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The isovector giant dipole resonances (IVGDR’s) are extensively studied in 

certain rapidly rotating hot ruthenium isotopes using a rotating anisotropic 

harmonic oscillator potential and a separable dipole - dipole residual interaction. 

The shape and deformation of the above nuclei at high spins are determined by 

the cranked Nilsson – Strutinsky method extended for rotating medium mass 

nuclei. The influence of temperature on the isovector giant dipole resonance is 

assumed to occur through the change of deformation of the average field only. 

Calculations are performed for the considered ruthenium isotopes which have 

spherical ground state, to see how their shape transitions at higher excited states 

affect the isovector giant dipole resonance frequencies built on them. The results 

obtained show the general splitting of the frequencies of GDR at high spin and 

broadening of widths of frequencies in these nuclei increases on further increase 

of spin. It is seen that the width fluctuation present at T = 0, vanish at higher 

temperatures in these isotopes. Since this behaviour is found to be common in 

these isotopes, it may be noted that the role of temperature on shell effects do not 

affect the isovector giant dipole resonance widths in these isotopes at higher 

spins. Broadening of the giant dipole resonance as A as well as I increases is 

observed which is in good agreement with the experimental observations. 

Keywords: High spin states of nuclei, Structural transitions, giant dipole 

resonance, cranked Nillsson - Strutinsky method  

 

 

1. Introduction 

Studies on giant dipole resonance play an important role in understanding nuclear structure 

especially at finite angular momentum and temperature.   Isovector giant dipole resonance 

(IVGDR) is described as out-of-phase small-amplitude collective oscillation of neutron 

distribution against proton distribution, which is one of the strongly studied resonances in the 

past. Much progress has been made recently in the investigation of such resonances built on 

high spin states. These investigations open up the possibility of studying high spin states by 
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just looking at the properties of giant resonances built on top of them. Recently Newton et al. 

[1] observed pronounced shoulders in the spectra of γ rays in Eγ >10 MeV following 40Ar-

induced reactions leading to the 122Te, 150Gd, and 164Er systems. These shoulders were 

attributed to the isovector giant dipole resonances (IVGDR's), thus confirming experimentally 

the possibility of such resonances built on highly rotating states. Such experiments lead to a 

quite exciting new spectroscopy in which one can study the dynamical structure of high spin 

states just by looking at the properties of the IVGDR's built upon them. The centroid of GDR 

is related to the nuclear mass, the width is related to different damping mechanisms and the 

strength exhausts the major part of the Tomas-Reiche energy weighted sum rules for an electric 

dipole operator [2-4]. The possibility to build the IVGDR on excited states provides an 

excellent chance to obtain information on the nuclear structure under extreme conditions of 

high excitation energy, nuclear temperature and angular momentum [2, 5-6]. 

There are two types of calculations for the study of giant dipole resonance theoretically: (i) 

The harmonic oscillator model introduced by Brink [7] for the IVGDR built on the ground 

state which has been extended to the rotating case by several authors [8-10]; (ii) linear-

response theory used by Egido and Ring [11] extended to finite temperatures [12].  In our 

previous investigation, we have used the first method to obtain the resonant energies and the 

corresponding peak cross sections for 152Sm nuclei [13]; the shape and deformation of the 

above nuclei at high spin were determined by the cranked Nilsson - Strutinsky method for 

rotating heavy nuclei, and the allowed angular velocities for these deformations were obtained 

by the Fermi liquid drop model (FLDM). In this method, we have renormalized the single-

particle level densities for the finite temperature [14].  

