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The aim of this paper is to define some new oscillation conditions for the second order canonical
!
differential equations with several sublinear neutral terms of the form (b(¢) (w’(¢))) +

t(9,v(£(@))) =0, ¢ = ¢ > 0, Where () = v($) + TE_, 4 () v (z:(¢)) and k = Lis an
integer, @; are ratios of odd positive integers with 0 < 9; <1 fori =1, 2, ..., k. By using the
Comparison principle and Riccati approach, we give new conditions for oscillation of the equation.
Furthermore, we provide an example to illustrate the significance of the new results.
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1. Introduction

In this paper, we focus on the oscillatory behavior of second order canonical differential
equations with several sublinear neutral terms

(b@) (w'@)) +f(4.v(E@)) =0, = >0, (L1)

where w(d) = v(d) + YK q;i($) vPi(ti(d)) and k> 1 is an integer, subject to the
following conditions:

H1: e, are ratios of odd positive integers with0<9; <1fori=1, 2, ..., k;
H2: b € CY([¢g, ), RT) and Equation (1.1) is in canonical form if

_b 1 .
H3: q; € C([bg, ), RT) and q;(d) —m 0asd — o fori=1,2, ..., k;
H4: t; € C([dg, ), R), Ti(d) < ¢ and ¢lim Ti(p) =0 fori=1,2,...,k;
H5: £ € C1([bo, ), R), §(4) < ¢, §/(¢) = 0and lim §(¢) = o.
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H6: f (¢, v) € C([do, ) x R, R), and there exists y is a ratio of odd positive integers with
y = 1and afunction p(¢) € C([¢pg, ), RT) such that f (b, v)/vY = p(d), forall v =
0.

Under a proper solution of (1.1), we mean a function v € C([¢y, ©), R), ¢y, > ¢, Which has
properties (), b(d) (w'($)) € C*([¢py, ©), R), and which satisfies (1.1) on [¢y, ).
We focus only those solutions v of (1.1) which satisfy

sup{|v(d)|:p = T} >0, forevery T > ¢y.

A proper solution v of (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is said to be nonoscillatory. The equation itself is termed
oscillatory if all its proper solutions oscillate.

2. Lemmas

This section presents a few important lemmas that will contribute to proving our main results.
We only need to provide proofs for the case of eventually positive solutions because the proofs
for eventually negative solutions would be comparable due to the assumption and the form of
our equation.

Lemma 2.1 [7]. If B is positive and 0 < € < 1, then
BE <Be+(1—¢). (2.1)

Lemma 2.2 [3]. Assume that condition H5 holds. For ¢ > &,, if the function g satisfies g > 0,
g’ >0and g" < 0, then there exists ¢, = ¢, such that

9G4 2 3 5(4) g(9), 22)
for all w € (0,1).
Lemma 2.3 [15]. Let
(a+1)
u(u)=Au—Bu « (2.3)
where A and B are positive constants, and « is a quotient of odd positive integers. Then, p
o
reaches its maximum value at 6 = ( Ad ) on R and
B(a+1)
_ _ A0(+1 a®
max u = p(0) = e - (2.4)

Lemma 2.4 Suppose that v(¢) is a positive solution of (1.1) such that

Sz Ju P dadu= oo. (2.5)
Then, for ¢ = ¢,
() w($) >0, w'(¢) > 0and (b(¢) (w'(@))) <0; (2.6)
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w(¢)
| i reasing;
( )I((M)) is decreasing

(1) w(d) — o0 as ¢ — oo.

Proof: Assume that v(¢) is a positive solution of (1.1) on [¢g, o). Then by the assumptions
[H4] and [H5], there exists a ¢, > &, such that v(rl(q))) >0fori=1,2, .., kand

v(8(d)) > 0 on [dby, ). Now, since w(d) = v(d) + X1, q; () vOi(ti(d)), then
w(d) = v(dp) >0, ford = ;.
From (1.1), we have
(b@) (W' @) = ~ (0, v(E@))) < ~p() V¥ (§)) < 0. (27)
This implies
(b@) (w'@))) <0
Thus b(¢) (w'(¢)) is decreasing.

