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The isovector giant dipole resonances (IVGDR’s) are extensively studied in
certain rapidly rotating hot ruthenium isotopes using a rotating anisotropic
harmonic oscillator potential and a separable dipole - dipole residual interaction.
The shape and deformation of the above nuclei at high spins are determined by
the cranked Nilsson — Strutinsky method extended for rotating medium mass
nuclei. The influence of temperature on the isovector giant dipole resonance is
assumed to occur through the change of deformation of the average field only.
Calculations are performed for the considered ruthenium isotopes which have
spherical ground state, to see how their shape transitions at higher excited states
affect the isovector giant dipole resonance frequencies built on them. The results
obtained show the general splitting of the frequencies of GDR at high spin and
broadening of widths of frequencies in these nuclei increases on further increase
of spin. It is seen that the width fluctuation present at T = 0, vanish at higher
temperatures in these isotopes. Since this behaviour is found to be common in
these isotopes, it may be noted that the role of temperature on shell effects do not
affect the isovector giant dipole resonance widths in these isotopes at higher
spins. Broadening of the giant dipole resonance as A as well as I increases is
observed which is in good agreement with the experimental observations.
Keywords: High spin states of nuclei, Structural transitions, giant dipole
resonance, cranked Nillsson - Strutinsky method

1. Introduction

Studies on giant dipole resonance play an important role in understanding nuclear structure
especially at finite angular momentum and temperature.  Isovector giant dipole resonance
(IVGDR) is described as out-of-phase small-amplitude collective oscillation of neutron
distribution against proton distribution, which is one of the strongly studied resonances in the
past. Much progress has been made recently in the investigation of such resonances built on
high spin states. These investigations open up the possibility of studying high spin states by
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just looking at the properties of giant resonances built on top of them. Recently Newton et al.
[1] observed pronounced shoulders in the spectra of y rays in E, >10 MeV following “°Ar-
induced reactions leading to the ?2Te, %°Gd, and ®*Er systems. These shoulders were
attributed to the isovector giant dipole resonances (IVGDR's), thus confirming experimentally
the possibility of such resonances built on highly rotating states. Such experiments lead to a
quite exciting new spectroscopy in which one can study the dynamical structure of high spin
states just by looking at the properties of the IVGDR's built upon them. The centroid of GDR
is related to the nuclear mass, the width is related to different damping mechanisms and the
strength exhausts the major part of the Tomas-Reiche energy weighted sum rules for an electric
dipole operator [2-4]. The possibility to build the IVGDR on excited states provides an
excellent chance to obtain information on the nuclear structure under extreme conditions of
high excitation energy, nuclear temperature and angular momentum [2, 5-6].

There are two types of calculations for the study of giant dipole resonance theoretically: (i)
The harmonic oscillator model introduced by Brink [7] for the IVGDR built on the ground
state which has been extended to the rotating case by several authors [8-10]; (ii) linear-
response theory used by Egido and Ring [11] extended to finite temperatures [12]. In our
previous investigation, we have used the first method to obtain the resonant energies and the
corresponding peak cross sections for ¥*2Sm nuclei [13]; the shape and deformation of the
above nuclei at high spin were determined by the cranked Nilsson - Strutinsky method for
rotating heavy nuclei, and the allowed angular velocities for these deformations were obtained
by the Fermi liquid drop model (FLDM). In this method, we have renormalized the single-
particle level densities for the finite temperature [14].

The main feature that emerges from the experiments on the IVGDR's at high spins [15] is the
broadening of the overall widths at higher angular momentum. The first observations of
IVGDR’s at high spins were made in the region of rare earth nuclei and it was found that the
splitting due to nuclear rotation was small for the nuclei in this region. Since the splittings
induced in heavy nuclei by nuclear rotation are small, they are difficult to observe. But, in light
and medium mass nuclei, as first suggested by Hilton [9], one can expect a much stronger
influence of nuclear rotation on the IVGDR's since the corresponding angular velocities in this
region are greater. Measurement of the IVGDR's in medium mass nuclei at high spins would
thus seem a worthwhile investigation which should manifest such effects most clearly. Further,
the region of medium mass nuclei were not been studied much with such attention as the
heavier nuclei. With this view, we have focused our attention on the study of the effect of spin
and temperature on the IVGDR's in the isotopes of ruthenium nucleus wherein the bulk of the
angular momentum is of an aligned nature.

