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The aim of this paper is to define some new oscillation conditions for the second order canonical 

differential equations with several sublinear neutral terms of the form (𝑏(𝜙) (𝑤′(𝜙)))
′

+ 

f (𝜙, 𝑣(𝜉(𝜙))) = 0, 𝜙 ≥ 𝜙0 > 0, where w(𝜙) = 𝑣(𝜙) + ∑ 𝑞𝑖(𝜙)𝑘
𝑖=1 𝑣𝜃𝑖(𝜏𝑖(𝜙)) and k ≥ 1 is an 

integer, 𝜃𝑖 are ratios of odd positive integers with 0 < 𝜃𝑖 < 1 for i = 1, 2, …, k. By using the 

Comparison principle and Riccati approach, we give new conditions for oscillation of the equation. 

Furthermore, we provide an example to illustrate the significance of the new results. 

Keywords: Several Sublinear Neutral Terms, Second order, Oscillatory Behavior, Canonical 

Form. 

 

 

1. Introduction 

In this paper, we focus on the oscillatory behavior of second order canonical differential 

equations with several sublinear neutral terms  

                        (b(ϕ) (w′(ϕ)))
′

+ f (ϕ, v(ξ(ϕ))) = 0,                    ϕ ≥ ϕ0 > 0,                  (1.1) 

where w(ϕ) = v(ϕ) + ∑ qi(ϕ)k
i=1 vθi(τi(ϕ)) and k ≥ 1 is an integer, subject to the 

following conditions: 

H1: θi are ratios of odd positive integers with 0 < θi < 1 for i = 1, 2, …, k; 

H2: b ∈ C1([ϕ0, ∞), ℝ+) and Equation (1.1) is in canonical form if 

                                              I(ϕ, ϕ0) = ∫
1

b(α)
 

ϕ

ϕ0
dα ⟶ ∞ as ϕ ⟶ ∞;                                    (1.2) 

H3: qi ∈ C([ϕ0, ∞), ℝ+) and qi(ϕ) ⟶ 0 as ϕ ⟶ ∞ for i = 1, 2, …, k; 

H4: τi ∈ C([ϕ0, ∞), ℝ), τi(ϕ) ≤ ϕ and lim
ϕ⟶∞

τi(ϕ) = ∞ for i = 1, 2, …, k; 

H5: ξ ∈ C1([ϕ0, ∞), ℝ), ξ(ϕ) ≤ ϕ, ξ′(ϕ) ≥ 0 and lim
ϕ⟶∞

ξ(ϕ) = ∞.    
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H6: f (ϕ, v) ∈ C([ϕ0, ∞) x ℝ, ℝ), and there exists γ is a ratio of odd positive integers with   

       γ ≥ 1 and  a function p(ϕ) ∈ C([ϕ0, ∞), ℝ+) such that f (ϕ, v)/vγ ≥ p(ϕ), for all v ≠
0. 

Under a proper solution of (1.1), we mean a function v ∈ C([ϕv, ∞), ℝ), ϕv ≥ ϕ0, which has 

properties w(ϕ), b(ϕ) (w′(ϕ)) ∈ C1([ϕv, ∞), ℝ), and which satisfies (1.1) on [ϕv, ∞).  

We focus only those solutions v of (1.1) which satisfy  

                                        sup {| v(ϕ)| : ϕ  ≥  T} > 0, for every T  ≥  ϕv. 

A proper solution v of (1.1) is said to be oscillatory if it is neither eventually positive nor 

eventually negative; otherwise, it is said to be nonoscillatory. The equation itself is termed 

oscillatory if all its proper solutions oscillate. 

 

2. Lemmas  

This section presents a few important lemmas that will contribute to proving our main results. 

We only need to provide proofs for the case of eventually positive solutions because the proofs 

for eventually negative solutions would be comparable due to the assumption and the form of 

our equation. 

Lemma 2.1 [7]. If β is positive and 0 < ε < 1, then 

                                                             βε  ≤ β ε + (1 − ε).                                                     (2.1) 

Lemma 2.2 [3]. Assume that condition H5 holds. For ϕ ≥ ϕ0, if the function g satisfies g > 0, 

g′ > 0 and g′′ ≤ 0, then there exists ϕω ≥ ϕ0 such that 

                                                         g(ξ(ϕ)) ≥ 
ω

ϕ
  ξ(ϕ) g(ϕ),                                                 (2.2) 

for all ω ∈ (0,1). 

