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Cancer diagnosis using gene expression microarray data involves analyzing gene 

expression patterns to classify samples as cancerous or non-cancerous, aiding in 

early detection and treatment planning for various types of cancer. Challenges in 

cancer diagnosis from gene expression microarray data include noise and 

variability in data, feature selection from high-dimensional datasets, overfitting, 

class imbalance, and the need for robust algorithms to effectively distinguish 

between cancerous and non-cancerous samples. This work involves a 

comprehensive approach to analyzing microarray data for cancer diagnosis. It 

begins with the selection of relevant microarray data, followed by essential data 

pre-processing steps such as normalization and handling missing values to ensure 

data quality. Dimensionality reduction techniques, particularly Linear 

Discriminant Analysis (LDA), are employed to reduce the complexity of the 

dataset. Feature selection is then performed using the Improved Red Panda 

Optimization (IRPO) algorithm. Subsequently, a classification model, 

Convolutional Artificial Neural Networks (CANN), is utilized for accurate cancer 

diagnosis. This integrated approach ensures that the most relevant features are 

extracted from the data, optimizing classification performance while mitigating 

the effects of noise and high dimensionality inherent in microarray datasets, 

ultimately enhancing the accuracy and reliability of cancer diagnosis. After 

classifying cancer types, pathway analysis is conducted to understand the 

molecular characteristics of various cancers. This informs the search for 

biomarkers, therapeutic targets, and subtype-specific therapies. By using this 

data, customized treatment plans based on the molecular features of each patient's 

tumor can be created, leading to better patient outcomes and enabling precision 

medicine techniques in cancer treatment. The proposed model achieves a high 
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accuracy rate of approximately 99.758%, demonstrating its effectiveness in 

cancer diagnosis. 

Keywords: Cancer Diagnosis; Gene Analysis; Pathway Analysis; LDA; IRPO; 

CANN. 

 

 

1. Introduction 

Cancer diagnosis stands at the forefront of modern medical challenges, representing a critical 

juncture where early detection can significantly alter patient outcomes. This process involves 

a multifaceted approach that integrates advanced technologies and rigorous clinical 

methodologies to identify and characterize cancerous cells or tissues within the human body 

[1,2]. At its essence, cancer diagnosis begins with a suspicion often triggered by symptoms 

reported by patients or abnormalities detected through routine screening tests. These 

indications prompt healthcare professionals to initiate a thorough investigation, typically 

starting with imaging techniques such as X-rays, CT scans, MRI scans, or ultrasound [3,4]. 

These imaging modalities provide initial insights into the location, size, and possible spread 

of suspected tumors or abnormal growths, guiding further diagnostic pathways. Following 

initial imaging, clinicians may proceed to more targeted diagnostic procedures, depending on 

the suspected type of cancer and the location of abnormalities [5]. Biopsy remains a 

cornerstone in confirming a cancer diagnosis, involving the extraction and examination of 

tissue samples from suspicious areas. This procedure, often performed under local anaesthesia, 

allows pathologists to scrutinize cells microscopically, identifying malignant characteristics 

such as abnormal cell structure, rapid growth patterns, and potential invasion into surrounding 

tissues [6,7].  

In addition to traditional pathology, molecular diagnostics have revolutionized cancer 

diagnosis by delving into the genetic and molecular makeup of tumors [8]. Techniques like 

polymerase chain reaction (PCR) and next-generation sequencing (NGS) enable clinicians to 

identify specific genetic mutations or biomarkers associated with different types of cancer [9]. 

This molecular profiling not only aids in confirming diagnoses but also informs personalized 

treatment strategies tailored to the genetic profile of each patient's cancer. Moreover, 

advancements in medical imaging and diagnostic technologies have led to the development of 

non-invasive or minimally invasive diagnostic tools [10,11]. Liquid biopsies, analyze blood 

samples for circulating tumor cells, cell-free DNA, or other biomarkers shed by tumors into 

the bloodstream. These biomarkers provide valuable information about the presence of cancer, 

its molecular characteristics, and even its response to treatment, offering a less invasive 

alternative to traditional tissue biopsies [12]. Furthermore, the role of artificial intelligence 

(AI) and machine learning algorithms continues to expand in cancer diagnosis. These 

technologies analyze vast amounts of medical data, including imaging scans, genetic profiles, 

and patient histories, to assist radiologists, pathologists, and oncologists in making more 

accurate and timely diagnostic decisions [13]. AI-driven tools can enhance the sensitivity and 

specificity of cancer detection, reducing the risk of false positives and miss diagnoses, thereby 

improving overall patient care and outcomes. 

