Nanotechnology Perceptions
ISSN 1660-6795
Www.nano-ntp.com

Engineering Open-Source Applications
L_everaging Diverse Scripting and
Coding Practices for Mobile and

Android Platforms

Rutvij Shah!, Raja Chakraborty?, Purushottam Raj®

!Software Engineer at Meta, San Bruno
*Senior Software Engineer, Ticketmaster
*M2 at Credit Karma

The rapid evolution of mobile and Android applications has been significantly influenced by open-
source development, leveraging diverse scripting and coding practices to enhance performance,
security, and user engagement. This study explores the impact of various programming languages,
including Java, Kotlin, Python, JavaScript (React Native), and Dart (Flutter), on mobile application
efficiency. A mixed-methods approach was employed, integrating qualitative content analysis of
open-source repositories with quantitative statistical modeling. The findings indicate that
programming languages significantly affect execution time and memory consumption, with Kotlin
exhibiting superior performance. Security vulnerabilities emerged as a critical factor negatively
correlating with user engagement (-0.61, p=0.002), emphasizing the need for secure coding
practices. Code complexity also played a role in application maintainability, with higher complexity
associated with reduced efficiency. Machine learning models, particularly Random Forest and
Neural Networks, demonstrated high accuracy (89.2% and 91.4%, respectively) in predicting
application success, with community engagement and security vulnerabilities being the most
influential factors. These insights underscore the importance of efficient scripting, security-first
development, and active community contributions in open-source mobile engineering. The study
provides actionable recommendations for developers to optimize coding strategies for improved
application performance and adoption.

Keywords: Open-source development, mobile applications, Android programming, scripting
practices, security vulnerabilities, execution efficiency, machine learning, Kotlin, Java, Flutter,
React Native.

1. Introduction
The evolution of open-source software in mobile and android platforms

The rapid proliferation of mobile technology has transformed the software development
landscape, making open-source applications a cornerstone of innovation. Open-source
software (OSS) has revolutionized the development ecosystem by offering accessibility,
transparency, and flexibility, empowering developers to create and modify applications

Nanotechnology Perceptions 21 No. S2 (2025) 1-13

http://www.nano-ntp.com/

Engineering Open-Source Applications Leveraging Diverse... Rutvij Shah et al. 2

without proprietary constraints (Coppola et al., 2019). Mobile and Android platforms, with
their widespread adoption, have significantly benefited from open-source contributions,
fostering a collaborative and community-driven approach to software engineering.

Android, the most widely used mobile operating system, has flourished due to its open-source
nature, allowing developers to leverage its extensive libraries, frameworks, and tools to build
robust applications. From security enhancements to user experience optimization, open-source
solutions provide cost-effective and scalable alternatives to proprietary software (Coppola et
al., 2018). This study explores the diverse scripting and coding practices employed in
engineering open-source applications for mobile and Android platforms, focusing on how
these approaches enhance software development, performance, and security (Duan et al.,
2019).

Significance of open-source development in mobile engineering

The adoption of open-source practices in mobile engineering is driven by several key
advantages, including cost reduction, rapid prototyping, and enhanced security through
community-driven audits. Open-source projects enable developers to collaborate on a global
scale, ensuring continuous improvements and innovations (Mao et al., 2017). The ability to
access source code encourages transparency, allowing security experts to identify
vulnerabilities and propose timely fixes.

Moreover, open-source software aligns with agile development methodologies, fostering
adaptability in an ever-evolving mobile landscape. Developers can reuse and modify existing
codebases to accelerate application development while ensuring compliance with industry
standards. For Android, open-source initiatives such as the Android Open Source Project
(AOSP) and various community-driven repositories provide developers with the foundation to
build customized applications tailored to specific needs (Pecorelli et al., 2022).

Diverse scripting and coding practices in mobile open-source development

Engineering mobile applications using open-source methodologies requires a diverse set of
scripting and coding practices to accommodate varying requirements and performance
constraints (Barua et al., 2014). Some of the most commonly utilized programming languages
and frameworks in open-source mobile development include:

XS Java and Kotlin: As the primary languages for Android development, Java and Kotlin
offer a structured and efficient way to build scalable applications. Kotlin, in particular, has
gained popularity due to its concise syntax, enhanced safety features, and seamless
interoperability with Java (Banos et al., 2015).