In the present study, we have used the cranked Nilsson — Strutinsky method extended for
rotating medium mass nuclei [16-18] to obtain the shape and deformation of °:%8.100.108Ry 35
a function of temperature and spin. In this method, the single particle level densities are
renormalized at finite temperature [14] for a particular angular momentum. The first step of
our study is to determine the equilibrium deformations of nuclei at different spins and
temperatures using the cranked Nilsson — Strutinsky method for hot rotating medium mass
nuclei. The next step of our calculations is to find out the allowed angular velocities for these
deformations. This was done in our previous work [13] using the Fermi liquid drop model
[20]. But this model has some restrictions when one wants to consider prolate shapes and hence
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we have used the rotating liquid drop model (RLDM) [21] in this study. It is known [22] that
the angular velocities determined by RLDM are the same as those obtained by the FLDM. The
advantage which can be pointed out in the present method is the inclusion of the L.s and I2
terms in the IVGDR frequency calculations. In order to compare with the experimental values,
we need to transform the dipole motion to the laboratory frame, resulting in a much wider level
splitting.

The first step of our study is to determine the equilibrium deformations of the nuclei considered
at different spins. This is done by using the cranked Nilsson Strutinsky method extended to
finite temperature. The main advantage of this method is that the changes of surface
diffuseness with spin are automatically taken into account in this method. For the study of the
IVGDR, which is mainly a surface effect [23], this method is thus more suitable. The next step
in our calculations is to find out the allowed angular velocities for these deformations. This is
done in this work by using the rotating liquid drop model. In this method, the angular velocity
allowed for each equilibrium configuration is fixed by the balance of nuclear pressure, surface
tension, and Coulomb energy. Once the angular velocities are known, the splitting of IVGDR
energies can be studied by using the analytical microscopic method. Our results show the
increasing widths of the IVGDR energies at higher angular momenta as being mainly due to
dynamical deformation effects caused by rotation. To make the results more transparent, we
calculate the IVGDR frequencies as a function of spin and temperature for the nuclei
considered.

Section Il describes the method used for obtaining the IVGDR frequencies and the required
equilibrium deformations. The results obtained are discussed in Sec. Il and the conclusions
drawn from the study is given in Sec. IV.

2. The Method
2.1 Isovector Giant Dipole Resonances in Ruthenium Isotopes

In order to study the properties of the IVGDR’s for the considered rapidly rotating warm
ruthenium isotopes namely °¢-%8100.102Ry; ‘we have used, for the average field of the nucleus, an
oscillator potential with deformation parameters consistent with the angular momentum of the
system. It is therefore essential to first track the rotation-induced changes of nuclear shapes.
For this, one can use a simple parameterization [24] of the isoscalar component of the two
particle interactions by quadrupole forces, but it permits only a qualitative analysis of the
changes in the shapes of rapidly rotating nuclei. From the point of view of a quantitative
description of the dependencies of the parameters of the deformation of the self-consistent
mean field on the rotation frequency, this model is too primitive. In particular, the nuclear
shape changes noticeably in this model at excessively larger angular momenta. More realistic
from this point of view are estimates of the rotational deformability of the nuclei within the
framework of the rotating liquid drop model [21]. But in this work we use the rotating Fermi
liquid drop model for obtaining the allowed angular frequencies consistent with deformations
at different spins, since this model has elements related not only to the liquid drop model but
also to the random phase method.

