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Cancer diagnosis using gene expression microarray data involves analyzing gene
expression patterns to classify samples as cancerous or non-cancerous, aiding in
early detection and treatment planning for various types of cancer. Challenges in
cancer diagnosis from gene expression microarray data include noise and
variability in data, feature selection from high-dimensional datasets, overfitting,
class imbalance, and the need for robust algorithms to effectively distinguish
between cancerous and non-cancerous samples. This work involves a
comprehensive approach to analyzing microarray data for cancer diagnosis. It
begins with the selection of relevant microarray data, followed by essential data
pre-processing steps such as normalization and handling missing values to ensure
data quality. Dimensionality reduction techniques, particularly Linear
Discriminant Analysis (LDA), are employed to reduce the complexity of the
dataset. Feature selection is then performed using the Improved Red Panda
Optimization (IRPO) algorithm. Subsequently, a classification model,
Convolutional Artificial Neural Networks (CANN), is utilized for accurate cancer
diagnosis. This integrated approach ensures that the most relevant features are
extracted from the data, optimizing classification performance while mitigating
the effects of noise and high dimensionality inherent in microarray datasets,
ultimately enhancing the accuracy and reliability of cancer diagnosis. After
classifying cancer types, pathway analysis is conducted to understand the
molecular characteristics of various cancers. This informs the search for
biomarkers, therapeutic targets, and subtype-specific therapies. By using this
data, customized treatment plans based on the molecular features of each patient's
tumor can be created, leading to better patient outcomes and enabling precision
medicine techniques in cancer treatment. The proposed model achieves a high
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accuracy rate of approximately 99.758%, demonstrating its effectiveness in
cancer diagnosis.

Keywords: Cancer Diagnosis; Gene Analysis; Pathway Analysis; LDA; IRPO;
CANN.

1. Introduction

Cancer diagnosis stands at the forefront of modern medical challenges, representing a critical
juncture where early detection can significantly alter patient outcomes. This process involves
a multifaceted approach that integrates advanced technologies and rigorous clinical
methodologies to identify and characterize cancerous cells or tissues within the human body
[1,2]. At its essence, cancer diagnosis begins with a suspicion often triggered by symptoms
reported by patients or abnormalities detected through routine screening tests. These
indications prompt healthcare professionals to initiate a thorough investigation, typically
starting with imaging techniques such as X-rays, CT scans, MRI scans, or ultrasound [3,4].
These imaging modalities provide initial insights into the location, size, and possible spread
of suspected tumors or abnormal growths, guiding further diagnostic pathways. Following
initial imaging, clinicians may proceed to more targeted diagnostic procedures, depending on
the suspected type of cancer and the location of abnormalities [5]. Biopsy remains a
cornerstone in confirming a cancer diagnosis, involving the extraction and examination of
tissue samples from suspicious areas. This procedure, often performed under local anaesthesia,
allows pathologists to scrutinize cells microscopically, identifying malignant characteristics
such as abnormal cell structure, rapid growth patterns, and potential invasion into surrounding
tissues [6,7].

In addition to traditional pathology, molecular diagnostics have revolutionized cancer
diagnosis by delving into the genetic and molecular makeup of tumors [8]. Techniques like
polymerase chain reaction (PCR) and next-generation sequencing (NGS) enable clinicians to
identify specific genetic mutations or biomarkers associated with different types of cancer [9].
This molecular profiling not only aids in confirming diagnoses but also informs personalized
treatment strategies tailored to the genetic profile of each patient's cancer. Moreover,
advancements in medical imaging and diagnostic technologies have led to the development of
non-invasive or minimally invasive diagnostic tools [10,11]. Liquid biopsies, analyze blood
samples for circulating tumor cells, cell-free DNA, or other biomarkers shed by tumors into
the bloodstream. These biomarkers provide valuable information about the presence of cancer,
its molecular characteristics, and even its response to treatment, offering a less invasive
alternative to traditional tissue biopsies [12]. Furthermore, the role of artificial intelligence
(Al) and machine learning algorithms continues to expand in cancer diagnosis. These
technologies analyze vast amounts of medical data, including imaging scans, genetic profiles,
and patient histories, to assist radiologists, pathologists, and oncologists in making more
accurate and timely diagnostic decisions [13]. Al-driven tools can enhance the sensitivity and
specificity of cancer detection, reducing the risk of false positives and miss diagnoses, thereby
improving overall patient care and outcomes.