The main feature that emerges from the experiments on the IVGDR's at high spins [15] is the 

broadening of the overall widths at higher angular momentum. The first observations of 

IVGDR’s at high spins were made in the region of rare earth nuclei and it was found that the 

splitting due to nuclear rotation was small for the nuclei in this region. Since the splittings 

induced in heavy nuclei by nuclear rotation are small, they are difficult to observe. But, in light 

and medium mass nuclei, as first suggested by Hilton [9], one can expect a much stronger 

influence of nuclear rotation on the IVGDR's since the corresponding angular velocities in this 

region are greater. Measurement of the IVGDR's in medium mass nuclei at high spins would 

thus seem a worthwhile investigation which should manifest such effects most clearly. Further, 

the region of medium mass nuclei were not been studied much with such attention as the 

heavier nuclei. With this view, we have focused our attention on the study of the effect of spin 

and temperature on the IVGDR's in the isotopes of ruthenium nucleus wherein the bulk of the 

angular momentum is of an aligned nature.  

In the present study, we have used the cranked Nilsson – Strutinsky method extended for 

rotating medium mass nuclei [16-18] to obtain the shape and deformation of  96,98,100,108Ru as 

a function of temperature and spin. In this method, the single particle level densities are 

renormalized at finite temperature [14] for a particular angular momentum. The first step of 

our study is to determine the equilibrium deformations of nuclei at different spins and 

temperatures using the cranked Nilsson – Strutinsky method for hot rotating medium mass 

nuclei. The next step of our calculations is to find out the allowed angular velocities for these 

deformations. This was done in our previous work [13] using the Fermi liquid drop model 

[20]. But this model has some restrictions when one wants to consider prolate shapes and hence 
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we have used the rotating liquid drop model (RLDM) [21] in this study. It is known [22] that 

the angular velocities determined by RLDM are the same as those obtained by the FLDM. The 

advantage which can be pointed out in the present method is the inclusion of the l.s and l2 

terms in the IVGDR frequency calculations. In order to compare with the experimental values, 

we need to transform the dipole motion to the laboratory frame, resulting in a much wider level 

splitting. 

The first step of our study is to determine the equilibrium deformations of the nuclei considered 

at different spins. This is done by using the cranked Nilsson Strutinsky method extended to 

finite temperature. The main advantage of this method is that the changes of surface 

diffuseness with spin are automatically taken into account in this method. For the study of the 

IVGDR, which is mainly a surface effect [23], this method is thus more suitable. The next step 

in our calculations is to find out the allowed angular velocities for these deformations. This is 

done in this work by using the rotating liquid drop model. In this method, the angular velocity 

allowed for each equilibrium configuration is fixed by the balance of nuclear pressure, surface 

tension, and Coulomb energy. Once the angular velocities are known, the splitting of IVGDR 

energies can be studied by using the analytical microscopic method. Our results show the 

increasing widths of the IVGDR energies at higher angular momenta as being mainly due to 

dynamical deformation effects caused by rotation. To make the results more transparent, we 

calculate the IVGDR frequencies as a function of spin and temperature for the nuclei 

considered. 

Section II describes the method used for obtaining the IVGDR frequencies and the required 

equilibrium deformations. The results obtained are discussed in Sec. III and the conclusions 

drawn from the study is given in Sec. IV. 

 

2. The Method 

2.1 Isovector Giant Dipole Resonances in Ruthenium Isotopes 

In order to study the properties of the IVGDR’s for the considered rapidly rotating warm 

ruthenium isotopes namely 96,98,100,102Ru, we have used, for the average field of the nucleus, an 

oscillator potential with deformation parameters consistent with the angular momentum of the 

system. It is therefore essential to first track the rotation-induced changes of nuclear shapes. 

For this, one can use a simple parameterization [24] of the isoscalar component of the two 

particle interactions by quadrupole forces, but it permits only a qualitative analysis of the 

changes in the shapes of rapidly rotating nuclei. From the point of view of a quantitative 

description of the dependencies of the parameters of the deformation of the self-consistent 

mean field on the rotation frequency, this model is too primitive. In particular, the nuclear 

shape changes noticeably in this model at excessively larger angular momenta. More realistic 

from this point of view are estimates of the rotational deformability of the nuclei within the 

framework of the rotating liquid drop model [21]. But in this work we use the rotating Fermi 

liquid drop model for obtaining the allowed angular frequencies consistent with deformations 

at different spins, since this model has elements related not only to the liquid drop model but 

also to the random phase method. 