Lemma 2.3 [15]. Let  

                                                            μ(u) = Au − Bu
(α+1)

α ,                                                      (2.3) 

where A and B are positive constants, and α is a quotient of odd positive integers. Then, μ 

reaches its maximum value at θ = (
A α

B(α+1)
)

α
on ℝ and 

                                                      max
u ∈ ℝ 

μ = μ(θ) = 
Aα+1

Bα

αα

(α+1)α+1 .                                            (2.4) 

Lemma 2.4 Suppose that v(ϕ) is a positive solution of (1.1) such that  

                                                    ∫
1

b(u)
 ∫ p(α) dα du =  ∞.

∞

u

∞

ϕ0
                                               (2.5) 

Then, for ϕ ≥ ϕ0, 

(I) w(ϕ) > 0, w′(ϕ) > 0 and (b(ϕ) (w′(ϕ)))
′
 < 0;                                                                  (2.6) 
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(II) 
w(ϕ)

I(ϕ, ϕ1)
 is decreasing; 

(III) w(ϕ) ⟶ ∞ as ϕ ⟶ ∞. 

Proof: Assume that v(ϕ) is a positive solution of (1.1) on [ϕ0, ∞). Then by the assumptions 

[H4] and [H5], there exists a ϕ1 ≥ ϕ0, such that v(τi(ϕ)) > 0 for i = 1, 2, …, k and 

v(ξ(ϕ)) >  0 on [ϕ1, ∞). Now, since w(ϕ) = v(ϕ) + ∑ qi(ϕ)k
i=1 vθi(τi(ϕ)), then  

                                                     w(ϕ) ≥ v(ϕ) > 0, for ϕ ≥ ϕ1. 

From (1.1), we have  

                         (b(ϕ) (w′(ϕ)))
′

=  − f (ϕ, v(ξ(ϕ))) ≤ −p(ϕ) vγ(ξ(ϕ)) < 0.                 (2.7) 

This implies 

                                                           (b(ϕ) (w′(ϕ)))
′

< 0. 

Thus b(ϕ) (w′(ϕ)) is decreasing. 

Now, to show that w′(ϕ) > 0 on [ϕ1, ∞), assume that it is not true. Then we can find ϕ2 >
ϕ1, such that w′(ϕ2) < 0. But since b(ϕ) (w′(ϕ)) is decreasing, then 

                               b(ϕ) (w′(ϕ)) <  b(ϕ2) (w′(ϕ2)) = c0 < 0, for ϕ ≥ ϕ2. 

By integrating the above inequality from ϕ2 to ϕ, we get 

                                                 w(ϕ) < w(ϕ2) + c0 ∫
1

b(α)

ϕ

ϕ2
 dα. 

This with (1.2), leads to w(ϕ) ⟶ − ∞ as ϕ ⟶ ∞ which is a contradiction with the fact that 

w(ϕ)  > 0 eventually. This completes the proof of w′(ϕ) > 0. 

Thus,  

                                                    w(ϕ) = w(ϕ1) + ∫
b(α) w′(α) 

b(α)

ϕ

ϕ1
 dα 

                                                              ≥ b(ϕ) w′(ϕ) ∫
1

b(α)

ϕ

ϕ1
 dα 

                                                              = b(ϕ) w′(ϕ) I(ϕ, ϕ1), 

and hence 

                                             (
w(ϕ)

I(ϕ, ϕ1)
)

′
= 

b(ϕ) w′(ϕ) I(ϕ,ϕ1) – w(ϕ)

b(ϕ) I2(ϕ,ϕ1)
 ≤ 0. 

So 
w(ϕ)

I(ϕ, ϕ1)
 is a decreasing function. 