Cancer diagnosis represents a complex and evolving field within modern medicine, integrating 

a spectrum of clinical, technological, and scientific advancements [14]. From initial suspicions 
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based on symptoms to confirmatory tests like biopsies and molecular profiling, each step in 

the diagnostic journey plays a crucial role in guiding treatment decisions and improving patient 

prognosis. As research continues to push the boundaries of diagnostic accuracy and 

accessibility, the ongoing refinement of diagnostic tools promises to further enhance our 

ability to detect cancer earlier, ultimately leading to improved survival rates and quality of life 

for patients worldwide [15]. The motivation behind utilizing gene expression microarray data 

for cancer diagnosis lies in its potential to revolutionize early detection and treatment 

strategies. By analyzing gene expression patterns, this approach aims to identify subtle 

molecular signatures indicative of cancerous conditions, facilitating earlier interventions and 

personalized treatment plans tailored to each patient's unique genetic profile. This work 

addresses critical challenges such as data variability and complexity through advanced 

computational techniques, aiming to enhance diagnostic accuracy and pave the way for 

precision medicine applications in oncology. Ultimately, the goal is to improve patient 

outcomes by leveraging molecular insights to optimize therapeutic strategies and improve 

overall survival rates. 

The contributions of this paper are manifested below, 

• By integrating advanced computational techniques such as LDA for dimensionality 

reduction and IRPO for feature selection, the approach optimizes the identification of relevant 

gene expression patterns associated with cancer. This leads to improved accuracy in 

distinguishing between cancerous and non-cancerous samples, crucial for early detection and 

precise treatment planning. 

• This work performed pathway analysis after classifying cancer types to understand 

the molecular characteristics of various cancers. The analysis of molecular characteristics 

through microarray data facilitates the discovery of biomarkers and therapeutic targets specific 

to different cancer types. This enables the development of personalized treatment plans based 

on the genetic profile of each patient's tumor, potentially improving treatment efficacy and 

patient outcomes through tailored therapies.  

• This work addresses key challenges in microarray data analysis, such as noise 

reduction, handling high-dimensional datasets, and mitigating overfitting and class imbalance 

issues. The application of CANN as a classification model further enhances the robustness and 

reliability of cancer diagnosis, paving the way for more effective utilization of gene expression 

data in clinical settings. 

The rest of this paper is organized as follows. The section II provides both related works and 

problem statement. The proposed protocol is introduced and explained in the section III. The 

result and discussion are then presented in the section IV, followed by the conclusion in the 

section V. 

 

2. Literature Review 

In 2021, Bartha and Győrffy [16] developed an integrated database and web platform to mine 

this data in real time, using gene array data from NCBI-GEO and RNA-seq data from TCGA, 

TARGET, and GTEx. The database includes 56,938 samples from various sources. Key 
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upregulated genes were TOP2A, SPP1, and CENPA, while ADH1B was downregulated. 

In 2019, Ghosh et al. [17] used a Recursive Memetic Algorithm (RMA) for gene selection, 

outperforming standard Memetic Algorithms (MA) and Genetic Algorithms (GA). Applied to 

seven microarray datasets (AMLGSE2191, Colon, DLBCL, Leukaemia, Prostate, MLL, and 

SRBCT), RMA achieved higher accuracy with fewer features. The results, validated 

biologically using Gene Ontology, KEGG pathways, and heat maps, demonstrate the 

effectiveness of our approach. 

In 2020, Yuan et al. [18] proposed machine learning to analyze gene expression profiles of 

lung AC and SCC from the Gene Expression Omnibus. Monte Carlo feature selection ranked 

features by importance, and the incremental feature selection method identified optimal 

features for SVM classification. Key genes (e.g., CSTA, TP63, SERPINB13) were identified 

as differentially expressed. Additionally, rule learning provided classification rules, 

highlighting distinct gene expression patterns between lung AC and SCC. 

In 2022, Su et al. [19] used gene expression data from The Cancer Genome Atlas (TCGA) for 

diagnosing and staging colon cancer. Weighted Gene Co-expression Network Analysis 

(WGCNA) identified key gene modules, and the Lasso algorithm extracted characteristic 

genes. Random Forest (RF), SVM, and decision trees were used for diagnosis, with RF 

achieving the best results: 99.81% accuracy for diagnosis, 91.5% for staging. 

In 2019, Guan et al. [20] investigated circRNA regulatory mechanisms in GC and analyzed 

circRNA expression profiles from four GEO microarray datasets and miRNA/mRNA profiles 

from the TCGA database. Differentially expressed circRNAs (DEcircRNAs) were identified 

using robust rank aggregation, and a ceRNA network was constructed. Functional and pathway 

enrichment analyses were performed, and protein interactions predicted using Cytoscape. A 

subnetwork regulatory module was developed with the MCODE plugin. 