For the considered ruthenium isotopes, we do not consider the deformation to be static, but to 
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arise due to rotation, all the above nuclei are considered to be spherical in shape for zero 

rotation. Furthermore, a slight deviation from axial symmetry at higher spins of I > 20 in the 

case of 96Ru is overlooked in our calculations. This enables us to treat all the above rotating 

nuclei as oblate spheroids rotating about their symmetry axes. The value of the deformation 

parameter δ at a particular spin is related to the allowed angular velocity Ω by the relation 

                     Ω2 =
2R3

ρ
[1 −

a3
2

a1
2] (

15

4
TA13 − πq2B13  )                                       (1) 

where ρ is the matter density, q the charge density, and T the surface tension coefficient. The 

above equation (1) describes the balance of pressure of the surface, centrifugal, Coulomb, and 

nuclear forces, which uniquely relates the values of the semi axes ai with angular velocity Ω. 

Here, 

                      q2 = 0.0665 
Z2

r0
5A2  (MeV)                                                            (2) 

        where Z is the number of protons and T can be related to the corresponding Weiszacker 

parameter b =17 MeV. The two-index symbols Aij and Bij are given by Balbutsev et al. [25].      

          Let us consider the rotating nucleus to be an oblate spheroid. We shall express its semi 

axes ai (i =1,2,3≡x,y, z) in terms of the deformation parameter δ: 

                a1
2 = a2

2 = a0
2(1 +

2

3
δ) 

                   a3
2 = a0

2(1 −
4

3
δ)                                                                              (3) 

          Here ao is fixed by the condition of conservation of volume a1a2a3 = R3 = r0
3A, where 

r0=1.18 fm and A is the mass number. In order to obtain the shape and deformation of the 

rotating nucleus, we follow the cranked Nilsson Strutinsky method [18-19]. The IVGDR 

energies of the considered rotating nuclei is obtained using the analytical method [24,15]. In 

this method, the average field of the nucleus was taken to be an oscillator potential with 

deformation parameters consistent with the angular momentum of the system.  

             The shape changes of nuclei induced by rotation can be simulated by the average 

Hamiltonian of a triaxial harmonic oscillator given by 

               Hav(Ω) = ∑ hv(Ω)A
v=1                                                                          (4) 

where 

              hν(Ω) =
p2

2m
+

m

2
(ωx

2x2 + ωy
2y2 + ωz

2z2) − ΩIz                                  (5) 

and Lz = ∑ lz
A
v=1 (v) is the operator for rotation about the z axis. The eigen functions and the 

eigenvalues of the Hamiltonian (4) can be conveniently determined from the equation 

                 [Hav , aλ
Ϯ

] = ωλaλ
Ϯ
                                                                                 (6) 

here aλ
Ϯ
 are the oscillator-quantum creation operators that are linear combinations of the 

particle coordinates ri and of the conjugate momenta pi . In terms of the operators aλ
Ϯ
 and aλ, 

the Hamiltonian (4) can be expressed as 
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   Hav = ∑ {ωz [(az
Ϯ

az) +
1

2
] + ω+ [(a+

Ϯ
a+) +

1

2
] + ω−[(a−

Ϯ a−) +
1

2
]}A

v=1            (7) 

The normal frequencies are then obtained as 

                                         ωz = ωz , 

      ω± = {
ωy

2+ωx
2

2
+ Ω2 ±

1

2
[(ωy

2 − ωx
2)2 + 8Ω2(ωy

2 + ωx
2)]

1/2
}

1/2

                     (8) 

           To generate the isovector dipole excitation mode, we add to the Hamiltonian (3) the 

effective dipole interaction 

                        Hint = ∑
mωi

2

2Ai=x,y,z [∑ τ3(ν)xi(ν)A
ν=1 ]

2
                                    (9) 

where τ3(ν) is the third projection of the Pauli isospin matrix, 

                                    τ3 = [
1       0
 0  − 1

], 

and  is a parameter that characterizes the isovector component of the neutron or proton 

average field and is represented by 

                                  V(n)
(p)

(v) =
m

2
[1 ∓ 

N−Z

A
] ∑ ωi=x,y,z i

2
xi

2(ν)                          (10) 

The value of  for an oscillator potential is found [24] to be 3 from the experimental data on 

the position of the giant resonance. 