Cancer diagnosis represents a complex and evolving field within modern medicine, integrating
a spectrum of clinical, technological, and scientific advancements [14]. From initial suspicions
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based on symptoms to confirmatory tests like biopsies and molecular profiling, each step in
the diagnostic journey plays a crucial role in guiding treatment decisions and improving patient
prognosis. As research continues to push the boundaries of diagnostic accuracy and
accessibility, the ongoing refinement of diagnostic tools promises to further enhance our
ability to detect cancer earlier, ultimately leading to improved survival rates and quality of life
for patients worldwide [15]. The motivation behind utilizing gene expression microarray data
for cancer diagnosis lies in its potential to revolutionize early detection and treatment
strategies. By analyzing gene expression patterns, this approach aims to identify subtle
molecular signatures indicative of cancerous conditions, facilitating earlier interventions and
personalized treatment plans tailored to each patient's unique genetic profile. This work
addresses critical challenges such as data variability and complexity through advanced
computational techniques, aiming to enhance diagnostic accuracy and pave the way for
precision medicine applications in oncology. Ultimately, the goal is to improve patient
outcomes by leveraging molecular insights to optimize therapeutic strategies and improve
overall survival rates.

The contributions of this paper are manifested below,

o By integrating advanced computational techniques such as LDA for dimensionality
reduction and IRPO for feature selection, the approach optimizes the identification of relevant
gene expression patterns associated with cancer. This leads to improved accuracy in
distinguishing between cancerous and non-cancerous samples, crucial for early detection and
precise treatment planning.

o This work performed pathway analysis after classifying cancer types to understand
the molecular characteristics of various cancers. The analysis of molecular characteristics
through microarray data facilitates the discovery of biomarkers and therapeutic targets specific
to different cancer types. This enables the development of personalized treatment plans based
on the genetic profile of each patient's tumor, potentially improving treatment efficacy and
patient outcomes through tailored therapies.

o This work addresses key challenges in microarray data analysis, such as noise
reduction, handling high-dimensional datasets, and mitigating overfitting and class imbalance
issues. The application of CANN as a classification model further enhances the robustness and
reliability of cancer diagnosis, paving the way for more effective utilization of gene expression
data in clinical settings.

The rest of this paper is organized as follows. The section Il provides both related works and
problem statement. The proposed protocol is introduced and explained in the section Ill. The
result and discussion are then presented in the section IV, followed by the conclusion in the
section V.

2. Literature Review

In 2021, Bartha and Gyérffy [16] developed an integrated database and web platform to mine
this data in real time, using gene array data from NCBI-GEO and RNA-seq data from TCGA,
TARGET, and GTEx. The database includes 56,938 samples from various sources. Key
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upregulated genes were TOP2A, SPP1, and CENPA, while ADH1B was downregulated.

In 2019, Ghosh et al. [17] used a Recursive Memetic Algorithm (RMA) for gene selection,
outperforming standard Memetic Algorithms (MA) and Genetic Algorithms (GA). Applied to
seven microarray datasets (AMLGSE2191, Colon, DLBCL, Leukaemia, Prostate, MLL, and
SRBCT), RMA achieved higher accuracy with fewer features. The results, validated
biologically using Gene Ontology, KEGG pathways, and heat maps, demonstrate the
effectiveness of our approach.

In 2020, Yuan et al. [18] proposed machine learning to analyze gene expression profiles of
lung AC and SCC from the Gene Expression Omnibus. Monte Carlo feature selection ranked
features by importance, and the incremental feature selection method identified optimal
features for SVM classification. Key genes (e.g., CSTA, TP63, SERPINB13) were identified
as differentially expressed. Additionally, rule learning provided classification rules,
highlighting distinct gene expression patterns between lung AC and SCC.

In 2022, Su et al. [19] used gene expression data from The Cancer Genome Atlas (TCGA) for
diagnosing and staging colon cancer. Weighted Gene Co-expression Network Analysis
(WGCNA) identified key gene modules, and the Lasso algorithm extracted characteristic
genes. Random Forest (RF), SVM, and decision trees were used for diagnosis, with RF
achieving the best results: 99.81% accuracy for diagnosis, 91.5% for staging.

In 2019, Guan et al. [20] investigated circRNA regulatory mechanisms in GC and analyzed
circRNA expression profiles from four GEO microarray datasets and miRNA/mRNA profiles
from the TCGA database. Differentially expressed circRNAs (DEcircRNAs) were identified
using robust rank aggregation, and a ceRNA network was constructed. Functional and pathway
enrichment analyses were performed, and protein interactions predicted using Cytoscape. A
subnetwork regulatory module was developed with the MCODE plugin.