In 2018, Shukla et al. [21] developed a hybrid gene selection method to enhance classification 

accuracy and reduce computational time. Our two-stage method first applies the EGS method 

with a multi-layer and f-score approach to filter noisy and redundant genes. In the second 

stage, an adaptive genetic algorithm (AGA) identifies significant gene subsets using SVM and 

Naïve Bayes classifiers. 

In 2021, Liu et al. [22] conducted a comprehensive bioinformatics analysis across multiple 

databases to assess Keap1 mRNA's diagnostic and prognostic significance in lung cancer. 

ROC curve analysis indicated strong diagnostic potential for lung squamous cell carcinoma 

(LUSC). High Keap1 mRNA levels emerged as an independent risk factor for overall lung 

cancer mortality but exhibited conflicting implications for lung adenocarcinoma (LUAD). Co-

expressed genes with Keap1 and Nfe2L2 were identified, highlighting their involvement in 

the oxidative stress-induced gene expression pathway via Nrf2, implicating these mechanisms 

in lung cancer pathogenesis. 

In 2019, Musheer et al. [23] introduced an ABC-based feature selection method for microarray 

data. Our approach combines ICA for data reduction and ABC for optimizing feature vectors. 

Extensive experiments validate our method, showing it outperforms existing approaches in 

gene selection for the Naïve Bayes classifier across multiple cancer classification datasets, as 

confirmed by statistical hypothesis testing. 
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In 2020, Millstein et al. [24] aimed to establish a robust prognostic signature for overall 

survival (OS) in women with high-grade serous ovarian cancer (HGSOC). Expression levels 

of 513 genes, identified from a meta-analysis of 1455 tumors and additional candidates, were 

assessed using NanoString technology on formalin-fixed paraffin-embedded tumor samples 

from 3769 patients. Elastic net regularization was employed for survival analysis, developing 

a predictive model for 5-year OS. The model was trained on 2702 tumors from 15 studies and 

validated on an independent cohort of 1067 tumors from six studies. 

In 2019, Algamal and Lee [25] proposed a two-stage approach. The first stage employs sure 

independence screening to identify genes highly correlated with cancer class levels. In the 

second stage, adaptive lasso with new weights handles correlations among these genes. 

Experimental results across four gene expression datasets demonstrate superior performance 

in classification metrics and highlight biologically relevant genes, making it a promising 

method for clinical cancer classification. 

2.1. Problem Statement 

The problem statement for cancer diagnosis using gene expression microarray data revolves 

around the need to effectively utilize complex biological data to improve early detection and 

treatment planning. Gene expression microarray technology offers a wealth of information 

about cellular activities and molecular profiles associated with cancer. However, challenges 

such as data noise, high dimensionality, and variability across samples hinder accurate 

classification of cancerous and non-cancerous tissues. Current methodologies must navigate 

these obstacles to ensure robust algorithms capable of distinguishing subtle gene expression 

patterns indicative of different cancer types. Moreover, the identification of relevant 

biomarkers and therapeutic targets from these datasets requires sophisticated data pre-

processing, feature selection, and classification techniques. Addressing these challenges is 

crucial for enhancing diagnostic accuracy, enabling personalized treatment strategies, and 

advancing the field of precision medicine in oncology. Therefore, the overarching goal is to 

develop computational models that optimize classification performance and translate 

molecular insights into actionable clinical outcomes for cancer patients. 

 

3. Proposed Methodology 

Cancer diagnosis using gene expression microarray data involves examining gene activity 

patterns to detect cancer early and devise effective treatment plans. This process faces 

challenges such as data noise, high dimensionality, and variability across samples. To address 

these issues, several advanced techniques are employed: pre-processing to clean the data, 

dimensionality reduction to simplify the dataset, feature selection to identify the most relevant 

genes, and classification algorithms to accurately categorize cancer types. These methods 

enhance diagnostic accuracy and reliability by mitigating noise and preventing overfitting. 

Robust algorithms are essential for handling the complexity of the data and ensuring 

reproducible results. Ultimately, these techniques facilitate early cancer detection and enable 

personalized treatment strategies for patients. Figure 1 illustrates the overall proposed 

architecture. 
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Figure 1: Overall Proposed Architecture 

3.1 Pre-processing 

The pre-processing phase involves normalizing data to ensure consistent scaling and 

employing techniques to handle missing data, thereby addressing any gaps or null values in 

the dataset. 