We claim that (2.5) ensures 𝒘(𝝓) ⟶ ∞ as 𝝓 ⟶ ∞. Actually, as 𝒘(𝝓) is a positive increasing 

function, we actually know that there is a constant c > 0; therefore  

                                                                   𝒘(𝝓) ≥ 2c > 0.                                                       (2.8) 
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Furthermore, it is derived from 𝒘(𝝓) that 

                                              𝒗(𝝓) = 𝒘(𝝓) − ∑ 𝒒𝒊(𝝓)𝒊=𝒌
𝒊=𝟏 𝒗𝜽𝒊(𝝉𝒊(𝝓)) 

                                                         ≥ 𝒘(𝝓) − ∑ 𝒒𝒊(𝝓)𝒊=𝒌
𝒊=𝟏 𝒘𝜽𝒊(𝝉𝒊(𝝓)) 

                                                         ≥ 𝒘(𝝓) − ∑ 𝒒𝒊(𝝓)𝒊=𝒌
𝒊=𝟏  [𝜽𝒊 𝒘(𝝓) + (𝟏 − 𝜽𝒊)] 

                                                         = 𝒘(𝝓) (𝟏 −  ∑ 𝜽𝒊 𝒒𝒊(𝝓) −  
𝟏

𝒘(𝝓)
 ∑ (𝟏 −𝒊=𝒌

𝒊=𝟏
𝒊=𝒌
𝒊=𝟏

𝜽𝒊) 𝒒𝒊(𝝓)), 

where the inequality (2.1) was used. So, we have 

  𝒗(𝝓) ≥ 𝒘(𝝓) (𝟏 − [𝒒(𝝓) ∑ 𝜽𝒊 +
𝒒(𝝓)

𝒘(𝝓)
 ∑ (𝟏 − 𝜽𝒊)

𝒊=𝒌
𝒊=𝟏

𝒊=𝒌
𝒊=𝟏 ]),                   (2.9) 

where 𝒒(𝝓) := 𝒎𝒂𝒙
𝟎≤𝒊≤𝒌

𝒒𝒊(𝝓). 

Substituting (2.8) into (2.9), we get 

                                𝒗(𝝓) ≥ 2c (𝟏 − [𝒒(𝝓) ∑ 𝜽𝒊 +
𝒒(𝝓)

𝒄
 ∑ (𝟏 − 𝜽𝒊)

𝒊=𝒌
𝒊=𝟏

𝒊=𝒌
𝒊=𝟏 ]). 

When considering [H3], we have 

                                                           𝒗(𝝓) ≥ c > 0, 𝝓 ≥ 𝝓𝟏.                                               (2.10) 

When we use (2.10) in the derived inequality after integrating (2.7) from 𝝓 to ∞, we get  

                                                         w′(𝝓) ≥ 
𝒄𝜸

𝒃(𝝓)
 ∫ 𝒑(𝜶) 𝒅𝜶

∞

𝝓
. 

By further integrating the prior inequality from 𝝓𝟏 to 𝝓, we can show that 

                                          𝒘(𝝓) ≥ w(𝝓𝟏) + 𝒄𝜸 ∫
𝟏

𝒃(𝒖)

𝝓

𝝓𝟏
 ∫ 𝒑(𝜶) 𝒅𝜶 𝒅𝒖

∞

𝒖
, 

which, with (2.5), suggests that 𝒘(𝝓)  ⟶ ∞ as 𝝓 ⟶ ∞. Thus, the proof of the lemma is 

complete. ∎ 

 

3. Oscillation Criteria 

In this section, we introduce some new oscillation criteria for solutions of (1.1). In order to 

provide a clear presentation, we define the following functions: 

                                        P(𝝓) := 𝒒(𝝓) ∑ 𝜽𝒊 +  
𝒒(𝝓)

𝒘(𝝓)
 ∑ (𝟏 − 𝜽𝒊)

𝒊=𝒌
𝒊=𝟏

𝒊=𝒌
𝒊=𝟏 , 

                                       𝑰𝟏(𝝓) := I(𝝓, 𝝓𝟏) + ∫
𝒑(𝜶)

𝜶𝜸  𝜷𝜸 𝝃𝜸(𝜶) 𝝆(𝜶) 𝑰𝟐(𝜶, 𝝓𝟏) 𝒅𝜶
𝝓

𝝓𝟏
, 

                                       𝑰𝟐(𝝓) := exp (− ∫
𝟏

𝑰̃(𝜶) 𝒃(𝜶)
 𝒅𝜶

𝝓

𝝃(𝝓)
), 

and 
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                                        𝝆(𝝓) := {  
𝝀,                   𝒊𝒇 𝜸 > 𝟏;
𝟏,                   𝒊𝒇 𝜸 = 𝟏,

 

where 𝝀 and 𝜷 ∈ (0, 1). 

Now using the comparison principle, we obtain the following theorem. 