In 2018, Shukla et al. [21] developed a hybrid gene selection method to enhance classification
accuracy and reduce computational time. Our two-stage method first applies the EGS method
with a multi-layer and f-score approach to filter noisy and redundant genes. In the second
stage, an adaptive genetic algorithm (AGA\) identifies significant gene subsets using SVM and
Naive Bayes classifiers.

In 2021, Liu et al. [22] conducted a comprehensive bioinformatics analysis across multiple
databases to assess Keapl mRNA's diagnostic and prognostic significance in lung cancer.
ROC curve analysis indicated strong diagnostic potential for lung squamous cell carcinoma
(LUSC). High Keapl mRNA levels emerged as an independent risk factor for overall lung
cancer mortality but exhibited conflicting implications for lung adenocarcinoma (LUAD). Co-
expressed genes with Keapl and Nfe2L2 were identified, highlighting their involvement in
the oxidative stress-induced gene expression pathway via Nrf2, implicating these mechanisms
in lung cancer pathogenesis.

In 2019, Musheer et al. [23] introduced an ABC-based feature selection method for microarray
data. Our approach combines ICA for data reduction and ABC for optimizing feature vectors.
Extensive experiments validate our method, showing it outperforms existing approaches in
gene selection for the Naive Bayes classifier across multiple cancer classification datasets, as
confirmed by statistical hypothesis testing.
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In 2020, Millstein et al. [24] aimed to establish a robust prognostic signature for overall
survival (OS) in women with high-grade serous ovarian cancer (HGSOC). Expression levels
of 513 genes, identified from a meta-analysis of 1455 tumors and additional candidates, were
assessed using NanoString technology on formalin-fixed paraffin-embedded tumor samples
from 3769 patients. Elastic net regularization was employed for survival analysis, developing
a predictive model for 5-year OS. The model was trained on 2702 tumors from 15 studies and
validated on an independent cohort of 1067 tumors from six studies.

In 2019, Algamal and Lee [25] proposed a two-stage approach. The first stage employs sure
independence screening to identify genes highly correlated with cancer class levels. In the
second stage, adaptive lasso with new weights handles correlations among these genes.
Experimental results across four gene expression datasets demonstrate superior performance
in classification metrics and highlight biologically relevant genes, making it a promising
method for clinical cancer classification.

2.1. Problem Statement

The problem statement for cancer diagnosis using gene expression microarray data revolves
around the need to effectively utilize complex biological data to improve early detection and
treatment planning. Gene expression microarray technology offers a wealth of information
about cellular activities and molecular profiles associated with cancer. However, challenges
such as data noise, high dimensionality, and variability across samples hinder accurate
classification of cancerous and non-cancerous tissues. Current methodologies must navigate
these obstacles to ensure robust algorithms capable of distinguishing subtle gene expression
patterns indicative of different cancer types. Moreover, the identification of relevant
biomarkers and therapeutic targets from these datasets requires sophisticated data pre-
processing, feature selection, and classification techniques. Addressing these challenges is
crucial for enhancing diagnostic accuracy, enabling personalized treatment strategies, and
advancing the field of precision medicine in oncology. Therefore, the overarching goal is to
develop computational models that optimize classification performance and translate
molecular insights into actionable clinical outcomes for cancer patients.

3. Proposed Methodology

Cancer diagnosis using gene expression microarray data involves examining gene activity
patterns to detect cancer early and devise effective treatment plans. This process faces
challenges such as data noise, high dimensionality, and variability across samples. To address
these issues, several advanced techniques are employed: pre-processing to clean the data,
dimensionality reduction to simplify the dataset, feature selection to identify the most relevant
genes, and classification algorithms to accurately categorize cancer types. These methods
enhance diagnostic accuracy and reliability by mitigating noise and preventing overfitting.
Robust algorithms are essential for handling the complexity of the data and ensuring
reproducible results. Ultimately, these techniques facilitate early cancer detection and enable
personalized treatment strategies for patients. Figure 1 illustrates the overall proposed
architecture.
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Figure 1: Overall Proposed Architecture
3.1 Pre-processing

The pre-processing phase involves normalizing data to ensure consistent scaling and
employing techniques to handle missing data, thereby addressing any gaps or null values in
the dataset.