For the considered ruthenium isotopes, we do not consider the deformation to be static, but to
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arise due to rotation, all the above nuclei are considered to be spherical in shape for zero
rotation. Furthermore, a slight deviation from axial symmetry at higher spins of | > 20 in the
case of ®Ru is overlooked in our calculations. This enables us to treat all the above rotating
nuclei as oblate spheroids rotating about their symmetry axes. The value of the deformation
parameter & at a particular spin is related to the allowed angular velocity Q by the relation

2R3 i1/1s
02 =21 -5 (T TAs; ~mq?Bys ) M

where p is the matter density, g the charge density, and T the surface tension coefficient. The
above equation (1) describes the balance of pressure of the surface, centrifugal, Coulomb, and
nuclear forces, which uniquely relates the values of the semi axes a; with angular velocity Q.
Here,

2
% = 0.0665 — (MeV) @)
rgA
where Z is the number of protons and T can be related to the corresponding Weiszacker
parameter b =17 MeV. The two-index symbols Aj; and B;; are given by Balbutsev et al. [25].

Let us consider the rotating nucleus to be an oblate spheroid. We shall express its semi
axes a; (i =1,2,3=x,y, z) in terms of the deformation parameter &:

aj =a3(1-39) 3)

Here a, is fixed by the condition of conservation of volume a;a,a; = R3 = r3A, where
ro=1.18 fm and A is the mass number. In order to obtain the shape and deformation of the
rotating nucleus, we follow the cranked Nilsson Strutinsky method [18-19]. The IVGDR
energies of the considered rotating nuclei is obtained using the analytical method [24,15]. In
this method, the average field of the nucleus was taken to be an oscillator potential with
deformation parameters consistent with the angular momentum of the system.

The shape changes of nuclei induced by rotation can be simulated by the average
Hamiltonian of a triaxial harmonic oscillator given by

Hav(ﬂ) = 9=1hv(9) (4)
where
2
h,(Q) = zp—m + ? (02x* + wiy? + wiz?) — Ql, (5)

and L, = ¥4_, 1, (v) is the operator for rotation about the z axis. The eigen functions and the
eigenvalues of the Hamiltonian (4) can be conveniently determined from the equation

[Hav , a;:] = (o;\a;: (6)
T

here a, are the oscillator-quantum creation operators that are linear combinations of the

particle coordinates r; and of the conjugate momenta p;. In terms of the operators a}t and ay,
the Hamiltonian (4) can be expressed as
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Hypy = Y4, {wz [(aEaZ) + %] + w, [(aza+) + %] + u)_[(aia_) + %]} @)
The normal frequencies are then obtained as
w,; = Wy,

+ 0% + 1 [(wd — wd)? + 807 (w} + @F”fﬂ (8)

(1)+(1)
(L)i—{y X

To generate the isovector dipole excitation mode, we add to the Hamiltonian (3) the
effective dipole interaction

Hint =n Zi:x,yznéil [ZA 1 T3 (V)X (V)] (9)
where 15 (V) is the third projection of the Pauli isospin matrix,
_[1 o
T3 = [0 _ 1]’

and m is a parameter that characterizes the isovector component of the neutron or proton
average field and is represented by

Vi V) = {1 F 177 Bickya 0 2 () (10)
®)

The value of n for an oscillator potential is found [24] to be 3 from the experimental data on
the position of the giant resonance.

The giant dipole resonance frequencies of a rotating nucleus can be obtained by
diagonalizing analytically the Hamiltonian (4) with the effective interaction (9) within the
framework of the standard random phase approximation (RPA) procedure by using the
similarity between the linear transformation corresponding to (4) and the RPA
transformations.

The RPA equations for the isovector dipole modes can be written in a form similar to
Eq. (6) as

[H + Hyp DI] = @201 | (12)

where DK is the dipole phonon-creation operator and is given by

\/—Z BEAOHOE (12)
We obtain the components of the commutator (11) as
2
[Zi:x,y,z% v= 1X2(V) D}\] 21 xyzm“) [Xll }\] \/—Zv 1T3 (V)X (V) (13&)

o[B8t (x W)] DE] = 1 Sy me? [, 8] =54 ()% (v)
(13b)

The commutator of the phonon-creation operator D; with the Hamiltonian of the interaction
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in (13b) is thus proportional to the commutator of D{ with the average field operator (13a),
and consequently we can write