< Python: With its simplicity and powerful libraries, Python is frequently used for
backend development, data processing, and Al integration in mobile applications. Frameworks
like Kivy and BeeWare enable developers to create cross-platform mobile apps using Python.

XS JavaScript and React Native: JavaScript-powered frameworks like React Native
provide a hybrid development approach, allowing developers to build applications for both
Android and iOS using a single codebase. This reduces development time and ensures a
consistent user experience across platforms.

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

3 Rutvij Shah et al. Engineering Open-Source Applications Leveraging Diverse...

< Dart and Flutter: Flutter, Google's Ul toolkit, has gained traction in the open-source
community due to its ability to create high-performance, natively compiled applications using
the Dart language. It offers a rich set of pre-designed widgets and smooth animations, making
it ideal for crafting visually appealing mobile applications.

<> Shell Scripting and Automation: Shell scripting plays a crucial role in mobile open-
source development, enabling automation of repetitive tasks, such as building, testing, and
deploying applications. Continuous integration and deployment (CI/CD) pipelines leverage
scripting to streamline development workflows.

Challenges in open-source mobile application engineering

Despite its numerous advantages, open-source mobile application development presents
several challenges. Maintaining compatibility across diverse hardware configurations,
managing security vulnerabilities, and ensuring efficient resource utilization are critical
concerns (El-Kaliouby et al., 2022). Additionally, open-source projects often rely on
community contributions, making sustainability and long-term maintenance dependent on
active developer engagement.

Performance optimization is another significant challenge in open-source mobile applications.
Unlike proprietary applications that can be fine-tuned for specific hardware, open-source
applications must be designed to function efficiently across a wide range of devices with
varying computational capabilities. Ensuring consistency in Ul/UX design while supporting
multiple screen sizes and resolutions adds another layer of complexity to mobile open-source
development (Munir et al., 2018).

Future prospects and innovations in open-source mobile engineering

The future of open-source mobile engineering is poised for remarkable advancements, driven
by emerging technologies such as artificial intelligence (Al), blockchain, and edge computing.
Al-powered automation tools are streamlining development processes, while blockchain
integration is enhancing security and transparency in mobile transactions. Furthermore, the
rise of progressive web applications (PWAs) and cloud-based development platforms is
reshaping the landscape of mobile application engineering (Talebipour et al., 2021).

The integration of open-source software with Internet of Things (IoT) frameworks is another
promising avenue. As mobile applications become increasingly interconnected with smart
devices, open-source platforms provide the flexibility needed to develop and deploy scalable
I0T solutions (Zeng et al., 2019). These innovations underscore the growing significance of
open-source software in shaping the future of mobile and Android application development.

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

Engineering Open-Source Applications Leveraging Diverse... Rutvij Shah et al. 4

Java & Kotlin

Shell Scripting & Aﬁinmatinn
- Security & Performance Optin

Open-Source Mobile

Python Vs
JavaScript & React Native S/
/
Al & Blolckchain Integratin:l Y
\ Dart & Flutter

CI/CD Pipelines

/
/

Cross-Platform Compatibility

Figure 1: Open-source development in mobile and android platforms

2. Methodology
Research approach and design

This study employs a mixed-methods research approach, integrating both qualitative and
guantitative analyses to examine diverse scripting and coding practices for mobile and Android
platforms. The research is structured into two primary phases: an exploratory phase involving
gualitative content analysis of open-source repositories and a statistical evaluation phase that
employs quantitative techniques to measure the efficiency, security, and scalability of different
scripting and coding practices. Data sources include open-source project repositories such as
GitHub, GitLab, and Bitbucket, where code contributions, documentation, and community
engagement are analyzed to identify trends in mobile development methodologies.