             The giant dipole resonance frequencies of a rotating nucleus can be obtained by 

diagonalizing analytically the Hamiltonian (4) with the effective interaction (9) within the 

framework of the standard random phase approximation (RPA) procedure by using the 

similarity between the linear transformation corresponding to (4) and the RPA 

transformations.  

             The RPA equations for the isovector dipole modes can be written in a form similar to 

Eq. (6) as 

                   [H + Hint, Dλ
Ϯ

] = ῶλDλ
Ϯ
 ,                                                                      (11)  

where Dλ
Ϯ
 is the dipole phonon-creation operator and is given by 

                   Dλ
Ϯ =

1

√A
∑ τ3(ν)ãλ

Ϯ(ν)A
ν=1  :                                                                  (12) 

We obtain the components of the commutator (11) as 

 [∑
mωi

2

2
∑ xi

2(ν), Dλ
ϮA

ν=1i=x,y,z ] = ∑ mωi
2[xi, ãλ

Ϯ
]

1

√A
∑ τ3(ν)xi(ν)A

ν=1i=x,y,z            (13a)  

1

2
 [∑

mωi
2

2

1

A
[∑ τ3(ν)xi(ν)A

ν=1 ]
2

i=x,y,z , Dλ
Ϯ

] = ∑ mωi
2[xi, ãλ

Ϯ
]

1

√A
∑ τ3(ν)xi(ν)A

ν=1i=x,y,z     

                                                                                                                      (13b) 

The commutator of the phonon-creation operator Dλ
Ϯ
 with the Hamiltonian of the interaction 
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in (13b) is thus proportional to the commutator of Dλ
Ϯ
 with the average field operator (13a), 

and consequently we can write 

                    [H + Hint, Dλ
Ϯ

] = [H̃av, Dλ
Ϯ

]                                                                   (14) 

Where 

                 H̃av = ∑
pv

2

2m
+ (1 + ) ∑ ωi

2xi
2(v) − ΩLzi=x,y,z

A
v=1                                 (15) 

The expressions for the eigenvectors and the normal frequencies of Eq. (11) will be 

correspondingly determined by relations (9) in which we make the substitution                ωi = 

(1+)1/2 ωi.   

       By transforming this to the laboratory system, we get the frequencies of the giant dipole 

resonance as 

                  ῶz=(1+)1/2 ωz 

                     ῶ± = {(1 + )
ωy

2+ωx
2

2
+ Ω2 ±

1

2
[(1 + )2(ωy

2 − ωx
2)2 + 8Ω2(1 + )(ωy

2 +

                                                                                                            ωx
2)]

1/2
}

1/2

∓ Ω                (16) 

In the case of rotating oblate nuclei, it is assumed by setting ωx= ωy ≠ ωz. An advantage of this 

method is that with the rotation turned off (Ω=0) one can get the frequencies of the isovector 

dipole modes of an axially deformed nucleus with static deformation. 