[H + Hing, Dﬂ = [ﬁav' DK] (14)
Where
ﬁav = v 12 + (1+n) 2= Xyzwzxz(v) QL, (15)
The expressions for the eigenvectors and the normal frequencies of Eg. (11) will be
correspondingly determined by relations (9) in which we make the substitution i =
(L)

By transforming this to the laboratory system, we get the frequencies of the giant dipole
resonance as

®=(1+n)"* o,

oy ={(1+n) 22

u)y+oox

0 - e
X)]“Z} FQ (16

In the case of rotating oblate nuclei, it is assumed by setting wx= wy# .. An advantage of this
method is that with the rotation turned off (Q2=0) one can get the frequencies of the isovector
dipole modes of an axially deformed nucleus with static deformation.

The dipole photo absorption cross section as a function of angular momentum plays a
crucial role in the study of the spectra of y quanta emitted from rapidly rotating nuclei. By
using the semi-classical theory of the interaction of photons with nuclei, the shape of a
fundamental resonance in the absorption cross section is that of the Lorentz curve

Om
°®) = ey 47
where the Lorentz parameters Em, om, and I" are the resonance energy, peak cross section, and
full width at half maximum, respectively. For deformed spheroidal nuclei, the giant resonance
consists of two such Lorentz lines corresponding to the absorption of photons which induce
oscillations of the neutron and proton fluids in the nucleus against each other. In such cases,

o(E) = X o (18)

1=1[1+(E2-E2 )2 /E?T?]

where i=1,2 correspond to the lower and high energy lines. The lower energy line corresponds
to oscillations along the longer axis and the high energy line corresponds to oscillations along
the shorter axis. It is to be noted that these Lorentz lines are noninterfering, but T is assumed
here to depend on energy.

J.R. Nix et al., [26], using a surface plus window dissipation model, could get resonance
widths comparable to experimental values, but only for giant quadrupole and octupole
resonances. As in ref. [27], the energy dependence on the GDR width can be well
approximated by the relation

Nanotechnology Perceptions Vol. 20 No.1 (2024)



Isovector Giant Dipole Resonance in Hot Rotating.... M. Thamburatty et al. 204

I, ~ 0.026E}° (19)

This expression is useful, also for the parameterization of the IVGDR width in a rotating
nucleus, with due allowance for the corresponding changes of the energies of the resonances,
and is used in our calculations.

2.2 Cranked — Nilsson Strutinsky method

To obtain the potential energy surfaces as a function of spin and temperature for ruthenium
isotopes, the cranked Nilsson - Strutinsky method in cylindrical representation is used. The
theoretical framework for obtaining for by is as follows:

In this method the nucleons move in a cranked Nilsson potential with the deformation
determined by  and y. The cranking is performed around one of the principal axes, the z- axis
and the cranking frequency is given by w. The triaxial Nilsson model in the rotating frame is
used in the calculations. The shell energy calculations for non-rotating case (I1=0) assumes a
single particle field

H®=>"h
@)

where h°is the triaxial Nilsson Hamiltonian given by [28]

2 1 3 0
h? =2p—+EmZa)k2Xk2 —kh@y[ 205+ u(® —2{1* )]
m k=1

(21)

The three oscillator frequencies @, are given by the Hill Wheeler parameterization as

[ 2
o, =0, eXp| — Eﬂc05(7—§7fj:|

(22a)
B 4
o, = W, EXp _—\/%[)’COS(;/ —57[):|
(22b)
5
@, = @y EXP {—\/%ﬂ coS y}
(22c)

with the constraint of constant volume for equipotentials

0
®.0,0, =o,° = constant
xHyH — %0 T
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(23)

For the Nilsson parameters k and p, the following values are chosen [20] separately for
protons and neutrons:

Protons Neutrons
K 1) K 9
0.070 0.390 0.073 0.290

0
where the oscillator frequency ha)o is chosen as

0
D 45.3

= MeV
0 (A®+0.77)

(24)

In the expression for h? (Eqn. 21), the term <I2> has been doubled to obtain better agreement

between the Strutinsky-smoothed moment of inertia and the rigid rotor value(here within
10%). Accordingly, the parameter D has been re-determined with the help of single-particle
levels in the given mass region. The Hamiltonian (21) is diagonalized in cylindrical
representation up to N=11 major shells.