Data collection and selection criteria

The dataset for this study comprises a selection of open-source mobile and Android
applications developed using diverse programming languages, including Java, Kotlin, Python,
JavaScript (React Native), and Dart (Flutter). Applications were selected based on the
following inclusion criteria:

I The application must be open-source and available on public repositories.
. It must have at least 1000 downloads or active users, ensuring relevance and adoption.

. The application must include contributions from multiple developers, reflecting a
community-driven approach.

V. The repository must have detailed commit histories to track changes and
improvements over time.

A stratified random sampling method was used to ensure a balanced representation of
applications developed in different scripting and coding environments. A total of 150 open-
source mobile applications were selected, evenly distributed across the major scripting and

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

5 Rutvij Shah et al. Engineering Open-Source Applications Leveraging Diverse...

programming practices studied in this research.
Data processing and coding analysis

To analyze the efficiency of various scripting and coding practices, the following metrics were
collected for each selected application:

< Code complexity: Measured using cyclomatic complexity analysis.

< Execution performance: Evaluated by benchmarking application runtime using
standardized performance metrics.

X3 Memory utilization: Analyzed through profiling tools such as Android Profiler and
Py-Spy.

< Security vulnerabilities: Identified using static and dynamic analysis tools, including

SonarQube and MobSF.

<> Community engagement: Measured by the number of contributors, commits, and issue
resolution time.

Text mining and natural language processing (NLP) techniques were used to analyze
developer discussions, documentation, and commit messages to assess trends in scripting
practices and framework adoption.

Statistical analysis

A comprehensive statistical analysis was conducted to compare the effectiveness of diverse
scripting and coding practices. The following statistical techniques were applied:

XS Descriptive Statistics: Summary statistics such as mean, standard deviation, and
median were calculated for each metric to provide an overview of the dataset.

XS Analysis of Variance (ANOVA): One-way ANOVA was conducted to compare the
mean performance of applications developed using different programming languages. Post-
hoc Tukey tests were used to identify significant differences between groups.

XS Correlation Analysis: Pearson and Spearman correlation coefficients were computed
to assess the relationships between coding practices and application performance metrics.

XS Regression Analysis: Multiple linear regression was employed to determine the
impact of scripting practices on application efficiency, security, and user engagement. The
dependent variables included execution performance and memory utilization, while
independent variables encompassed the choice of programming language, code complexity,
and security vulnerabilities.

< Machine Learning-Based Classification: A random forest classifier was used to
predict the likelihood of an application’s success (measured in user adoption and repository
engagement) based on the identified scripting and coding practices. Feature importance
analysis was conducted to highlight the key factors influencing application performance.

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

Engineering Open-Source Applications Leveraging Diverse... Rutvij Shah et al. 6

Validation and reliability

To ensure the reliability of the findings, inter-rater reliability was established for qualitative
assessments, with multiple coders evaluating open-source repositories independently.
Statistical tests such as Cronbach’s alpha were used to assess the internal consistency of
performance metrics. The dataset was cross-validated using k-fold validation (k=10) to
minimize overfitting in predictive modeling.

Ethical considerations

All data collected in this study are publicly available under open-source licenses, ensuring
compliance with ethical standards. No personally identifiable information was used, and all
analysis was conducted in adherence to ethical guidelines for software engineering research.

This methodology provides a rigorous and data-driven approach to understanding how diverse
scripting and coding practices impact mobile and Android application development. The
statistical analyses employed allow for a comprehensive evaluation of efficiency, security, and
adoption trends, offering valuable insights for developers and researchers in open-source
mobile engineering.

3. Results and statistical analysis

The results of this study provide a comprehensive evaluation of diverse scripting and coding
practices for mobile and Android platforms. The analysis incorporates descriptive statistics,
ANOVA tests, correlation analysis, regression modeling, and machine learning-based
predictive models.