3.1.1 Normalization

Normalization is an essential step in data pre-processing that standardizes the scale of features
within a dataset. This process ensures that all variables contribute equally to the analysis,
regardless of their original units or scales. Normalization involves transforming numerical
values to a common scale, typically between 0 and 1 or -1 and 1. One common technique for
normalization is Min-Max scaling, which adjusts each feature's values proportionally to fit
within a specified range. This is done by subtracting the minimum value from each observation
and then dividing by the range (the difference between the maximum and minimum values).
Another approach is Z-score normalization (standardization), which involves subtracting the
mean from each observation and dividing by the standard deviation. This centres the data
around zero and adjusts it to have a standard deviation of 1. By normalizing data, features with
larger scales do not overshadow those with smaller scales during analysis, thereby enhancing
the performance and convergence of algorithms.
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3.1.2 Handling Missing Data

Handling missing data is a crucial part of data pre-processing, aimed at managing the absence
of values in a dataset. Missing data can occur due to various reasons, such as measurement
errors, data corruption, or intentional non-response. Ignoring missing values can lead to biased
analyses and inaccurate results. Several strategies exist for handling missing data, including
deletion, imputation, and prediction. Deletion involves removing observations or variables
with missing values, which can result in the loss of valuable information and a reduced sample
size. Imputation methods involve replacing missing values with estimated ones based on
statistical measures like mean, median, or mode, though this can introduce bias and alter the
data's distribution. Prediction methods utilize machine learning algorithms to predict missing
values based on other variables in the dataset, offering a more sophisticated approach to
handling missing data.

3.2. Dimensionality Reduction

Dimensionality reduction streamlines modelling by reducing the number of variables in a
dataset. It includes feature selection, which involves choosing the most significant variables,
and feature extraction, which transforms high-dimensional data into fewer dimensions. This
process accelerates model training and improves accuracy by mitigating overfitting. In this
study, LDA was used for dimensionality reduction. LDA identifies the linear combinations of
features that best separate different classes, enhancing the discriminatory power of the model.
By focusing on the most informative features and reducing data complexity, LDA helps in
building more efficient and accurate predictive models.

3.2.1. LDA

LDA is atechnique used in statistics, pattern recognition, and machine learning to find a linear
combination of features that best represents a dependent variable. Unlike Principal Component
Analysis (PCA) and factor analysis, which focus on similarities, LDA explicitly models
differences between data classes. It identifies vectors in the data space that best discriminate
between classes, aiming to maximize the separation between multiple classes. LDA works by
finding a linear combination of independent features to maximize the mean differences
between classes. This is mathematically expressed in terms of two scatter matrices as per Eq.
(1) and Eq. (2).

swl =35, T, (x - wy) (x] - Hj)w @)

x{ denotes the ith sample of class, Hj is the mean of class j, c represents the number of classes,
nj signifies the number of samples in class j, 1 denotes the mean of all classes.

swl=3 (- W)y —n)’ )

LDA aims to maximize the ratio of the between-class scatter to the within-class scatter,
effectively increasing the separation between different classes while reducing the spread
within each class. By doing so, LDA enhances the discriminatory power of the resulting linear
combinations, making it a powerful tool for classification tasks.
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3.3 Feature Selection

In this study, the Improved Red Panda Optimization (IRPO) algorithm is employed to enhance
classification accuracy by selecting relevant features and refining the collected data, ultimately
improving model performance.

3.3.1IRPO

The red panda, native to southern China and the eastern Himalayas, is a small mammal known
for its reddish-brown fur and distinctive markings. Thriving in temperate forests with dense
bamboo cover, it excels in climbing trees. Feeding mainly on bamboo leaves and shoots, it
relies on keen senses and climbing abilities. The Red Panda Optimization (RPO) algorithm's
design is inspired by these natural characteristics.

3.3.1.1 Mathematical Modelling
3.3.1.1.1 Initialization

As a population-based metaheuristic algorithm, the RPO technique uses red pandas to
symbolize each individual member. Each red panda represents a candidate solution in the
search space. The positions of these red pandas are initialized randomly to explore the search
space effectively. The red panda's position is represented mathematically as a vector, forming
a population matrix Y. This matrix is initialized using Eqg. (3) and Eq. (4):

_Xl_ [ Xl,l "'Xl,j ---Xl,n T

X={x,| = XizXij o Xin (3)
'XM'MXn _XM,l '"XM,j "'XM'n‘MXn

Xi,j = 10b] + I'i‘]' . (upb] - lOb]),l = 1,2, ...,M,j = 1,2, . | (4)

Here, X; stands for the i-th red panda (candidate solution) and X;; for its j-th dimension

problem variable). M is the total number of red pandas, and n is the number of problem
variables. The j-th problem variable's lower and upper limits are denoted by lob; and upb;,

respectively, and r;; are random values in the interval [0,1]. The objective function values of
the initialized solutions are evaluated and represented as per Eqg. (5).