Theorem 3.1. Assume that the condition (2.5) holds. If the first order delay differential 

equation 

                                           𝒚′(𝝓) + 𝒑(𝝓) 𝜷𝜸 𝒚𝜸(𝝃(𝝓)) 𝑰𝟏
𝜸(𝝃(𝝓)) = 0,                                   (3.1) 

is oscillatory, then every solution of (1.1) is oscillatory. 

Proof. Assume on the contrary that 𝒗 is a nonoscillatory solution of (1.1). Then there exists  

𝝓 ≥ 𝝓𝟏 ≥ 𝝓𝟎 such that 𝒗(𝝓) > 0, 𝒗(𝝃(𝝓)) > 0, 𝒗(𝝉𝒊(𝝓)) > 0, for i = 1, 2, …, k, and (2.6) 

holds for 𝝓 ≥ 𝝓𝟏. By taking [H3] and the characteristics of 𝒘(𝝓), we obtain 

                                                                      P(𝝓) < 𝜼, 

for any 𝜼 ∈ (0, 1). Considering the prior inequality and (2.9) that  

                                                               𝒗(𝝓) ≥ 𝜷 𝒘(𝝓),                                                        (3.2) 

where 𝜷 = 𝟏 − 𝜼 ∈ (0, 1). Substituting (3.2) into (2.7), we get 

                                           (𝒃(𝝓) (𝒘′(𝝓)))
′

+ 𝒑(𝝓) 𝜷𝜸 𝒘𝜸(𝝃(𝝓)) ≤ 0. 

That is 

                                           (𝒃(𝝓) (𝒘′(𝝓)))
′
 ≤ − 𝒑(𝝓) 𝜷𝜸 𝒘𝜸(𝝃(𝝓)).                                    (3.3) 

By the result of monotony of 𝒃(𝝓) 𝒘′(𝝓) that 

                                                  𝒘(𝝓) = w(𝝓𝟏) + ∫
𝒃(𝜶) 𝒘′(𝜶) 

𝒃(𝜶)

𝝓

𝝓𝟏
 𝒅𝜶 

                                                            ≥ 𝒃(𝝓) 𝒘′(𝝓) ∫
𝟏

𝒃(𝜶)

𝝓

𝝓𝟏
 𝒅𝜶 

                                                            = 𝒃(𝝓) 𝒘′(𝝓) I(𝝓, 𝝓𝟏). 

That is 

                                                  𝒘(𝝓) ≥  𝒃(𝝓) 𝒘′(𝝓) I(𝝓, 𝝓𝟏).                                                (3.4) 

Now a simple computation shows that 

(𝒘(𝝓) −  𝒃(𝝓) 𝒘′(𝝓) 𝑰(𝝓, 𝝓𝟏))′ = − (𝒃(𝝓) (𝒘′(𝝓)))
′
 I(𝝓, 𝝓𝟏).              (3.5) 

Hence,  

− (𝒃(𝝓) (𝒘′(𝝓)))
′
 I(𝝓, 𝝓𝟏) ≥ 𝒑(𝝓) 𝜷𝜸 𝒘𝜸(𝝃(𝝓)) I(𝝓, 𝝓𝟏).                   (3.6) 

When we combine (3.5) with (3.6), we get 
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                         (𝒘(𝝓) −  𝒃(𝝓) 𝒘′(𝝓) 𝑰(𝝓, 𝝓𝟏))′ ≥ 𝒑(𝝓) 𝜷𝜸 𝒘𝜸(𝝃(𝝓)) I(𝝓, 𝝓𝟏). 

From (2.2), we get 

         (𝒘(𝝓) −  𝒃(𝝓) 𝒘′(𝝓) 𝑰(𝝓, 𝝓𝟏))′ ≥ 𝒑(𝝓) 𝜷𝜸 (
𝝎

𝝓
  𝝃(𝝓) 𝒘(𝝓))

𝜸
 I(𝝓, 𝝓𝟏) 

                                       = 
𝒑(𝝓)

𝝓𝜸  𝜷𝜸 𝝎𝜸 𝝃𝜸(𝝓) 𝒘𝜸−𝟏(𝝓) 𝒘(𝝓) I(𝝓, 𝝓𝟏). 

By using (3.4), 

   (𝒘(𝝓) −  𝒃(𝝓) 𝒘′(𝝓) 𝑰(𝝓, 𝝓𝟏))′ ≥ 
𝒑(𝝓)

𝝓𝜸  𝜷𝜸 𝝎𝜸 𝝃𝜸(𝝓) 𝒘𝜸−𝟏(𝝓) b(𝝓) 𝒘′(𝝓) 𝑰𝟐(𝝓, 𝝓𝟏).   