3.1.1 Normalization 

Normalization is an essential step in data pre-processing that standardizes the scale of features 

within a dataset. This process ensures that all variables contribute equally to the analysis, 

regardless of their original units or scales. Normalization involves transforming numerical 

values to a common scale, typically between 0 and 1 or -1 and 1. One common technique for 

normalization is Min-Max scaling, which adjusts each feature's values proportionally to fit 

within a specified range. This is done by subtracting the minimum value from each observation 

and then dividing by the range (the difference between the maximum and minimum values). 

Another approach is Z-score normalization (standardization), which involves subtracting the 

mean from each observation and dividing by the standard deviation. This centres the data 

around zero and adjusts it to have a standard deviation of 1. By normalizing data, features with 

larger scales do not overshadow those with smaller scales during analysis, thereby enhancing 

the performance and convergence of algorithms. 
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3.1.2 Handling Missing Data 

Handling missing data is a crucial part of data pre-processing, aimed at managing the absence 

of values in a dataset. Missing data can occur due to various reasons, such as measurement 

errors, data corruption, or intentional non-response. Ignoring missing values can lead to biased 

analyses and inaccurate results. Several strategies exist for handling missing data, including 

deletion, imputation, and prediction. Deletion involves removing observations or variables 

with missing values, which can result in the loss of valuable information and a reduced sample 

size. Imputation methods involve replacing missing values with estimated ones based on 

statistical measures like mean, median, or mode, though this can introduce bias and alter the 

data's distribution. Prediction methods utilize machine learning algorithms to predict missing 

values based on other variables in the dataset, offering a more sophisticated approach to 

handling missing data. 

3.2. Dimensionality Reduction  

Dimensionality reduction streamlines modelling by reducing the number of variables in a 

dataset. It includes feature selection, which involves choosing the most significant variables, 

and feature extraction, which transforms high-dimensional data into fewer dimensions. This 

process accelerates model training and improves accuracy by mitigating overfitting. In this 

study, LDA was used for dimensionality reduction. LDA identifies the linear combinations of 

features that best separate different classes, enhancing the discriminatory power of the model. 

By focusing on the most informative features and reducing data complexity, LDA helps in 

building more efficient and accurate predictive models. 

3.2.1. LDA 

LDA is a technique used in statistics, pattern recognition, and machine learning to find a linear 

combination of features that best represents a dependent variable. Unlike Principal Component 

Analysis (PCA) and factor analysis, which focus on similarities, LDA explicitly models 

differences between data classes. It identifies vectors in the data space that best discriminate 

between classes, aiming to maximize the separation between multiple classes. LDA works by 

finding a linear combination of independent features to maximize the mean differences 

between classes. This is mathematically expressed in terms of two scatter matrices as per Eq. 

(1) and Eq. (2). 

 sw1 = ∑ ∑ (xi
j
− μj) (xi

j
− μj)

wnj
i=1

c
j=1                                                          (1) 

xi
j
 denotes the ith sample of class, μj is the mean of class j, c represents the number of classes, 

nj signifies the number of samples in class j, μ denotes the mean of all classes. 

 sw1 = ∑ (μj − μ)(μj − μ)
vc

j=1                                                                  (2) 

LDA aims to maximize the ratio of the between-class scatter to the within-class scatter, 

effectively increasing the separation between different classes while reducing the spread 

within each class. By doing so, LDA enhances the discriminatory power of the resulting linear 

combinations, making it a powerful tool for classification tasks. 
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3.3 Feature Selection 

In this study, the Improved Red Panda Optimization (IRPO) algorithm is employed to enhance 

classification accuracy by selecting relevant features and refining the collected data, ultimately 

improving model performance. 

3.3.1 IRPO 

The red panda, native to southern China and the eastern Himalayas, is a small mammal known 

for its reddish-brown fur and distinctive markings. Thriving in temperate forests with dense 

bamboo cover, it excels in climbing trees. Feeding mainly on bamboo leaves and shoots, it 

relies on keen senses and climbing abilities. The Red Panda Optimization (RPO) algorithm's 

design is inspired by these natural characteristics. 

3.3.1.1 Mathematical Modelling 

3.3.1.1.1 Initialization 

As a population-based metaheuristic algorithm, the RPO technique uses red pandas to 

symbolize each individual member. Each red panda represents a candidate solution in the 

search space. The positions of these red pandas are initialized randomly to explore the search 

space effectively. The red panda's position is represented mathematically as a vector, forming 

a population matrix Y. This matrix is initialized using Eq. (3) and Eq. (4): 
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 xi,j = lobj + ri,j ∙ (upbj − lobj), i = 1,2, … ,M, j = 1,2,… , n  (4) 

Here, Xi stands for the i-th red panda (candidate solution) and Xi,j for its j-th dimension 

problem variable). M is the total number of red pandas, and n is the number of problem 

variables. The j-th problem variable's lower and upper limits are denoted by lobj and upbj, 

respectively, and  ri,j are random values in the interval [0,1]. The objective function values of 

the initialized solutions are evaluated and represented as per Eq. (5). 
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Where, fi is the objective function value for the i-th red panda. These values help evaluate the 

quality of potential solutions, identifying the best and worst solutions to guide the optimization 

process. 