       The dipole photo absorption cross section as a function of angular momentum plays a 

crucial role in the study of the spectra of γ quanta emitted from rapidly rotating nuclei. By 

using the semi-classical theory of the interaction of photons with nuclei, the shape of a 

fundamental resonance in the absorption cross section is that of the Lorentz curve 

                           σ(E) =
σm

1+(E2−Em
2 )2/E2Γ2                                                                (17) 

where the Lorentz parameters Em, σm, and Γ are the resonance energy, peak cross section, and 

full width at half maximum, respectively. For deformed spheroidal nuclei, the giant resonance 

consists of two such Lorentz lines corresponding to the absorption of photons which induce 

oscillations of the neutron and proton fluids in the nucleus against each other. In such cases, 

                            σ(E) = ∑
σmi

[1+(E2−Emi
2 )2/E2Γi

2]
 2

i=1                                                      (18) 

where i=1,2 correspond to the lower and high energy lines. The lower energy line corresponds 

to oscillations along the longer axis and the high energy line corresponds to oscillations along 

the shorter axis. It is to be noted that these Lorentz lines are noninterfering, but Γi is assumed 

here to depend on energy. 

          J.R. Nix et al., [26], using a surface plus window dissipation model, could get resonance 

widths comparable to experimental values, but only for giant quadrupole and octupole 

resonances. As in ref. [27], the energy dependence on the GDR width can be well 

approximated by the relation 
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                            Γ ≈ 0.026E
1.9                     (19) 

This expression is useful, also for the parameterization of the IVGDR width in a rotating 

nucleus, with due allowance for the corresponding changes of the energies of the resonances, 

and is used in our calculations. 

2.2 Cranked – Nilsson Strutinsky method 

To obtain the potential energy surfaces as a function of spin and temperature for ruthenium 

isotopes, the cranked Nilsson - Strutinsky method in cylindrical representation is used. The 

theoretical framework for obtaining for by is as follows: 

In this method the nucleons move in a cranked Nilsson potential with the deformation 

determined by  and . The cranking is performed around one of the principal axes, the z- axis 

and the cranking frequency is given by . The triaxial Nilsson model in the rotating frame is 

used in the calculations. The shell energy calculations for non-rotating case (I=0) assumes a 

single particle field                             

 
0 0

i

H h=          

 (20) 

where 
0h is the triaxial Nilsson Hamiltonian given by [28]  

 

2 3

2 2 2 2

1

0
0

0

1
. ( 2 )]

2 2
[ 2

k k

k

i

p
h m l s l l

m
x  

=

= + + −−    

 (21) 

The three oscillator frequencies k  are given by the Hill Wheeler parameterization as  

 
0

5 2
exp cos

4 3
x    



  
= − −  

  

      

 (22a) 

 
0

5 4
exp cos

4 3
y    



  
= − −  

  

      

 (22b) 

 
0

5
exp cos

4
z   



 
= − 

 

       

 (22c) 

with the constraint of constant volume for equipotentials 

 
0

3

0x y z   =  = constant       
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 (23) 

     For the Nilsson parameters  and , the following values are chosen [20] separately for 

protons and neutrons: 

                 Protons                Neutrons 

                                                                                                              

           0.070                         0.390                         0.073                         0.290             

where the oscillator frequency 
0

0
 is chosen as 

  

0

1/3

45.3

0 ( 0.77)
MeV

A
 =

+
                

(24) 

In the expression for 
0

ih  (Eqn. 21), the term 
2l  has been doubled to obtain better agreement 

between the Strutinsky-smoothed moment of inertia and the rigid rotor value(here within 

10%). Accordingly, the parameter D has been re-determined with the help of single-particle 

levels in the given mass region. The Hamiltonian (21) is diagonalized in cylindrical 

representation up to N=11 major shells.  

 For the rotating case ( 0)I  , the Hamiltonian becomes 

  i

i

H h = ,       

 (25) 

where 

  
0

i i zh h j = − ,       

 (26) 

if it is assumed that the rotation takes place around the Z-axis.  

The single particle energy ie
and the wave function 

i

 are given by 

  i i i ih e    =        

 (27) 

The spin projections are obtained as 

  i i z im j  =       

 (28) 

The total shell energy is given by 
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0

sp i i i i

i i

E h e  = =  ,     

 (29) 

where 

  i i ie e m = −        

 (30) 

Thus the total spin and shell energy for the unsmoothened single particle level distribution is 

given by      

                         i

i

I m=                    

 (31) 

  sp i

i

E e I = +        

 (32) 

     Since the difficulties encountered in the evaluation of total energy for large deformations 

through the summation of single particle energies for I=0 case may be present for I0 case 

also [18], we use the Strutinsky shell correction method adopted to I0 case by suitably tuning 

the angular velocities to yield fixed spins.          