For the rotating case (I = 0), the Hamiltonian becomes

H”=>"h"

(25)
where
hi(u — hiO _a)jz,
(26)
if it is assumed that the rotation takes place around the Z-axis.
The single particle energy €”and the wave function @ are given by
(@7)
The spin projections are obtained as
w | 3 w
<mi>:<¢| |Jz|¢| >
(28)
The total shell energy is given by
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E,, :Z<¢I‘”‘hi0 ¢Iw> :Z<ei>,

(29)
where

e’ =(e)—nw(m)

(30)
Thus the total spin and shell energy for the unsmoothened single particle level distribution is

given by
=2(m)

(31)
E,, = Ze;" +hol

(32)

Since the difficulties encountered in the evaluation of total energy for large deformations
through the summation of single particle energies for 1=0 case may be present for 10 case
also [18], we use the Strutinsky shell correction method adopted to 10 case by suitably tuning
the angular velocities to yield fixed spins.

For the Strutinsky smeared single particle level distribution [19], Egs. (31) and (32) transform
into

=) (33)
~ N ~
and E, :Zéi“’Jrha)l
(34) |

In the tuning method, first the energy values are evaluated with different degrees of
freedom and different angular velocities. Then the obtained spin is treated under standard
interpolation with the given angular velocity to obtain the exact angular velocities for the
actual spin sequence for the nuclei considered.

The energy expression can have the form with specified N, Z & spin | and also
deformation 3 as.,

Erw(N.Z,8) =Ry + o) (35)

and the total spin,
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=1, :i<jz>f+i<iz>j

v=l =1

(36)

The above relation allows us to select numerically the @ values that correspond to the chosen
integer or half integer spins. Obviously the corresponding frequency values @(1) change from

one deformation point to another and the corresponding calculations have to be repeated
accordingly. The energy values are thus calculated for the exact spin sequence.

The total energy is now given by

ET = ERLDM _(E_ Esp)
(37)

where the rotating liquid drop energy at constant spin

Eriom = Eiom _%‘]ring +hol
(38)

the second term on the right hand side being the rotational energy. Here the liquid
drop energy Eipwm is given by the sum of Coulomb and surface energies and Jiig, the rigid body
moment of inertia defined by  and y including the surface diffuseness correction.

The calculations are carried out by varying @ values in steps of 0.025@, from
@ =0.0 to ®=0.3w,, o, being the oscillator frequency for tuning to fixed spins. v is varied

from -180° to -120° in steps of -10° wherein y=-180° and 3 values are varied from 0.0 to 1.2 in
steps of 0.1.

3. Results and Discussion

In this work the isovector giant dipole resonances (IVGDR’s) are extensively studied in certain
rapidly rotating hot ruthenium isotopes using a rotating anisotropic harmonic oscillator
potential and a separable dipole - dipole residual interaction. The shape and deformation of
the above nuclei at high spins are determined by the cranked Nilsson — Strutinsky method
extended for rotating medium mass nuclei. Calculations are performed for the considered
ruthenium isotopes which have spherical ground state, to see how their shape transitions at
higher excited states affect the isovector giant dipole resonance frequencies built on them. In
the first step, we have determined the equilibrium deformations of the considered nuclei at
different spins. This is done by using the cranked Nilsson - Strutinsky method extended to
finite temperature. The main advantage of this method is that the changes of surface
diffuseness with spin are automatically taken into account in this method. The next step in our
calculations is to find out the allowed angular velocities for these deformations. This is done
in this work by using the rotating liquid drop model. In this method, the angular velocity
allowed for each equilibrium configuration is fixed by the balance of nuclear pressure, surface
tension, and Coulomb energy. Once the angular velocities are known, the IVGDR frequencies
Nanotechnology Perceptions Vol. 20 No.1 (2024)
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as a function of spin and temperature were studied for the considered ruthenium isotopes.
3.1 Shape evolutions in Ruthenium isotopes