3.3.1.1.2. Phase 1: Exploration Strategy - Foraging 

In the first phase of RPO, red pandas' positions mimic their natural foraging behavior. They 

use their keen senses to move towards food sources. In the algorithm, each red panda considers 

the locations of others that yield superior objective function values as potential food sources. 

These proposed food positions are determined based on objective function value comparisons, 

with one position randomly chosen by each red panda using Eq. (6): 

        pfsi = {Xk|k ∈ {1,2, . . , M}and fk < fi} ∪ {Xbest}    (6) 

Based on a comparison with the location of the best candidate solution Ybest, the suggested 

food sources for each red panda pfsi are identified. Approaching these sources causes large 

positional shifts that improve ability of algorithm to globally search and explore. By 

determining new locations in relation to the food source (best candidate solution), red pandas' 

foraging behaviour can be replicated. Eq. (7) to Eq. (9) are used to update the red panda's 

location if the objective function value improves at the new location. 

 Xi
p1

: xi,j
p1

= xi,j + r. (sfsi,j − Is. yi,j) + xi
′     (7) 

xi
′ = Xi + ∆Xi         (8) 

 Xi = {
Xi

p1
, fi

p1
< fi

Xi, else
        (9) 

Gaussian mutation balances exploration and exploitation by adjusting the standard deviation. 

It's simple to implement and adaptable, with mutation strength decreasing over time to enhance 

convergence in optimization algorithms. The new location of the ith red panda as ascertained 

from the RPO's first phase is represented by Xi
p1

. Objective function is denoted by fi
p1

, and its 

position in the jth dimension is indicated by xi,j
p1

. For the ith red panda, sfsi denotes the 

preferred food source, and sfsi,j denotes its location in the jth dimension. Is is a randomly 

chosen number from the set {1, 2}, and the variable r is a random value between 0 and 1. 

3.3.1.1.3 Phase 2: Proficiency in Ascending and Perching on Trees (Exploitation) 

In the second phase of the RPO, red pandas' ability to climb and rest on trees is modelled. Red 

pandas spend much of their time on trees, climbing to obtain food after foraging on the ground. 

This behavior results in minor positional changes, improving the exploitation and local search 

capabilities of the RPO algorithm in promising areas. The tree-climbing behavior is 

mathematically modelled to calculate new positions for each red panda and replace previous 

positions if the objective function improves, as represented by Eq. (10) and Eq. (11): 

 Xi,j
p2

= xi,j +
lobj+ri,j∙(upbj−lobj)

t
, i = 1,2,… , M, j = 1,2, … , n, t = 1,2,… , T  (10) 

 Xi = {
Xi

p2
, fi

p2
< fi

Xi, else
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(11) 

The ith red panda's modified position, obtained from the second phase of RPO, is represented 

by Xi
p2

. Objective function is shown by fi
p2

, and its position in the jth dimension is indicated 

by Xi,j
p2

. A random number between 0 and 1 represents the variable r. The symbol t denotes the 

algorithm's iteration counter, whereas T stands for the maximum iterations. This phase refines 

the red pandas' positions, enhancing the algorithm's ability to exploit local optima and 

converge to the best solution. 

3.4. Classification - CANN 

One class of deep neural networks that is mainly utilized for the analysis of visual vision is 

called CNN. They excel at tasks like image identification and classification because of their 

organized ability to adaptively and automatically extract spatial hierarchies of characteristics 

from incoming data. Convolutional layers, pooling layers, fully linked layers, activation 

functions, and normalizing layers are the essential parts of a CNN. Learnable filters or kernels 

are used by convolutional layers to apply convolution operations, which convolve over the 

input image to extract features. These filters identify particular patterns, like textures, edges, 

or intricate structures.  

Convolutional features spatial dimensions can be decreased while maintaining crucial 

information by using pooling layers. The pooling operations max-pooling and average-pooling 

are often used. The network can learn intricate correlations in the data by introducing non-

linearity to its output with activation functions such as ReLU. By dividing the input into 

several classes according to the features that convolutional layers extracted, fully connected 

layers carry out high-level reasoning. Normalization layers, such as Batch Normalization, 

normalize the input to a layer, improving stability and speeding up training.  