For the Strutinsky smeared single particle level distribution [19], Eqs. (31) and (32) transform 

into 

   i

i

I m=                   (33) 

and             

N

sp i

i

E e I = +                             

(34) 

 In the tuning method, first the energy values are evaluated with different degrees of 

freedom and different angular velocities. Then the obtained spin is treated under standard 

interpolation with the given angular velocity to obtain the exact angular velocities for the 

actual spin sequence for the nuclei considered.  

 The energy expression can have the form with specified N, Z & spin I and also 

deformation  as., 

( ) ( )
( , , ) ( )

I I

total total
N Z I IE R

 
 = +                    (35) 

and the total spin, 
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1 1

N Z

Z Z ZI I j j
 

 
 = =

= = +       

 (36) 

The above relation allows us to select numerically the   values that correspond to the chosen 

integer or half integer spins. Obviously the corresponding frequency values ( )I change from 

one deformation point to another and the corresponding calculations have to be repeated 

accordingly. The energy values are thus calculated for the exact spin sequence. 

 The total energy is now given by 

  ( )T RLDM spE E E E= − −       

 (37) 

where the rotating liquid drop energy at constant spin  

  
21

2
RLDM LDM rigE E J I = − +      

 (38) 

 the second term on the right hand side being the rotational energy. Here the liquid 

drop energy ELDM is given by the sum of Coulomb and surface energies and Jrig, the rigid body 

moment of inertia defined by  and  including the surface diffuseness correction. 

 The calculations are carried out by varying   values in steps of 00.025  from  

0.0 =  to 00.3 = , 0  being the oscillator frequency for tuning to fixed spins.  is varied 

from -1800 to -1200 in steps of -100 wherein =-1800 and  values are varied from 0.0 to 1.2 in 

steps of 0.1. 

 

3. Results and Discussion 

In this work the isovector giant dipole resonances (IVGDR’s) are extensively studied in certain 

rapidly rotating hot ruthenium isotopes using a rotating anisotropic harmonic oscillator 

potential and a separable dipole - dipole residual interaction. The shape and deformation of 

the above nuclei at high spins are determined by the cranked Nilsson – Strutinsky method 

extended for rotating medium mass nuclei. Calculations are performed for the considered 

ruthenium isotopes which have spherical ground state, to see how their shape transitions at 

higher excited states affect the isovector giant dipole resonance frequencies built on them. In 

the first step, we have determined the equilibrium deformations of the considered nuclei at 

different spins. This is done by using the cranked Nilsson - Strutinsky method extended to 

finite temperature. The main advantage of this method is that the changes of surface 

diffuseness with spin are automatically taken into account in this method. The next step in our 

calculations is to find out the allowed angular velocities for these deformations. This is done 

in this work by using the rotating liquid drop model. In this method, the angular velocity 

allowed for each equilibrium configuration is fixed by the balance of nuclear pressure, surface 

tension, and Coulomb energy. Once the angular velocities are known, the IVGDR frequencies 
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as a function of spin and temperature were studied for the considered ruthenium isotopes.  