(3.7) 

Given that 𝒘(𝝓) is positive and increasing, we now have that 

                                                            𝒘(𝝓) ≥ w(𝝓𝟐) ≥ 𝝁 > 0, 

for 𝝓 ≥ 𝝓𝟐 ≥ 𝝓𝟏. Then 

                                                 𝒘𝜸−𝟏(𝝓) ≥ {  
𝝀,                   𝒊𝒇 𝜸 > 𝟏;
𝟏,                   𝒊𝒇 𝜸 = 𝟏,

                                         (3.8) 

for 𝝓 ≥ 𝝓𝟐, where 𝝀 = 𝝁𝜸−𝟏. Thus, 

                                                                𝒘𝜸−𝟏(𝝓) ≥ 𝝆(𝝓),                                                      (3.9) 

for some 𝝀 ∈ (0, 1). Combining (3.7) and (3.9), we obtain 

           (𝒘(𝝓) −  𝒃(𝝓) 𝒘′(𝝓) 𝑰(𝝓, 𝝓𝟏))′ ≥  
𝒑(𝝓)

𝝓𝜸  𝜷𝜸 𝝎𝜸 𝝃𝜸(𝝓) 𝝆(𝝓) b(𝝓) 𝒘′(𝝓) 𝑰𝟐(𝝓, 𝝓𝟏). 

Integrating the last inequality from 𝝓𝟏 to 𝝓, we have 

        𝒘(𝝓) ≥  𝒃(𝝓) 𝒘′(𝝓) 𝑰(𝝓, 𝝓𝟏) + 𝝎𝜸 

∫
𝒑(𝜶)

𝜶𝜸  𝜷𝜸 𝝃𝜸(𝜶) 𝝆(𝜶) 𝒃(𝜶) 𝒘′(𝜶) 𝑰𝟐(𝜶, 𝝓𝟏)
𝝓

𝝓𝟏
 𝒅𝜶. 

By the result of monotony 𝒃(𝝓) 𝒘′(𝝓) and (3.4), it gives 

𝒘(𝝓) ≥ 𝒃(𝝓) 𝒘′(𝝓) [𝑰(𝝓, 𝝓𝟏)  +  ∫
𝒑(𝜶)

𝜶𝜸  𝜷𝜸 𝝃𝜸(𝜶) 𝝆(𝜶) 𝑰𝟐(𝜶, 𝝓𝟏)
𝝓

𝝓𝟏
 𝒅𝜶].       (3.10) 

Consequently, we deduce that 

                                              w(𝝃(𝝓)) ≥ 𝒃(𝝃(𝝓)) 𝒘′(𝝃(𝝓)) 𝑰𝟏(𝝃(𝝓)).                                  (3.11) 

Using (3.11) in (3.3), it is clearly seen that y(𝝓) := 𝒃(𝝓) 𝒘′(𝝓) is a positive solution of the 

first order delay differential inequality  

                                               𝒚′(𝝓) + p(𝝓) 𝜷𝜸 𝒚𝜸(𝝃(𝝓)) 𝑰𝟏
𝜸(𝝃(𝝓)) ≤ 0.                              (3.12) 

But by (Theorem 1 [10]), the following associated delay differential equation  

                                               𝒚′(𝝓) + p(𝝓) 𝜷𝜸 𝒚𝜸(𝝃(𝝓)) 𝑰𝟏
𝜸(𝝃(𝝓)) = 0, 
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must also have a positive solution, which is a contradiction. Hence, the proof is complete. ∎ 

        Using the results in [5] and [13], the following corollary to Theorem 3.1 can be easily 

obtained. 

Corollary 3.1. Assume that the conditions of Theorem 3.1 hold. If  

                                               𝒍𝒊𝒎 𝒊𝒏𝒇
𝝓⟶∞

 ∫ 𝒑(𝜶)
𝝓

𝝃(𝝓)
 𝑰𝟏

𝜸(𝝃(𝜶)) d𝜶 >  
𝟏

𝒆
 ,                                     (3.13) 

for every 𝝀 and 𝜷 ∈ (0, 1), then every solution of (1.1) is oscillatory. 

        The following theorem is now obtained by applying the Riccati approach. 