Convolutional Layer: This layer applies convolution operations to the input data using 

learnable filters. The output of each filter, known as a feature map, captures specific patterns 

or features from the input. The convolution operation is represented as per Eq. (12). 

 Conv(i, j) = ∑ ∑ I(i + m, j + n) × K(m, n)n−1
n=0

m−1
m=0     (12) 

Where I is the input matrix, K is the filter/kernel, and m and n are the dimensions of the filter. 

Rectified Linear Unit (ReLU): ReLU is an activation function that introduces non-linearity to 

the network by replacing negative values with zero. It is defined as per Eq. (13). 

 relu(x) = max (0, x)       (13) 

Pooling Layer: By lowering spatial dimensions, layer down samples the feature maps that were 

acquired from convolutional layers. A common pooling operation is max pooling, where the 

maximum value within each pooling window is retained. It helps in reducing computational 

complexity and controlling overfitting. Fig. 2 depicts the CANN architecture. 
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Figure 2: CANN 

Fully Connected (FC) Layer: Also known as the dense layer, this layer connects every neuron 

from the previous layer to every neuron in the current layer. It learns complex patterns by 

combining features extracted from previous layers.  

Softmax Layer: This layer is typically used as the output layer in classification tasks. It 

converts the raw scores (logits) from the previous layer into probabilities for each class using 

the Softmax function using Eq. (14). 

 SOpx
ezx

∑ ezxM
x=1

        

 (14) 

Where, z is the vector of logits, zx represents output-count, SOpx denotes softmax output, and 

M represents the totality of output nodes. 

The architecture of an Artificial Neural Network (ANN) typically consists of three types of 

layers: the input layer, hidden layers, and the output layer. This architecture is designed to 

handle complex data, improve accuracy, and make reliable predictions. 

• Input Layer 

The input layer receives raw data or features and forwards them to the hidden layers for 

processing. It contains one neuron per feature, with no computations performed within this 

layer. 

Output Layer

ANN

Softmax Layer

FC Layer

Poolying Layer

ReLU

Convolutional Layer

Input Layer
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• Hidden Layers 

Hidden layers perform the primary computations in neural networks. Each neuron in a hidden 

layer receives inputs from the preceding layer, computes a weighted sum, and applies an 

activation function to generate an output, as represented by Eq. (15): 

 aij = f(∑ wikaik + bij
ni−1
k=1 )                                                                       (15) 

Here, aij is the activation of the j-th neuron in the i-th layer, wik are the weights, aik are the 

activations from the previous layer, and bijis the bias term. 

• Output Layer 

The output layer generates the final output of the neural network. The number of neurons in 

this layer depends on the type of problem being addressed. After classifying cancer types, 

pathway analysis is conducted to delve into the molecular characteristics of different cancers. 

This detailed examination helps identify biomarkers, therapeutic targets, and subtype-specific 

therapies. Utilizing this data allows for the creation of customized treatment plans changed to 

the molecular features of each patient's tumor. These personalized plans enhance patient 

outcomes by targeting the specific pathways and mechanisms involved in their cancer. By 

adopting precision medicine techniques, this approach significantly improves the effectiveness 

of cancer treatments, leading to more successful management and potential cures for patients 

with diverse cancer types. 

3.5. Pathway Analysis 

In this work, pathway analysis is a critical step that follows the feature selection process.  After 

pre-processing the microarray data and reducing its dimensionality using LDA, IRPO 

algorithm selects the most relevant features (genes). This step ensures that only the most 

significant genes, which are likely to be involved in cancer progression, are retained. Once the 

relevant genes are identified, pathway analysis is performed to understand how these genes 

interact within biological pathways. Pathway analysis involves mapping these selected genes 

onto known biological pathways to identify which pathways are enriched or deregulated in 

cancerous samples compared to non-cancerous samples. The steps in pathway analysis are, 

a. Pathway Mapping 

The selected genes are mapped to predefined biological pathways from databases such as 

KEGG (Kyoto Encyclopedia of Genes and Genomes), Reactome, or BioCarta. This mapping 

helps in identifying the pathways in which these genes play a role. 

b. Enrichment Analysis 

Enrichment analysis is then conducted to determine if the identified genes are significantly 

overrepresented in specific pathways compared to what would be expected by chance. 

Statistical methods such as Fisher’s exact test, hypergeometric test, or Gene Set Enrichment 

Analysis (GSEA) are typically used. The hypergeometric test is commonly used to determine 

if a set of selected genes is overrepresented in a particular pathway. The test calculates the 

probability of observing a certain number of selected genes in a pathway by chance. Fisher’s 

exact test is used to calculate the exact probability of the observed association between the 
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selected genes and the pathway. GSEA calculates an enrichment score to determine if the 

members of a gene set are randomly distributed throughout the ranked list of genes or primarily 

found at the top or bottom. 

c. Quantifying Pathway Deregulation 

To measure the extent of pathway deregulation, algorithms such as Pathway Recognition 

Algorithm using Data Integration on Genomic Models (PARADIGM) or Pathifier can be used. 