3.1 Shape evolutions in Ruthenium isotopes 

In the present work, the shape evolutions in 96-102Ru isotopes are first studied as a function of 

spin using cranked Nilsson Strutinsky method. The potential energy surfaces for these isotopes 

have been obtained by tuned spin Strutinsky procedure. In the calculations performed here the 

spin is varied from I= 0 to 60 ħ in steps of 2 ħ at various temperatures starting from zero. The 

equilibrium deformations are displayed in the ( - ) plane. Figures 1-4 show the equilibrium 

shape evolution of 96Ru, 98Ru, 100Ru and 102Ru isotopes respectively at different spins and 

temperatures performed with the tuned spin cranked Nilsson Strutinsky method. We see from 

Fig.1 that at T=0.0 MeV, the 96Ru has spherical shape at its ground state (I=0 ħ) with 

deformation =0.0 and which remains in  

 

Fig. 1. Shapes of 96Ru isotope as a function of spin at different temperatures 
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Fig. 2. Shapes of 98Ru isotope as a function of spin at different temperatures 

spherical up to I=4 ħ. As spin increases there is a shape transition to oblate shape at I=8 ħ and 

which persists in the same shape with increased deformation for the further increase of spin 

up to I=60 ħ. When temperature is included, that is at T=0.5-1.5MeV, the 96Ru nucleus initially 

in spherical shape with I=0 ħ become oblate at high spin but the transition occurs at I=4 ħ.  

It is noted from Fig. 2 that the 98Ru nuclei is oblate at its ground state with T=0.0 MeV, I=0 ħ 

and =0.0, which persists in the same shape up to I=52 ħ with increased deformation. As spin 

increases it undergoes triaxial shape (=-1400) and stays in triaxial with little elongation of 

increased deformation. Almost the same trend is obtained for 98Ru at T=0.5 MeV with 

elongation occurs at earlier spin values leading to triaxial      (=-1400) finally. For the case of 
98Ru at T=1.0 MeV, the shape at spin I=0 ħ is spherical and then transition occurs to oblate 
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and then triaxial at higher spins. At T=1.5 MeV spherical to oblate transition occurs as a 

function of spin and transition to triaxiality vanishes.  

 

Fig. 3. Shapes of 100Ru isotope as a function of spin at different temperatures 

From Fig. 3 it is noted that the 100Ru nuclei is oblate at its ground state with T=0.0 MeV, I=0 

ħ and =0.0, which persists in the same shape up to I=52 ħ with increased deformation. As 

spin increases it undergoes triaxial shape (=-1500) and stays in triaxial. Almost the same trend 

is obtained for 100Ru at T=0.5 MeV with elongation occurs at earlier spin values leading to 

triaxial (=-1600) finally. For the case of 100Ru at T=1.0 MeV, the shape at spin I=0 ħ is 

spherical and then transition occurs to oblate and triaxial (=-1700) at higher spins. At T=1.5 

MeV spherical to oblate transition occurs as a function of spin and transition to triaxial 

vanishes.  
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Fig. 4. Shapes of 102Ru isotope as a function of spin at different temperatures 

If we look at Fig.4, at T=0.0 MeV, the 102Ru nuclei has spherical shape at its ground state (I=0 

ħ) with deformation =0.0 and which remains in spherical up to I=4 ħ. As spin increases there 

is a shape transition to oblate shape at I=8 ħ and which persists in the same shape with 

increased deformation for the further increase of spin up to I=52 ħ. As spin increases it 

undergoes triaxial shape (=-1600) and stays in triaxial with little elongation of increased 

deformation. When temperature is included, that is at T=0.5 MeV, the 102Ru nucleus initially 

in oblate shape with I=0 ħ become triaxial (=-1700) at I=52 ħ and stays in triaxial with 

elongation on further increase of spin. But at high temperatures T=1.0-1.5 MeV, a spherical to 

oblate transition as a function of spin is obtained. Thus it is to be noted from the above 
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discussion that the ruthenium nuclei starting from spherical or oblate shape becomes oblate or 

triaxial as a function of spin and temperature which is in conformity with the experimental and 

theoretical results [3,4,30]. 