1 )T
=16 = ®)
'fM'Mxl 'f(X'M)'Mxl
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Where, f; is the objective function value for the i-th red panda. These values help evaluate the
quality of potential solutions, identifying the best and worst solutions to guide the optimization
process.

3.3.1.1.2. Phase 1: Exploration Strategy - Foraging

In the first phase of RPO, red pandas' positions mimic their natural foraging behavior. They
use their keen senses to move towards food sources. In the algorithm, each red panda considers
the locations of others that yield superior objective function values as potential food sources.
These proposed food positions are determined based on objective function value comparisons,
with one position randomly chosen by each red panda using Eqg. (6):

pfs; = {Xklk € {1,2,..,M}and fy < f;} U {Xpest} (6)

Based on a comparison with the location of the best candidate solution Yyest, the suggested
food sources for each red panda pfs; are identified. Approaching these sources causes large
positional shifts that improve ability of algorithm to globally search and explore. By
determining new locations in relation to the food source (best candidate solution), red pandas'
foraging behaviour can be replicated. Eq. (7) to Eq. (9) are used to update the red panda's
location if the objective function value improves at the new location.

1 1
XF :XE]- = Xj,j +r. (SfSi,j - IS'Yi,j) + Xi’ (7)
pl pl
X; = Xi 'fi < fi (9)
X;, else

Gaussian mutation balances exploration and exploitation by adjusting the standard deviation.
It's simple to implement and adaptable, with mutation strength decreasing over time to enhance
convergence in optimization algorithms. The new location of the ith red panda as ascertained
from the RPO's first phase is represented by Xfl. Obijective function is denoted by fipl, and its
position in the jth dimension is indicated by xfjl. For the ith red panda, sfs; denotes the
preferred food source, and sfs;; denotes its location in the jth dimension. Is is a randomly
chosen number from the set {1, 2}, and the variable r is a random value between 0 and 1.

3.3.1.1.3 Phase 2: Proficiency in Ascending and Perching on Trees (Exploitation)

In the second phase of the RPO, red pandas' ability to climb and rest on trees is modelled. Red
pandas spend much of their time on trees, climbing to obtain food after foraging on the ground.
This behavior results in minor positional changes, improving the exploitation and local search
capabilities of the RPO algorithm in promising areas. The tree-climbing behavior is
mathematically modelled to calculate new positions for each red panda and replace previous
positions if the objective function improves, as represented by Eqg. (10) and Eq. (11):

lob;+r;:-(upbi—lob;) . )
G RALS (‘t‘p 1% 9o Mj=12..,nt=12.,T (10
P2 ¢p2
x, = X0 <
X;, else

Nanotechnology Perceptions Vol. 20 No.6 (2024)



4819 P. Nancy Vincentina Mary et al. Optimizing Cancer Diagnosis: IRPO-Driven Integrated...

(11)

The ith red panda's modified position, obtained from the second phase of RPO, is represented
by X}’Z. Obijective function is shown by fipz, and its position in the jth dimension is indicated
by ijz. A random number between 0 and 1 represents the variable r. The symbol t denotes the

algorithm's iteration counter, whereas T stands for the maximum iterations. This phase refines
the red pandas' positions, enhancing the algorithm's ability to exploit local optima and
converge to the best solution.

3.4. Classification - CANN

One class of deep neural networks that is mainly utilized for the analysis of visual vision is
called CNN. They excel at tasks like image identification and classification because of their
organized ability to adaptively and automatically extract spatial hierarchies of characteristics
from incoming data. Convolutional layers, pooling layers, fully linked layers, activation
functions, and normalizing layers are the essential parts of a CNN. Learnable filters or kernels
are used by convolutional layers to apply convolution operations, which convolve over the
input image to extract features. These filters identify particular patterns, like textures, edges,
or intricate structures.

Convolutional features spatial dimensions can be decreased while maintaining crucial
information by using pooling layers. The pooling operations max-pooling and average-pooling
are often used. The network can learn intricate correlations in the data by introducing non-
linearity to its output with activation functions such as ReLU. By dividing the input into
several classes according to the features that convolutional layers extracted, fully connected
layers carry out high-level reasoning. Normalization layers, such as Batch Normalization,
normalize the input to a layer, improving stability and speeding up training.