These tools score pathways based on their activity levels and deviations from normal behavior 

in individual samples. 

Pathway analysis provides insights into the molecular mechanisms driving cancer progression. 

By identifying which pathways are deregulated, researchers can better understand the 

biological processes involved in tumor growth, metastasis, and resistance to therapy. Knowing 

which pathways are altered in cancer can help identify potential therapeutic targets. Drugs can 

be designed or repurposed to specifically inhibit or modulate these pathways, leading to more 

effective treatments. By integrating pathway analysis with gene expression data, it is possible 

to create customized treatment plans based on the specific pathways that are active in a 

patient’s tumor. This personalized approach can improve treatment efficacy and patient 

outcomes. Pathways that are consistently deregulated across different patients can serve as 

biomarkers for diagnosis, prognosis, or treatment response. These biomarkers can be used in 

clinical settings to identify patients who are likely to benefit from specific therapies. 

Pathway analysis in this work enhances the overall understanding of cancer biology by linking 

gene expression data to biological pathways. It provides a deeper insight into the molecular 

underpinnings of cancer, enabling the development of targeted therapies and personalized 

medicine approaches. By focusing on pathway-level changes, researchers can uncover the 

complex interactions and regulatory mechanisms that drive cancer progression, ultimately 

leading to improved diagnostic and therapeutic strategies. Algorithm 1 illustrates the process 

of cancer diagnosis using IRPO for feature selection and CANN for accurate classification. 

Algorithm 1: IRPO-CANN 

BEGIN 

INPUT: Gene expression microarray data (raw data) 

Pre-processing 

Normalize the data 

FOR each feature in the dataset 

 Apply Min-Max Scaling or Z-score normalization to standardize values 

 Handle missing data 

IF missing data exists 

 Impute missing values using mean, median, or prediction methods 

Dimensionality Reduction 

 Apply LDA 
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 Compute within-class scatter matrix and between-class scatter matrix  

 Maximize the ratio of between-class scatter to within-class scatter 

 Reduce dimensions by projecting data onto the LDA components 

Feature Selection 

 Initialize IRPO (Improved Red Panda Optimization) Algorithm 

 Initialize population of red pandas (candidate solutions) 

 Evaluate fitness of each candidate (based on selected features) 

 Exploration Phase 

FOR each red panda in the population 

 Select potential food source (best candidate solution) 

 Update red panda position using foraging behavior formula 

Exploitation Phase  

FOR each red panda in the population 

 Adjust position based on tree-climbing behavior to refine local search 

 Update red panda position if objective function improves 

 Select top features based on best red panda's position 

Classification 

 Build CANN 

 Train CANN 

 Backpropagate errors and adjust weights using optimization algorithm 

 Continue training until convergence or max iterations reached 

Pathway Analysis 

OUTPUT: Cancer classification results and pathway analysis insights 

END 

 

4. Result and Discussion  

4.1. Experimental Setup 

The proposed model is implemented using the Python platform and benchmarked against 

existing models like Improved Red Panda Optimization Recurrent Neural Networks (IRPO-

RNN), Convolutional Neural Networks (IRPO-CNN), and Artificial Neural Networks (IRPO-

ANN). Performance metrics such as accuracy, precision, recall, and F1-score are used to 

evaluate its effectiveness in cancer diagnosis. By comparing these metrics, the proposed 



         Optimizing Cancer Diagnosis: IRPO-Driven Integrated… P. Nancy Vincentina Mary et al. 4824  
  

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

model's superiority over established methods can be determined. Additionally, pathway 

analysis is integrated into the workflow after feature selection to identify enriched biological 

pathways. This step involves mapping the selected genes to known pathways and performing 

enrichment analysis to identify overrepresented pathways. Pathway deregulation scores are 

computed for each sample to quantify the extent of pathway deregulation, providing deeper 

insights into the molecular mechanisms driving cancer progression. This comparative analysis, 

including pathway analysis, provides valuable insights into the model's accuracy and 

reliability, demonstrating its potential to improve early detection and personalized treatment 

strategies in cancer diagnosis. 