In the present work, the shape evolutions in %-1%Ru isotopes are first studied as a function of
spin using cranked Nilsson Strutinsky method. The potential energy surfaces for these isotopes
have been obtained by tuned spin Strutinsky procedure. In the calculations performed here the
spin is varied from I= 0 to 60 h in steps of 2 h at various temperatures starting from zero. The
equilibrium deformations are displayed in the (I I-[1) plane. Figures 1-4 show the equilibrium
shape evolution of *°Ru, %Ru, 1®Ru and °?Ru isotopes respectively at different spins and
temperatures performed with the tuned spin cranked Nilsson Strutinsky method. We see from
Fig.1 that at T=0.0 MeV, the ®Ru has spherical shape at its ground state (I=0 h) with
deformation 3=0.0 and which remains in

*Ru *Ru

r P 204N
80

1=56.60n
|T= 0.0MeV
|

Vid
i

HON / AN

i
Vi

Fig. 1. Shapes of 96Ru isotope as a function of spin at different temperatures
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Fig. 2. Shapes of 98Ru isotope as a function of spin at different temperatures

spherical up to [=4 h. As spin increases there is a shape transition to oblate shape at [=8 h and
which persists in the same shape with increased deformation for the further increase of spin
up to I=60 h. When temperature is included, that is at T=0.5-1.5MeV, the *Ru nucleus initially

in spherical shape with I=0 h become oblate at high spin but the transition occurs at =4 h.

It is noted from Fig. 2 that the ®®Ru nuclei is oblate at its ground state with T=0.0 MeV, I=0 h
and B=0.0, which persists in the same shape up to I=52 h with increased deformation. As spin
increases it undergoes triaxial shape (y=-140°) and stays in triaxial with little elongation of
increased deformation. Almost the same trend is obtained for *®Ru at T=0.5 MeV with
elongation occurs at earlier spin values leading to triaxial ~ (y=-140°) finally. For the case of
%Ru at T=1.0 MeV, the shape at spin I=0 h is spherical and then transition occurs to oblate
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and then triaxial at higher spins. At T=1.5 MeV spherical to oblate transition occurs as a
function of spin and transition to triaxiality vanishes.
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Fig. 3. Shapes of 100Ru isotope as a function of spin at different temperatures

From Fig. 3 it is noted that the '®Ru nuclei is oblate at its ground state with T=0.0 MeV, 1=0
h and B=0.0, which persists in the same shape up to 1=52 h with increased deformation. As
spin increases it undergoes triaxial shape (y=-150°) and stays in triaxial. Almost the same trend
is obtained for 1°°Ru at T=0.5 MeV with elongation occurs at earlier spin values leading to
triaxial (y=-160°) finally. For the case of 1“Ru at T=1.0 MeV, the shape at spin =0 h is
spherical and then transition occurs to oblate and triaxial (y=-170°) at higher spins. At T=1.5
MeV spherical to oblate transition occurs as a function of spin and transition to triaxial
vanishes.
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Fig. 4. Shapes of 102Ru isotope as a function of spin at different temperatures

If we look at Fig.4, at T=0.0 MeV, the 1°?Ru nuclei has spherical shape at its ground state (1=0
h) with deformation f=0.0 and which remains in spherical up to I=4 h. As spin increases there
is a shape transition to oblate shape at I=8 h and which persists in the same shape with
increased deformation for the further increase of spin up to I=52 h. As spin increases it
undergoes triaxial shape (y=-160°) and stays in triaxial with little elongation of increased
deformation. When temperature is included, that is at T=0.5 MeV, the ?Ru nucleus initially
in oblate shape with I=0 h become triaxial (y=-170°) at 1=52 h and stays in triaxial with
elongation on further increase of spin. But at high temperatures T=1.0-1.5 MeV, a spherical to
oblate transition as a function of spin is obtained. Thus it is to be noted from the above
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discussion that the ruthenium nuclei starting from spherical or oblate shape becomes oblate or
triaxial as a function of spin and temperature which is in conformity with the experimental and
theoretical results [3,4,30].