Table 1 presents the descriptive statistics of key mobile application performance metrics. The
average execution time across applications was 120.5 ms, with a standard deviation of 15.2
ms. Memory usage varied significantly, with a mean of 250.3 MB and a maximum of 320 MB.
Code complexity had a mean score of 6.4, suggesting moderate structural complexity. Security
vulnerabilities were observed at an average of 3.2 per application, indicating potential risk
areas for open-source mobile development. User engagement, measured in stars and forks,
ranged from 2200 to 6000, with an average of 4500, showing significant community
involvement in open-source projects.

Table 1: Descriptive Statistics of Mobile Application Performance Metrics

Metric Mean Standard Deviation Minimum Maximum
Execution Time (ms) 120.5 15.2 95 150
Memory Usage (MB) 250.3 45.7 180 320

Code Complexity 6.4 1.8 4 9

Security Vulnerabilities 3.2 0.9 1 5

User Engagement (Stars & Forks) | 4500 980 2200 6000

A one-way ANOVA was conducted to evaluate the effect of different programming languages
on application performance (Table 2). The results indicate statistically significant differences
across all language groups, with p-values less than 0.05 for execution time, memory usage,

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

7 Rutvij Shah et al. Engineering Open-Source Applications Leveraging Diverse...

and security vulnerabilities. Java and Kaotlin exhibited better execution efficiency, while
JavaScript and Python applications demonstrated higher memory consumption. The highest
F-value (5.21) was observed for Kotlin, confirming its superior performance consistency
compared to other languages.

Table 2: ANOVA Results for Programming Languages on Performance Metrics

Programming Language F-Value p-Value Significance
Java 4.32 0.007 Significant
Kotlin 5.21 0.002 Significant
Python 3.89 0.015 Significant
JavaScript 4.78 0.005 Significant
Dart 5.02 0.003 Significant

The correlation analysis between performance metrics and user engagement is summarized in
Table 3. Execution time showed a moderate negative correlation with user engagement (-0.45,
p=0.012), implying that faster applications attract more users. Security vulnerabilities had the
strongest negative correlation with user engagement (-0.61, p=0.002), indicating that more
secure applications are preferred. Code complexity also negatively affected engagement (-
0.37, p=0.048), although it was marginally significant. These findings highlight the
importance of efficient and secure coding practices in open-source mobile applications.

Table 3: Correlation Analysis between Key Performance Indicators

Variable 1 Variable 2 Pearson Correlation | p-Value Significance
Coefficient

Execution Time User Engagement -0.45 0.012 Significant

Memory Usage User Engagement -0.52 0.005 Significant

Code Complexity User Engagement -0.37 0.048 Marginally Significant

Security Vulnerabilities User Engagement -0.61 0.002 Significant

Table 4 presents the results of a multiple linear regression model examining the influence of
coding practices on application efficiency. The coefficients indicate that an increase in security
vulnerabilities (-0.41) and memory usage (-0.50) significantly decreases application
efficiency. Code complexity also negatively impacts efficiency (-0.32, p=0.023), emphasizing
the need for optimized software architectures. These findings suggest that adopting best
practices in code structuring and security management can enhance mobile application
performance.

Table 4: Regression Analysis - Impact of Coding Practices on Application Efficiency

Independent Variable Coefficient p-Value Significance
Code Complexity -0.32 0.023 Significant
Security Vulnerabilities -0.41 0.008 Significant
Memory Usage -0.50 0.002 Significant
Execution Time -0.27 0.015 Significant

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

Engineering Open-Source Applications Leveraging Diverse... Rutvij Shah et al. 8

The study employed machine learning classifiers to predict application success based on
scripting and coding features (Table 5). The Random Forest model achieved the highest
accuracy (89.2%) and recall (88.5%), followed by Neural Networks with an accuracy of
91.4%. Logistic regression performed moderately well, while K-Nearest Neighbors (KNN)
exhibited the lowest performance (78.9%). These results demonstrate the potential of machine
learning in analyzing open-source development trends and predicting successful mobile
applications.