4.2. Dataset Collection 

The Ovarian Cancer dataset [26] is an extensive genomic data collection created for ovarian 

cancer research. It consists of 253 samples (genes/features) and 162 classes of people (162 

with ovarian cancer diagnosis and 91 healthy controls). The WCX2 protein chip technology 

was utilized to gather continuous numeric data that represents the levels of gene expression in 

the dataset. Important new understandings of the molecular processes behind ovarian cancer 

are made possible by this comprehensive genomic data. It is particularly helpful in the 

development of prediction models that aid in illness diagnosis and in the identification of 

potential biomarkers for targeted treatments. Using this dataset, researchers may investigate 

the genetic makeup of ovarian cancer, leading to more accurate diagnoses and more 

individualized treatment plans for patients. 

4.3. Overall Performance Analysis 

Table 1 presents a comparative performance analysis of existing models and the proposed 

model for cancer diagnosis using gene expression data. The models compared include (IRPO-

RNN), (IRPO-CNN), (IRPO-ANN), and the newly proposed model. Starting with the IRPO-

RNN model, it achieved an accuracy of 92.654%, precision of 94.954%, recall of 94.765%, 

and an F1 score of 93.654%. This indicates that while the IRPO-RNN performs reasonably 

well, there is still room for improvement in accurately identifying cancerous samples. The 

IRPO-CNN model shows an improved performance over the IRPO-RNN, with an accuracy of 

94.743%, precision of 95.654%, recall of 95.756%, and an F1 score of 95.765%. These metrics 

suggest that IRPO-CNN is more effective in distinguishing between cancerous and non-

cancerous samples. The IRPO-ANN model further enhances performance with an accuracy of 

95.654%, precision of 96.654%, recall of 97.954%, and an F1 score of 97.964%. This indicates 

a high level of precision and recall, making it a strong contender for cancer diagnosis. The 

proposed model, however, surpasses all existing models with remarkable metrics: an accuracy 

of 99.758%, precision of 99.999%, recall of 99.789%, and an F1 score of 99.879%. These 

results demonstrate the proposed model’s superior performance in accurately diagnosing 

cancer. The integration of pathway analysis post-feature selection significantly contributes to 

its efficacy, allowing for the identification of enriched biological pathways and providing 

deeper insights into the molecular mechanisms driving cancer progression. This 

comprehensive approach ensures that the proposed model not only excels in performance 

metrics but also enhances the understanding of cancer biology, paving the way for improved 

early detection and personalized treatment strategies. 
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Table 1: Performance Analysis of Existing and Proposed Model 

Methods Accuracy Precision Recall F1 Score 

IRPO RNN 92.654 94.954 94.765 93.654 

IRPO CNN 94.743 95.654 95.756 95.765 

IRPO ANN 95.654 96.654 97.954 97.964 

Proposed 99.758 99.999 99.789 99.879 

4.4. Graphical Representation 

 

(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 3: Graphical Representation of Existing and Proposed Model (a) Accuracy (b) 

Precision (c) F1-Score (d) Recall 

Fig. 3 visually compares the performance metrics such as, accuracy, precision, F1 score, and 

recall of the proposed model and existing models (IRPO-RNN, IRPO-CNN, IRPO-ANN) for 

cancer diagnosis using gene expression data. Each subplot (a) to (d) shows a bar chart 

representing the respective metric for each model. The proposed model consistently 

demonstrates superior performance across all metrics compared to IRPO-RNN, IRPO-CNN, 

and IRPO-ANN, highlighting its effectiveness in accurately classifying cancerous and non-

cancerous samples. This graphical representation underscores the significant advancement in 

accuracy, precision, and overall diagnostic capability achieved by the proposed model, 
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emphasizing its potential for enhancing early cancer detection and treatment planning.  

 

5. Conclusion 

In order to diagnose cancer, this paper used a thorough method of microarray data analysis. 

First, pertinent microarray data were chosen. Next, necessary data pre-processing procedures 

including normalization and handling missing values were carried out to guarantee the quality 

of the data. The dataset's complexity was decreased by using dimensionality reduction 

techniques, especially LDA. The IRPO algorithm was then used for feature selection. CANN 

were then applied as a classification model to accurately diagnose cancer. The accuracy and 

dependability of cancer detection were eventually improved by this integrated strategy, which 

made sure that the most pertinent features were extracted from the data, optimizing 

classification performance while reducing the impacts of noise and high dimensionality 

inherent in microarray datasets. Following the classification of cancer types, pathway analysis 

was carried out to comprehend the molecular traits of distinct cancer types. This provided 

guidance in the hunt for therapeutic targets, biomarkers, and subtype-specific treatments. 

Precision medicine techniques in cancer therapy were made possible by the creation of 

personalized treatment plans using this data, which were based on the molecular characteristics 

of each patient's tumor and improved patient outcomes. The efficacy of the suggested approach 

in diagnosing cancer is demonstrated by its high accuracy rate of almost 99.758%. 
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