 

Table 2: Comparison of Jaccard Index 

Method Jaccard Index 

NILM [13] 0.45 

ICCM [14] 0.50 

KCC [15] 0.55 

FCC [20] 0.60 

PCPS [21] 0.65 

HWKPA (Proposed) 0.85 

Table 2 shows the Jaccard index values for each method, indicating the similarity between the 

clusters for the respective models. 

 

Figure 3: Comparison of Jaccard Index 

From the Fig 3, the NILM [13] method has a Jaccard Index of 0.45, reflecting moderate 
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similarity between clusters, while the ICCM [14] method shows a slight improvement with a 

value of 0.50. The KCC [15] method achieves a 0.55 Jaccard Index, indicating better cluster 

similarity. The FCC [20] method scores 0.60, and the PCPS [21] method shows a stronger 

similarity at 0.65. Finally, the HWKPA (Proposed) method achieves the highest Jaccard Index 

of 0.85, demonstrating a significantly higher similarity between clusters and outperforming 

the other methods in terms of cluster quality. Overall, the table illustrates a clear trend of 

increasing similarity, with the proposed method yielding the best results. 

Table 3: Overall Performance Metrics 

Method Accuracy Precision Recall F1-Score 

NILM [13] 0.72 0.75 0.70 0.72 

ICCM [14] 0.75 0.78 0.73 0.75 

KCC [15] 0.77 0.80 0.75 0.77 

FCC [20] 0.79 0.82 0.77 0.79 

PCPS [21] 0.81 0.84 0.80 0.82 

HWKPA (Proposed) 0.946 0.93 0.94 0.93 

Table 3 presents the overall performance metrics for various clustering methods, including 

accuracy, precision, recall, and F1-score. The methods are compared across these key metrics, 

with the HWKPA (Proposed) method showing the highest performance.  

 

Figure 4: Overall comparison of Performance Metrics 

From the Fig, the NILM [13] method exhibits the lowest values in all metrics, with an accuracy 

of 0.72, precision of 0.75, recall of 0.70, and F1-score of 0.72, indicating moderate clustering 

performance. The ICCM [14] method shows a slight improvement, with accuracy reaching 
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0.75, precision 0.78, recall 0.73, and F1-score 0.75. The KCC [15] method performs better, 

with accuracy at 0.77, precision 0.80, recall 0.75, and F1-score 0.77. FCC [20] further 

improves with accuracy of 0.79, precision 0.82, recall 0.77, and F1-score 0.79, demonstrating 

stronger clustering results. The PCPS [21] method shows continued improvement, achieving 

an accuracy of 0.81, precision 0.84, recall 0.80, and F1-score 0.82. Finally, the HWKPA 

(Proposed) method significantly outperforms the others, achieving an outstanding 94.6% 

accuracy, with precision of 0.93, recall of 0.94, and F1-score of 0.93, indicating superior 

clustering performance, minimizing false positives, and capturing more relevant data points 

than the other methods. This shows that the proposed HWKPA method provides the most 

robust and effective clustering solution among the methods evaluated. 

 

5. Conclusion 

In this research, the proposed HWKP-ADF demonstrates a significant improvement in 

clustering performance across several metrics compared to traditional clustering methods. 

Performance metrics such as accuracy (94.6%), precision (93%), recall (94%), and F1-score 

(93%) indicate that HWKP-ADF consistently delivers superior clustering quality and 

efficiency. These results highlight the ability of HWKP-ADF to handle large, noisy datasets 

while ensuring stable and accurate clustering outcomes. The integration of an adaptive feature 

weighting strategy and an Aggregated Decision Fusion (ADF) framework enhances the 

model’s capability to dynamically optimize clustering results. By leveraging heuristic 

windowed clustering with majority voting-based decision fusion, HWKP-ADF offers a 

scalable and effective solution for complex clustering challenges, setting a new benchmark for 

future research in ensemble clustering techniques. 
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