Theorem 3.2. Assume that condition (1.2) holds, and there exists a function 𝝌 ∈ 𝑪𝟏([𝝓𝟎, ∞), 

ℝ+) such that for all sufficiently large S ≥ 𝝓𝟎, 

𝒍𝒊𝒎 𝒔𝒖𝒑
𝝓⟶∞

∫ (𝜷𝜸 𝝆(𝜶) 𝒑(𝜶) 𝑰𝟐(𝜶) 𝝌(𝜶) −
(𝝌′

+(𝜶))
𝟐

𝒃(𝜶)

𝟒 𝝌(𝜶)
)

𝝓

𝑺
 𝒅𝜶 = ∞,                (3.14) 

where 𝝌′
+

(𝜶) = max{0, 𝝌′(𝜶)} and for every 𝝀 and 𝜷 ∈ (0, 1), then every solution of (1.1) 

is oscillatory.    

Proof. Assume on the contrary that (1.1) has a nonoscillatory solution 𝒗 on [𝝓𝟎, ∞). Then 

there exists 𝝓 ≥ 𝝓𝟏 ≥ 𝝓𝟎 such that 𝒗(𝝓) > 0, 𝒗(𝝃(𝝓)) > 0, 𝒗(𝝉𝒊(𝝓)) > 0, for i = 1, 2, …, k, 

and  

(2.5) holds for 𝝓 ≥ 𝝓𝟏 ≥ 𝝓𝟎. The following definition is a Riccati type transformation 

                                                       𝝎(𝝓) = 𝝌(𝝓) b(𝝓) (
𝒘′(𝝓)

𝒘(𝝓)
),                                              (3.15) 

for 𝝓 ≥ 𝝓𝟎. Then,  

                                                         𝝎(𝝓) > 0 for all 𝝓 ≥ 𝝓𝟏. 

By differentiating (3.15), we get 

𝝎′(𝝓) = 
𝝌′(𝝓)

𝝌(𝝓)
 𝝎(𝝓) + 

(𝒃(𝝓) (𝒘′(𝝓)))
′

𝒘(𝝓)
 𝝌(𝝓) − 

𝟏

𝝌(𝝓) 𝒃(𝝓)
 𝝎𝟐(𝝓).                   (3.16) 

Because of (3.10), we get 

                                                                
𝒘′(𝝓)

𝒘(𝝓)
 ≤ 

𝟏

𝑰𝟏(𝝓) 𝒃(𝝓)
.                                                      (3.17) 

By integrating the latter inequality from 𝝃(𝝓) to 𝝓, we get 

                                                  
𝒘(𝝃(𝝓))

𝒘(𝝓)
 ≥ exp (− ∫

𝟏

𝑰𝟏(𝜶) 𝒃(𝜶)

𝝓

𝝃(𝝓)
 𝒅𝜶).                                     (3.18) 

Combining (3.3) and (3.8), we get 

                                            
(𝒃(𝝓) (𝒘′(𝝓)))

′

𝒘(𝝓)
 ≤ − 𝜷𝜸 𝝆(𝝓) 𝒑(𝝓) 

𝒘(𝝃(𝝓))

𝒘(𝝓)
. 
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By applying (3.18), 

(𝒃(𝝓) (𝒘′(𝝓)))
′

𝒘(𝝓)
  ≤ − 𝜷𝜸 𝝆(𝝓) 𝒑(𝝓) exp (− ∫

𝟏

𝑰𝟏(𝜶) 𝒃(𝜶)

𝝓

𝝃(𝝓)
 𝒅𝜶) 

                                       = − 𝜷𝜸 𝝆(𝝓) 𝒑(𝝓) 𝑰𝟐(𝝓).                                     (3.19) 

By letting A := 
𝝌′(𝝓)

𝝌(𝝓)
 and B := 

𝟏

𝝌(𝝓) 𝒃(𝝓)
 into (2.3) and (2.4), we obtain  

                                                𝝁(u) = 
𝝌′(𝝓)

𝛘(𝛟)
 𝛚(𝛟) − 

𝟏

𝛘(𝛟) 𝐛(𝛟)
 𝛚𝟐(𝛟),                                     (3.20) 

and 

                                                            max
u ∈ ℝ 

μ = 
(χ′

+
(ϕ))

2
 b(ϕ)

4 χ(ϕ)
.                                                 (3.21) 