Now, to show that w'(¢) > 0 on [¢;, «©), assume that it is not true. Then we can find ¢, >
¢4, such that w'(¢,) < 0. But since b(¢) (w'(¢)) is decreasing, then

b(¢) (W'(d))) < b(dz) (W'(q)z)) =co <0, forp = ;.
By integrating the above inequality from ¢, to ¢, we get
w() <W(ds) + o fy, iy da

This with (1.2), leads to w(¢) — — o as ¢ — oo which is a contradiction with the fact that
w(¢) > 0eventually. This completes the proof of w'(¢) > 0.

Thus,
b( ) w'(a)
> b(p) w'(d) f¢1@ da
=b($) w'($) I(d, d1),
and hence
( w(p) )' _ b(®) wi(d) 1(,¢1) - w(P) <0
I(d, d1) b(d) 12(d,d1) -
So % is a decreasing function.

We claim that (2.5) ensures w(¢) — oo as ¢p — oo. Actually, as w(¢) is a positive increasing
function, we actually know that there is a constant ¢ > 0; therefore

w(g)=2c>0. (2.8)
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Furthermore, it is derived from w(¢) that
v(¢) =w() — Xi=1 q: () v¥i(zi())
>w(¢) - X1 q: () woi (zi(9))
>w(¢) —ZiZiqu(@) [0:w(p) + (1 — 01)]

= w@e (1- Xk qi9) - 5 Tizka -
0 4:(®)).
where the inequality (2.1) was used. So, we have
v(®) = w(#) (1-[a(@) izho; + 52 Si=k1 - 6)), (29)

where q(¢) := max q;(¢).
Substituting (2.8) into (2.9), we get
v(¢) = 2¢ (1-[q(¢) 2ik 0, + L2 iZk(1 - 0)])

When considering [H3], we have

v(p)=c>0,¢p =>¢;. (2.10)
When we use (2.10) in the derived inequality after integrating (2.7) from ¢ to oo, we get

By further integrating the prior inequality from ¢p4 to ¢, we can show that
1 oo
w(g) = w(py) + ¥ fim fu p(a) da du,

which, with (2.5), suggests that w(¢) — o0 as ¢ — oo. Thus, the proof of the lemma is
complete. m

3. Oscillation Criteria

In this section, we introduce some new oscillation criteria for solutions of (1.1). In order to
provide a clear presentation, we define the following functions:

P(¢) = a(®) Tizk 0, + T2 Tizk1 - o)),

11(®) = (g, b1) + [ B2 BY §¥ (@) p(a) I*(a, ¢y da

a¥

. e 1
I;(¢) ‘= exp ( ff(qb) 1(a) b(@) da)’
and
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(A ify>1;
@ ={ 7 ify=1,
where Aand g € (0, 1).
Now using the comparison principle, we obtain the following theorem.

Theorem 3.1. Assume that the condition (2.5) holds. If the first order delay differential
equation

Y (®) +p(@) BY ¥y (§(9)) 1" (§()) =0, 3.1)

is oscillatory, then every solution of (1.1) is oscillatory.

Proof. Assume on the contrary that v is a nonoscillatory solution of (1.1). Then there exists
¢ = ¢4 = g such that v(¢p) >0, v(&()) >0, v(t;(¢p)) >0, fori=1,2, ...,k and (2.6)
holds for ¢p = ¢p4. By taking [H3] and the characteristics of w(¢), we obtain

P(¢) <m,
for any i € (0, 1). Considering the prior inequality and (2.9) that

v(g) =B w(), 3.2)
where g =1 —n € (0, 1). Substituting (3.2) into (2.7), we get

(b(#) (W'(#))) +p(e) BY WY (E($)) < 0.
That is

(b(#) (W'(@#))) < - p(e) B W E(@)). (33)
By the result of monotony of b(¢p) w’(¢) that

w(p) =w(¢g,) + f¢ bW @ g,

$1  b(a)

> b($) W' (@) [ 7 da

= b(¢) w'(¢) I($, P1).
That is

w(p) = b(¢) w'(¢) (¢, P1). (3.4)

Now a simple computation shows that
W($) — b() W) I, $)) = — (b() W @®)) (P, b1). (35)
Hence,
~ (b(#) (W' (#))) 1. 61) = p($) B WY (E(9)) (b, 1). (36)