Convolutional Layer: This layer applies convolution operations to the input data using
learnable filters. The output of each filter, known as a feature map, captures specific patterns
or features from the input. The convolution operation is represented as per Eq. (12).

Conv(i,j) = YMzA¥0-11( + m,j + n) X K(m, n) (12)
Where 1 is the input matrix, K is the filter/kernel, and m and n are the dimensions of the filter.

Rectified Linear Unit (ReLU): ReLU is an activation function that introduces non-linearity to
the network by replacing negative values with zero. It is defined as per Eq. (13).

relu(x) = max (0, x) (13)

Pooling Layer: By lowering spatial dimensions, layer down samples the feature maps that were
acquired from convolutional layers. A common pooling operation is max pooling, where the
maximum value within each pooling window is retained. It helps in reducing computational
complexity and controlling overfitting. Fig. 2 depicts the CANN architecture.
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Convolutional Layer

Poolying Layer

Softmax Layer

Output Layer

Figure 2: CANN

Fully Connected (FC) Layer: Also known as the dense layer, this layer connects every neuron
from the previous layer to every neuron in the current layer. It learns complex patterns by
combining features extracted from previous layers.

Softmax Layer: This layer is typically used as the output layer in classification tasks. It
converts the raw scores (logits) from the previous layer into probabilities for each class using
the Softmax function using Eq. (14).

e’x
SOpX Z)l\(/l=1 eZx
(14)

Where, z is the vector of logits, z, represents output-count, SOp, denotes softmax output, and
M represents the totality of output nodes.

The architecture of an Artificial Neural Network (ANN) typically consists of three types of
layers: the input layer, hidden layers, and the output layer. This architecture is designed to
handle complex data, improve accuracy, and make reliable predictions.

. Input Layer

The input layer receives raw data or features and forwards them to the hidden layers for
processing. It contains one neuron per feature, with no computations performed within this
layer.
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o Hidden Layers

Hidden layers perform the primary computations in neural networks. Each neuron in a hidden
layer receives inputs from the preceding layer, computes a weighted sum, and applies an
activation function to generate an output, as represented by Eq. (15):

ay; = f(Tp) wikai + byj) (15)

Here, aj; is the activation of the j-th neuron in the i-th layer, w;, are the weights, aj, are the
activations from the previous layer, and bj;is the bias term.

. Output Layer

The output layer generates the final output of the neural network. The number of neurons in
this layer depends on the type of problem being addressed. After classifying cancer types,
pathway analysis is conducted to delve into the molecular characteristics of different cancers.
This detailed examination helps identify biomarkers, therapeutic targets, and subtype-specific
therapies. Utilizing this data allows for the creation of customized treatment plans changed to
the molecular features of each patient's tumor. These personalized plans enhance patient
outcomes by targeting the specific pathways and mechanisms involved in their cancer. By
adopting precision medicine techniques, this approach significantly improves the effectiveness
of cancer treatments, leading to more successful management and potential cures for patients
with diverse cancer types.

3.5. Pathway Analysis

In this work, pathway analysis is a critical step that follows the feature selection process. After
pre-processing the microarray data and reducing its dimensionality using LDA, IRPO
algorithm selects the most relevant features (genes). This step ensures that only the most
significant genes, which are likely to be involved in cancer progression, are retained. Once the
relevant genes are identified, pathway analysis is performed to understand how these genes
interact within biological pathways. Pathway analysis involves mapping these selected genes
onto known biological pathways to identify which pathways are enriched or deregulated in
cancerous samples compared to non-cancerous samples. The steps in pathway analysis are,

a. Pathway Mapping

The selected genes are mapped to predefined biological pathways from databases such as
KEGG (Kyoto Encyclopedia of Genes and Genomes), Reactome, or BioCarta. This mapping
helps in identifying the pathways in which these genes play a role.

b. Enrichment Analysis

Enrichment analysis is then conducted to determine if the identified genes are significantly
overrepresented in specific pathways compared to what would be expected by chance.
Statistical methods such as Fisher’s exact test, hypergeometric test, or Gene Set Enrichment
Analysis (GSEA) are typically used. The hypergeometric test is commonly used to determine
if a set of selected genes is overrepresented in a particular pathway. The test calculates the
probability of observing a certain number of selected genes in a pathway by chance. Fisher’s
exact test is used to calculate the exact probability of the observed association between the
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selected genes and the pathway. GSEA calculates an enrichment score to determine if the
members of a gene set are randomly distributed throughout the ranked list of genes or primarily
found at the top or bottom.