Applying (3.19), (3.20) and (3.21) in (3.16), we get 

ω′(ϕ)  ≤  − [βγ ρ(ϕ) p(ϕ) I2(ϕ) χ(ϕ) −  
(χ′

+
(ϕ))

2
 b(ϕ)

4 χ(ϕ)
].                    (3.22) 

Let S ≥ ϕ1 be sufficiently large and integrating (3.22) from S to ϕ to obtain                                                                                  

                                ∫ (βγ ρ(α) p(α) I2(α) χ(α) −
(χ′

+(α))
2

b(α)

4 χ(α)
)

ϕ

S
 dα ≤  ω(S), 

which contradicts (3.14). Hence, the proof is complete. ∎ 

 

4. Examples 

In this section, we present an example to illustrate our main results. 

Example 4.1. Consider the following second order differential equation with couple of 

sublinear neutral terms                 

                     (v(ϕ) +  
1

ϕ2  v
1

5 (
ϕ

4
)  +  

1

ϕ4  v
1

7 (
ϕ

6
))

′′

+  
a

ϕ2  v1 (
ϕ

3
) = 0, ϕ > 0,                       (4.1) 

where b(ϕ) =1, w(ϕ) = v(ϕ) +  
1

ϕ2  v
1

5 (
ϕ

4
)  +  

1

ϕ4  v
1

7 (
ϕ

6
), k = 2, q1(ϕ) = 

1

ϕ2, θ1 = 
1

5
,  

τ1(ϕ) =
ϕ

4
, q2(ϕ) = 

1

ϕ4, θ2 = 
1

7
,  τ2(ϕ) =  

ϕ

6
,  f (ϕ, v(ξ(ϕ))) = p(ϕ) vγ(ξ(ϕ)), p(ϕ) = 

a

ϕ2,  

a > 1, γ = 1, ξ(ϕ) =  
ϕ

3
 . 

With our equation, it is simple to verify that   

                                                       lim
ϕ⟶∞

qi(ϕ) = 0 for i = 1,2, 

                                                       lim
ϕ⟶∞

τi(ϕ) = ∞ for i = 1,2, 
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and 

                                                               lim
ϕ⟶∞

ξ(ϕ) = ∞. 

Along with 

                                             I(ϕ, ϕ1) = ϕ and I1(ϕ) = (1 +
a

3
 β) ϕ. 

For Theorem3.2, we have 

                                                   I2(ϕ) = 3c, where c = −
1

(1+
a

3
 β)

. 

Letting χ(ϕ) = ϕ, condition (3.14) becomes 

             lim sup
ϕ⟶∞

∫ (βγ ρ(α) p(α) I2(α) χ(α) −
(χ′

+
(α))

2
b(α)

4 χ(α)
)

ϕ

S
 dα  

                                                                               = lim sup
ϕ⟶∞

∫ (β 
a

α2  3c α −
1

4 α
)

ϕ

S
 dα 

                                                                               = lim sup
ϕ⟶∞

∫ (β a 3c  −
1

4 
) 

1

α 

ϕ

S
 dα 

                                                                               = lim sup
ϕ⟶∞

 (β a 3c  −
1

4 
) ln [

ϕ

S
] 

                                                                               = ∞.                                                            (4.2) 

Therefore, if condition (4.2) is satisfied, Equation (4.1) is oscillatory. 

Example 4.2. The differential equation (4.1) is once again considered.  

For corollary 3.1, condition (3.13) becomes 

                          lim inf
ϕ⟶∞

 ∫ p(α)
ϕ

ξ(ϕ)
 I1

γ(ξ(α)) dα = lim inf
ϕ⟶∞

 ∫
a

α2

ϕ
ϕ

3

 (1 +
a

3
 β) 

α

3
 dα 

                                                                                > 
a

3
 (1 +

a

3
 β) ln 3 

                                                                                > 
1

e
.                                                             (4.3) 

Therefore, if condition (4.3) is satisfied, Equation (4.1) is oscillatory. 

 

5. Conclusion 

In this paper, we studied the oscillatory behavior of second order quasi-linear differential 

equations with several sublinear neutral terms and obtained new conditions for the 

oscillation. The Comparison principle and Riccati approach are two distinct techniques used 

to achieve the oscillation of the studied equation. Thus, many known results in the literature 

are extended, improved, and complemented by the data reported in this study.  
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