Table 5: Machine Learning Model Performance for Predicting Application Success

Model Accuracy (%) Precision (%) Recall (%)
Random Forest 89.2 87.8 88.5
SVM 85.3 83.4 84.1
Logistic Regression 81.5 80.1 81.0
KNN 78.9 76.5 77.2
Neural Network 91.4 90.7 92.1

Feature importance analysis (Table 6) highlights the most critical factors in predicting
application success. Community engagement (0.40) and security vulnerabilities (0.35) were
the top contributing factors, followed by code complexity (0.28) and execution time (0.22).
The importance of security aligns with the correlation findings, reinforcing that developers
must prioritize secure coding practices. The accompanying figure visually represents these
importance scores, demonstrating the relative influence of each factor on application success.

Table 6: Feature Importance Analysis in Predicting Application Success

Feature Importance Score
Security Vulnerabilities 0.35
Code Complexity 0.28
Execution Time 0.22
Memory Usage 0.18
Community Engagement 0.40

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

9 Rutvij Shah et al. Engineering Open-Source Applications Leveraging Diverse...

Security Vulnerabilities

Code Complexity

Execution Time |

Feature

Memory Usage |

Community Engagement |

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Importance Score

Figure 2: Feature importance in predicting application success

4. Discussion
Impact of scripting and coding practices on application performance

The findings from this study highlight the significance of diverse scripting and coding
practices in shaping mobile and Android application performance. Based on the descriptive
statistics (Table 1), execution time, memory usage, code complexity, and security
vulnerabilities play crucial roles in determining application efficiency and user engagement.
Applications with lower execution times and optimized memory consumption tend to attract a
larger user base, reinforcing the importance of selecting appropriate programming practices
(Cruz & Abreu, 2019).

The ANOVA results (Table 2) confirm that different programming languages significantly
impact application performance. Kotlin and Java, the primary languages for Android
development, showed lower execution times and better memory optimization than Python and
JavaScript-based applications. This finding aligns with existing literature, which suggests that
statically typed languages like Kotlin and Java offer better performance due to their direct
integration with the Android runtime environment (Liu et al., 2019).

Security vulnerabilities and user engagement

Security remains a crucial determinant of mobile application success. As evident from the
correlation analysis (Table 3), security vulnerabilities exhibited the strongest negative
correlation (-0.61) with user engagement, indicating that applications with higher security
risks experience lower adoption rates. This finding suggests that developers should prioritize
secure coding practices, including regular vulnerability scanning, penetration testing, and
secure authentication mechanisms (Moran et al., 2016).

Moreover, the regression analysis (Table 4) further supports this observation, demonstrating a

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

Engineering Open-Source Applications Leveraging Diverse... Rutvij Shah et al. 10

significant negative coefficient (-0.41, p=0.008) for security vulnerabilities in relation to
application efficiency. Security flaws not only compromise user data but also impact the
credibility and reliability of mobile applications (Silva et al., 2016). Given the growing
concerns over mobile security threats such as malware and data breaches, implementing robust
security protocols is essential for sustaining user trust and engagement in open-source mobile
development.

Code complexity and maintainability

Code complexity is another crucial factor influencing application performance. The negative
correlation (-0.37) between code complexity and user engagement (Table 3) suggests that
overly complex codebases may lead to maintenance challenges and reduced usability.
Additionally, the regression analysis (Table 4) shows a significant negative impact of code
complexity (-0.32, p=0.023) on application efficiency.

Simplifying code structures through modular programming, reducing redundant code, and
adopting clean coding principles can enhance application maintainability. Open-source
projects that follow best practices, such as well-documented APIs and consistent coding
standards, tend to attract more contributors and maintain higher engagement levels (Kochhar
etal., 2019).

Programming languages and execution efficiency

The ANOVA results (Table 2) indicate that programming languages significantly influence
execution efficiency. Kotlin outperformed other languages in execution speed and memory
optimization, making it the preferred choice for Android development. Python, despite its
versatility in data processing and Al applications, exhibited higher memory consumption and
slower execution times (Pan et al., 2020).

The differences in performance can be attributed to language-specific optimizations. Java and
Kotlin are compiled into Dalvik bytecode or ART (Android Runtime), which enhances
runtime efficiency. In contrast, JavaScript-based frameworks like React Native rely on bridge
communication between JavaScript and native components, introducing overhead and
potential performance bottlenecks.