¢. Quantifying Pathway Deregulation

To measure the extent of pathway deregulation, algorithms such as Pathway Recognition
Algorithm using Data Integration on Genomic Models (PARADIGM) or Pathifier can be used.
These tools score pathways based on their activity levels and deviations from normal behavior
in individual samples.

Pathway analysis provides insights into the molecular mechanisms driving cancer progression.
By identifying which pathways are deregulated, researchers can better understand the
biological processes involved in tumor growth, metastasis, and resistance to therapy. Knowing
which pathways are altered in cancer can help identify potential therapeutic targets. Drugs can
be designed or repurposed to specifically inhibit or modulate these pathways, leading to more
effective treatments. By integrating pathway analysis with gene expression data, it is possible
to create customized treatment plans based on the specific pathways that are active in a
patient’s tumor. This personalized approach can improve treatment efficacy and patient
outcomes. Pathways that are consistently deregulated across different patients can serve as
biomarkers for diagnosis, prognosis, or treatment response. These biomarkers can be used in
clinical settings to identify patients who are likely to benefit from specific therapies.

Pathway analysis in this work enhances the overall understanding of cancer biology by linking
gene expression data to biological pathways. It provides a deeper insight into the molecular
underpinnings of cancer, enabling the development of targeted therapies and personalized
medicine approaches. By focusing on pathway-level changes, researchers can uncover the
complex interactions and regulatory mechanisms that drive cancer progression, ultimately
leading to improved diagnostic and therapeutic strategies. Algorithm 1 illustrates the process
of cancer diagnosis using IRPO for feature selection and CANN for accurate classification.

Algorithm 1: IRPO-CANN
BEGIN

INPUT: Gene expression microarray data (raw data)

Pre-processing

Normalize the data

FOR each feature in the dataset

Apply Min-Max Scaling or Z-score normalization to standardize values
Handle missing data

IF missing data exists

Impute missing values using mean, median, or prediction methods
Dimensionality Reduction

Apply LDA
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Compute within-class scatter matrix and between-class scatter matrix
Maximize the ratio of between-class scatter to within-class scatter
Reduce dimensions by projecting data onto the LDA components
Feature Selection

Initialize IRPO (Improved Red Panda Optimization) Algorithm
Initialize population of red pandas (candidate solutions)

Evaluate fitness of each candidate (based on selected features)
Exploration Phase

FOR each red panda in the population

Select potential food source (best candidate solution)

Update red panda position using foraging behavior formula
Exploitation Phase

FOR each red panda in the population

Adjust position based on tree-climbing behavior to refine local search
Update red panda position if objective function improves

Select top features based on best red panda's position
Classification

Build CANN

Train CANN

Backpropagate errors and adjust weights using optimization algorithm
Continue training until convergence or max iterations reached
Pathway Analysis
OUTPUT: Cancer classification results and pathway analysis insights
END

4. Result and Discussion
4.1. Experimental Setup

The proposed model is implemented using the Python platform and benchmarked against
existing models like Improved Red Panda Optimization Recurrent Neural Networks (IRPO-
RNN), Convolutional Neural Networks (IRPO-CNN), and Artificial Neural Networks (IRPO-
ANN). Performance metrics such as accuracy, precision, recall, and F1-score are used to
evaluate its effectiveness in cancer diagnosis. By comparing these metrics, the proposed
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model's superiority over established methods can be determined. Additionally, pathway
analysis is integrated into the workflow after feature selection to identify enriched biological
pathways. This step involves mapping the selected genes to known pathways and performing
enrichment analysis to identify overrepresented pathways. Pathway deregulation scores are
computed for each sample to quantify the extent of pathway deregulation, providing deeper
insights into the molecular mechanisms driving cancer progression. This comparative analysis,
including pathway analysis, provides valuable insights into the model's accuracy and
reliability, demonstrating its potential to improve early detection and personalized treatment
strategies in cancer diagnosis.