3.2 Giant Dipole Resonance in Ruthenium isotopes 

We present our results of GDR calculations for the case of 96Ru, 98Ru, 100Ru and 102Ru isotopes 

in Figs. 5-8 respectively. For spherical shape of a nucleus, there is only one Isovector Giant 

Dipole Resonance (IVGDR) frequency in the intrinsic or the laboratory frame. But for prolate 

and oblate shapes, we have two frequencies in the nonrotating case, the splitting being caused 

by static deformation. When such nuclei start rotating, the two frequencies will divide into 

three in the intrinsic frame. These three modes observed in the intrinsic system divide, in the 

laboratory frame, into five frequencies for the prolate case while the transformation to the 

laboratory frame just brings the frequencies back to coincide with their original values at zero 

rotation for oblate system rotating about the symmetry axis. This expected behavior is clearly 

brought out in Figs. 5-8. In 96Ru, (see Fig. 5) the frequency splitting has only one component 

for its spherical shape and which has two components when it undergo oblate shape rotating 

about the symmetry axis. But this behavior changes in 98Ru (see Fig. 6). For this nucleus, the 

splitting has five, one as well as two components depending upon the spherical or oblate shapes 

rotating about the symmetry axis at different spins and temperature. If we consider the effect 

of temperature alone, we see that the width fluctuations vanish at T=1.5 MeV itself in the case 

of 98Ru. The same trend of frequency splitting reflecting the shape transitions in 100Ru and 
102Ru as a function of spin and temperature is clearly seen in figures 7-8. The general 

broadening of IVGDR widths with excitation is clearly seen in all the cases considered.  

 

Fig. 5. Dependence of the isovector giant dipole energy E on the angular momentum I for 
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96Ru isotope at different temperatures. 

 

Fig. 6. Dependence of the isovector giant dipole energy E on the angular momentum I for   

98Ru isotope at different temperatures. 
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Fig. 7. Dependence of the isovector giant dipole energy E on the angular momentum I for 

100Ru isotope at different temperatures. 
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Fig. 8. Dependence of the isovector giant dipole energy E on the angular momentum I for 

102Ru isotope at different temperatures 
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Fig. 9. IVGDR energies as a function of neutron number for 96-102Ru 

Fig.9 shows the Isovector Giant Dipole Resonance (IVGDR) energies as a function of neutron 

number for the case of 96Ru, 98Ru, 100Ru and 102Ru isotopes. It is seen that the deformation 

energy decreases as function of neutron number.  

 

4. Conclusion 

In this work the isovector giant dipole resonances (IVGDR’s) are extensively studied in 

rapidly rotating hot ruthenium isotopes using a rotating anisotropic harmonic oscillator 

potential and a separable dipole - dipole residual interaction. The shape and deformation of 

the above nuclei at high spins are determined by the cranked Nilsson – Strutinsky method 

extended for rotating medium mass nuclei. The results obtained show the general splitting of 

the frequencies of GDR at high spin and broadening of widths of frequencies in these nuclei 

increases on further increase of spin. The influence of temperature on the isovector giant dipole 

resonance is assumed to occur through the change of deformation of the average field only. 

The deformation energy is found to decrease as function of neutron number. The results 

obtained show the general splitting of the frequencies of GDR at high spin and broadening of 

widths of frequencies in these nuclei increases on further increase of spin. It is seen that the 

width fluctuation present at T = 0, vanish at higher temperatures in these isotopes. Since this 

behaviour is found to be common in these isotopes, it may be noted that the role of temperature 

on shell effects do not affect the isovector giant dipole resonance widths in these isotopes at 

higher spins. Broadening of the giant dipole resonance as A as well as I increases is observed 

which is in good agreement with the experimental observations [30]. Our results show the 

increasing widths of the IVGDR’s at higher angular momenta as being mainly due to 

dynamical deformation effects caused by rotation.  
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To sum up, in this work we have chosen four ruthenium isotopes which are spherical, oblate 

at the ground state stays in oblate for some cases and becomes triaxial in some other cases as 

a function of spin and temperature. The IVGDR frequencies clearly reflect the shape 

transitions. Thus it can be noted that the GDR is ascribed as a signature for the shape transitions 

in the considered ruthenium nuclear isotopes.  
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