3.2 Giant Dipole Resonance in Ruthenium isotopes

We present our results of GDR calculations for the case of ®*Ru, ®®Ru, °°Ru and 2Ru isotopes
in Figs. 5-8 respectively. For spherical shape of a nucleus, there is only one Isovector Giant
Dipole Resonance (IVGDR) frequency in the intrinsic or the laboratory frame. But for prolate
and oblate shapes, we have two frequencies in the nonrotating case, the splitting being caused
by static deformation. When such nuclei start rotating, the two frequencies will divide into
three in the intrinsic frame. These three modes observed in the intrinsic system divide, in the
laboratory frame, into five frequencies for the prolate case while the transformation to the
laboratory frame just brings the frequencies back to coincide with their original values at zero
rotation for oblate system rotating about the symmetry axis. This expected behavior is clearly
brought out in Figs. 5-8. In ®Ru, (see Fig. 5) the frequency splitting has only one component
for its spherical shape and which has two components when it undergo oblate shape rotating
about the symmetry axis. But this behavior changes in *®Ru (see Fig. 6). For this nucleus, the
splitting has five, one as well as two components depending upon the spherical or oblate shapes
rotating about the symmetry axis at different spins and temperature. If we consider the effect
of temperature alone, we see that the width fluctuations vanish at T=1.5 MeV itself in the case
of ®Ru. The same trend of frequency splitting reflecting the shape transitions in ®Ru and
12Ru as a function of spin and temperature is clearly seen in figures 7-8. The general
broadening of IVGDR widths with excitation is clearly seen in all the cases considered.
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Fig. 5. Dependence of the isovector giant dipole energy E on the angular momentum 1 for
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96Ru isotope at different temperatures.
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Fig. 6. Dependence of the isovector giant dipole energy E on the angular momentum 1 for
98Ru isotope at different temperatures.
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Fig. 7. Dependence of the isovector giant dipole energy E on the angular momentum | for
100Ru isotope at different temperatures.
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Fig. 9. IVGDR energies as a function of neutron number for 96-102Ru

Fig.9 shows the Isovector Giant Dipole Resonance (IVGDR) energies as a function of neutron
number for the case of *Ru, %Ru, ®Ru and °?Ru isotopes. It is seen that the deformation
energy decreases as function of neutron number.

4. Conclusion

In this work the isovector giant dipole resonances (IVGDR’s) are extensively studied in
rapidly rotating hot ruthenium isotopes using a rotating anisotropic harmonic oscillator
potential and a separable dipole - dipole residual interaction. The shape and deformation of
the above nuclei at high spins are determined by the cranked Nilsson — Strutinsky method
extended for rotating medium mass nuclei. The results obtained show the general splitting of
the frequencies of GDR at high spin and broadening of widths of frequencies in these nuclei
increases on further increase of spin. The influence of temperature on the isovector giant dipole
resonance is assumed to occur through the change of deformation of the average field only.
The deformation energy is found to decrease as function of neutron number. The results
obtained show the general splitting of the frequencies of GDR at high spin and broadening of
widths of frequencies in these nuclei increases on further increase of spin. It is seen that the
width fluctuation present at T = 0, vanish at higher temperatures in these isotopes. Since this
behaviour is found to be common in these isotopes, it may be noted that the role of temperature
on shell effects do not affect the isovector giant dipole resonance widths in these isotopes at
higher spins. Broadening of the giant dipole resonance as A as well as I increases is observed
which is in good agreement with the experimental observations [30]. Our results show the
increasing widths of the IVGDR’s at higher angular momenta as being mainly due to
dynamical deformation effects caused by rotation.
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To sum up, in this work we have chosen four ruthenium isotopes which are spherical, oblate
at the ground state stays in oblate for some cases and becomes triaxial in some other cases as
a function of spin and temperature. The IVGDR frequencies clearly reflect the shape
transitions. Thus it can be noted that the GDR is ascribed as a signature for the shape transitions
in the considered ruthenium nuclear isotopes.
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