4.2. Dataset Collection

The Ovarian Cancer dataset [26] is an extensive genomic data collection created for ovarian
cancer research. It consists of 253 samples (genes/features) and 162 classes of people (162
with ovarian cancer diagnosis and 91 healthy controls). The WCX2 protein chip technology
was utilized to gather continuous numeric data that represents the levels of gene expression in
the dataset. Important new understandings of the molecular processes behind ovarian cancer
are made possible by this comprehensive genomic data. It is particularly helpful in the
development of prediction models that aid in illness diagnosis and in the identification of
potential biomarkers for targeted treatments. Using this dataset, researchers may investigate
the genetic makeup of ovarian cancer, leading to more accurate diagnoses and more
individualized treatment plans for patients.

4.3. Overall Performance Analysis

Table 1 presents a comparative performance analysis of existing models and the proposed
model for cancer diagnosis using gene expression data. The models compared include (IRPO-
RNN), (IRPO-CNN), (IRPO-ANN), and the newly proposed model. Starting with the IRPO-
RNN model, it achieved an accuracy of 92.654%, precision of 94.954%, recall of 94.765%,
and an F1 score of 93.654%. This indicates that while the IRPO-RNN performs reasonably
well, there is still room for improvement in accurately identifying cancerous samples. The
IRPO-CNN model shows an improved performance over the IRPO-RNN, with an accuracy of
94.743%, precision of 95.654%, recall of 95.756%, and an F1 score of 95.765%. These metrics
suggest that IRPO-CNN is more effective in distinguishing between cancerous and non-
cancerous samples. The IRPO-ANN model further enhances performance with an accuracy of
95.654%, precision of 96.654%, recall of 97.954%, and an F1 score of 97.964%. This indicates
a high level of precision and recall, making it a strong contender for cancer diagnosis. The
proposed model, however, surpasses all existing models with remarkable metrics: an accuracy
of 99.758%, precision of 99.999%, recall of 99.789%, and an F1 score of 99.879%. These
results demonstrate the proposed model’s superior performance in accurately diagnosing
cancer. The integration of pathway analysis post-feature selection significantly contributes to
its efficacy, allowing for the identification of enriched biological pathways and providing
deeper insights into the molecular mechanisms driving cancer progression. This
comprehensive approach ensures that the proposed model not only excels in performance
metrics but also enhances the understanding of cancer biology, paving the way for improved
early detection and personalized treatment strategies.
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Table 1: Performance Analysis of Existing and Proposed Model

Methods Accuracy Precision Recall F1 Score
IRPO RNN 92.654 94.954 94.765 93.654
IRPO CNN 94.743 95.654 95.756 95.765
IRPO ANN 95.654 96.654 97.954 97.964
Proposed 99.758 99.999 99.789 99.879
4.4, Graphical Representation
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Figure 3: Graphical Representation of Existing and Proposed Model (a) Accuracy (b)
Precision (c) F1-Score (d) Recall

Fig. 3 visually compares the performance metrics such as, accuracy, precision, F1 score, and
recall of the proposed model and existing models (IRPO-RNN, IRPO-CNN, IRPO-ANN) for
cancer diagnosis using gene expression data. Each subplot (a) to (d) shows a bar chart
representing the respective metric for each model. The proposed model consistently
demonstrates superior performance across all metrics compared to IRPO-RNN, IRPO-CNN,
and IRPO-ANN, highlighting its effectiveness in accurately classifying cancerous and non-
cancerous samples. This graphical representation underscores the significant advancement in
accuracy, precision, and overall diagnostic capability achieved by the proposed model,
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emphasizing its potential for enhancing early cancer detection and treatment planning.

5. Conclusion

In order to diagnose cancer, this paper used a thorough method of microarray data analysis.
First, pertinent microarray data were chosen. Next, necessary data pre-processing procedures
including normalization and handling missing values were carried out to guarantee the quality
of the data. The dataset's complexity was decreased by using dimensionality reduction
techniques, especially LDA. The IRPO algorithm was then used for feature selection. CANN
were then applied as a classification model to accurately diagnose cancer. The accuracy and
dependability of cancer detection were eventually improved by this integrated strategy, which
made sure that the most pertinent features were extracted from the data, optimizing
classification performance while reducing the impacts of noise and high dimensionality
inherent in microarray datasets. Following the classification of cancer types, pathway analysis
was carried out to comprehend the molecular traits of distinct cancer types. This provided
guidance in the hunt for therapeutic targets, biomarkers, and subtype-specific treatments.
Precision medicine techniques in cancer therapy were made possible by the creation of
personalized treatment plans using this data, which were based on the molecular characteristics
of each patient's tumor and improved patient outcomes. The efficacy of the suggested approach
in diagnosing cancer is demonstrated by its high accuracy rate of almost 99.758%.
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