These findings suggest that developers should carefully evaluate language trade-offs when
choosing a framework for mobile development. While JavaScript-based frameworks offer
cross-platform compatibility, they may not provide optimal performance for high-load
applications requiring real-time responsiveness.

Predictive modeling of application success

The machine learning models used to predict application success (Table 5) demonstrate that
Random Forest and Neural Networks achieve the highest accuracy (89.2% and 91.4%,
respectively). This suggests that multiple factors contribute to an application’s suCCesS,
including security, execution time, and user engagement.

Feature importance analysis (Table 6) highlights that community engagement (0.40) and
security vulnerabilities (0.35) are the most influential factors. This finding aligns with previous
observations that applications with active developer contributions and strong security
measures tend to achieve greater adoption and longevity. Developers should focus on fostering
Nanotechnology Perceptions Vol. 21 No. S2 (2025)

11 Rutvij Shah et al. Engineering Open-Source Applications Leveraging Diverse...

community participation, implementing regular updates, and addressing security
vulnerabilities to enhance application success (Joorabchi et al., 2013).

Implications for open-source mobile development
Adopting efficient scripting practices

The study's findings emphasize the need for developers to adopt efficient scripting practices
tailored to mobile environments. Choosing languages and frameworks with optimized memory
management, execution efficiency, and security features can significantly impact application
performance and user engagement (Joorabchi et al., 2015).

For instance, Kotlin’s ability to reduce boilerplate code while maintaining high execution
efficiency makes it a preferred choice for modern Android development. Similarly, hybrid
frameworks like Flutter (Dart) offer competitive advantages for cross-platform development
while ensuring near-native performance.

Security-first development approach

Given the strong negative impact of security vulnerabilities on application success, developers
should integrate security-by-design principles. This includes:

<> Implementing secure coding guidelines to prevent common vulnerabilities like SQL
injection and buffer overflow.

XS Using automated security testing tools to identify and patch vulnerabilities early in the
development cycle.

% Adopting two-factor authentication and encryption protocols to enhance data security.
Leveraging community contributions

Community engagement emerged as a key predictor of application success. Open-source
projects with active developer participation, timely issue resolution, and transparent
documentation tend to attract wider adoption. Encouraging contributions through clear
contribution guidelines, mentorship programs, and collaborative development practices can
strengthen the sustainability of open-source mobile applications.

Balancing performance and cross-platform compatibility

While cross-platform frameworks like React Native and Flutter provide flexibility, developers
must carefully balance performance trade-offs. Applications requiring high responsiveness,
such as gaming or real-time analytics, may benefit from native development in Kotlin or Java.
In contrast, applications prioritizing cross-platform reach with moderate performance
requirements can leverage hybrid frameworks.

5. Conclusion

The results of this study provide valuable insights into how scripting and coding practices
influence mobile and Android application performance. Optimizing execution efficiency,
minimizing security risks, and maintaining code simplicity are critical for enhancing user

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

Engineering Open-Source Applications Leveraging Diverse... Rutvij Shah et al. 12

engagement and application success. The findings also underscore the importance of
leveraging community-driven development and machine learning techniques to predict
application adoption trends.

Future research should explore the integration of Al-driven optimization techniques to
automate performance tuning in mobile applications. Additionally, investigating the impact of
emerging languages and frameworks, such as Swift for cross-platform development, can
further expand the understanding of best practices in open-source mobile engineering.

By applying these insights, developers can make informed decisions in selecting programming
practices that enhance application efficiency, security, and user engagement in the open-source
mobile development ecosystem.

References

1. Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado-Terriza, J. A., ... & Rojas,
I. (2015). Design, implementation and validation of a novel open framework for agile
development of mobile health applications. Biomedical engineering online, 14, 1-20.

2. Barua, A., Thomas, S. W., & Hassan, A. E. (2014). What are developers talking about? an
analysis of topics and trends in stack overflow. Empirical software engineering, 19, 619-654.

3. Coppola, R., Morisio, M., & Torchiano, M. (2018). Mobile GUI testing fragility: a study on
open-source android applications. IEEE Transactions on Reliability, 68(1), 67-90.

4, Coppola, R., Morisio, M., Torchiano, M., & Ardito, L. (2019). Scripted GUI testing of Android
open-source apps: evolution of test code and fragility causes. Empirical Software Engineering,
24, 3205-3248.

5. Cruz, L., & Abreu, R. (2019). Catalog of energy patterns for mobile applications. Empirical
Software Engineering, 24, 2209-2235.

6. Duan, R., Bijlani, A., Ji, Y., Alrawi, O., Xiong, Y., ke, M., ... & Lee, W. (2019, February).
Automating Patching of Vulnerable Open-Source Software Versions in Application Binaries. In
NDSS.

7. El-Kaliouby, S. S., Yousef, A. H., & Selim, S. (2022, November). Mobile Application Code
Generation Approaches: A Survey. In International Conference on Model and Data Engineering
(pp. 136-148). Cham: Springer Nature Switzerland.

8. Joorabchi, M. E., Ali, M., & Mesbah, A. (2015, November). Detecting inconsistencies in multi-
platform mobile apps. In 2015 IEEE 26th international symposium on software reliability
engineering (ISSRE) (pp. 450-460). IEEE.

9. Joorabchi, M. E., Mesbah, A., & Kruchten, P. (2013, October). Real challenges in mobile app
development. In 2013 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (pp. 15-24). IEEE.

10. Kochhar, P. S., Kalliamvakou, E., Nagappan, N., Zimmermann, T., & Bird, C. (2019). Moving
from closed to open source: Observations from six transitioned projects to GitHub. IEEE
Transactions on Software Engineering, 47(9), 1838-1856.

11. Liu, Y., Wang, J., Wei, L., Xu, C., Cheung, S. C., Wu, T, ... & Zhang, J. (2019). DroidLeaks: a
comprehensive database of resource leaks in Android apps. Empirical Software Engineering, 24,
3435-3483.

12. Mao, K., Capra, L., Harman, M., & Jia, Y. (2017). A survey of the use of crowdsourcing in
software engineering. Journal of Systems and Software, 126, 57-84.

13. Moran, K., Linares-Vasquez, M., Bernal-Cardenas, C., Vendome, C., & Poshyvanyk, D. (2016,
April). Automatically discovering, reporting and reproducing android application crashes. In
2016 IEEE international conference on software testing, verification and validation (icst) (pp.

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

13 Rutvij Shah et al. Engineering Open-Source Applications Leveraging Diverse...

14.

15.

16.

17.

18.

19.

33-44). IEEE.

Munir, H., Linaker, J., Wnuk, K., Runeson, P., & Regnell, B. (2018). Open innovation using
open source tools: A case study at Sony Mobile. Empirical Software Engineering, 23, 186-223.
Pan, M., Xu, T., Pei, Y., Li, Z., Zhang, T., & Li, X. (2020). Gui-guided test script repair for
mobile apps. IEEE Transactions on Software Engineering, 48(3), 910-929.

Pecorelli, F., Catolino, G., Ferrucci, F., De Lucia, A., & Palomba, F. (2022). Software testing
and Android applications: a large-scale empirical study. Empirical Software Engineering, 27(2),
31.

Silva, D. B., Endo, A. T., Eler, M. M., & Durelli, V. H. (2016, October). An analysis of
automated tests for mobile android applications. In 2016 XLII Latin American Computing
Conference (CLEI) (pp. 1-9). IEEE.

Talebipour, S., Zhao, Y., Dojcilovi¢, L., Li, C., & Medvidovi¢, N. (2021, November). Ui test
migration across mobile platforms. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE) (pp. 756-767). IEEE.

Zeng, Y., Chen, J., Shang, W., & Chen, T. H. (2019). Studying the characteristics of logging
practices in mobile apps: a case study on f-droid. Empirical Software Engineering, 24, 3394-
3434,

Nanotechnology Perceptions Vol. 21 No. S2 (2025)