When we combine (3.5) with (3.6), we get
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(w(@) — b(d) w'(@) I(¢, $1)) = p(p) BY w¥ (§(¢)) (P, P1).
From (2.2), we get

(W($) — b(®) W' ($) I, 62)) 2 () B (2 @) w($)) 1, 1)

= % BY w & () w1 (d) w(@) (9, $1).
By using (3.4),
(w(¢) — b(P) w'(P) I(d. p1))" 2 % BY ¥ §¥(¢) w'L() b(p) W' () I*(¢, $1).
(3.7)
Given that w(¢) is positive and increasing, we now have that

w(d) =wW(pz) = u>0,
for ¢ > ¢, = ¢p4. Then

A, i ;
wr-1(¢h) 2{ " Zrl',z 1 (3.8)
for ¢ > ¢, where A = u?~1. Thus,
w' () = p(¢), (3.9)

for some 4 € (0, 1). Combining (3.7) and (3.9), we obtain
(w(g) — b(P) W (@) I($, $1)) = % BY ¥ & (@) p(@) b(¢) W' () I* (¢, $1).

Integrating the last inequality from ¢p4 to ¢, we have

w(p) = b(p) w () I($, 1) + w?
[2 29 g7 &7 () p(a) b(@) W' (@) I (a, ) der

By the result of monotony b(¢) w'(¢) and (3.4), it gives
w($) 2 b($) w'($) [1(d, ¢1) + [ 52 BY §¥ (@) p(a) I* (@, p1) da|  (3.10)
Consequently, we deduce that

W(E(P)) = b(§(¢) w'(E(9)) I1($(¢)). (3.11)

Using (3.11) in (3.3), it is clearly seen that y(¢) := b(¢p) w'(¢) is a positive solution of the
first order delay differential inequality

y' () +p(d) BY y" (§(d)) I (§(¢)) <O. 3.12)
But by (Theorem 1 [10]), the following associated delay differential equation

y' (@) + p(e) BY y¥ E(@) I17 (§(¢)) =0,
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must also have a positive solution, which is a contradiction. Hence, the proof is complete. m

Using the results in [5] and [13], the following corollary to Theorem 3.1 can be easily
obtained.

Corollary 3.1. Assume that the conditions of Theorem 3.1 hold. If
lim inf f;(” 5 P(@ I (§(@) da> 7, (3.13)
¢Pp— o0 e

for every 4 and B € (0, 1), then every solution of (1.1) is oscillatory.
The following theorem is now obtained by applying the Riccati approach.

Theorem 3.2. Assume that condition (1.2) holds, and there exists a function y € C([¢bg, ),
R*) such that for all sufficiently large S = ¢y,

tim sup [ (m p(@) p(@) 1r(@) x(@) - ("fj—)()f“) da = o, (314

where x'_ (@) = max{0, x'(a)} and for every 4 and g € (0, 1), then every solution of (1.1)
is oscillatory.

Proof. Assume on the contrary that (1.1) has a nonoscillatory solution v on [¢g, ). Then
there exists ¢p = ¢ = ¢ such that v(¢p) >0, v(é(¢)) >0, v(z;(¢p)) >0, fori=1,2, ..., K,
and

(2.5) holds for ¢ = ¢p1 = ¢q. The following definition is a Riccati type transformation

(@) = x(#)b(9) (£ 2), (3.15)

for ¢ = ¢pg. Then,

w(¢p)>0forall ¢ > ¢p.
By differentiating (3.15), we get

@ (@)

1 X (¢) _ 2
w'(p) =" 5 O@) +— ——x(¢) M) s @ (@) (3.16)
Because of (3.10), we get
w'(¢) 1
<
w($) ~ 11(¢) b(¢) (3.17)
By integrating the latter inequality from &(¢) to ¢, we get
wi@) 1
w(p) ~ = &xp ( ff((b) I1(a) b(a) da). (3.18)

Combining (3.3) and (3.8), we get

(v@) (w@)) WE@)
SIS < - B p(@) p(9) S
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By applying (3.18),
(b("’) (w’(d’))), <—_gY ¢ 14
w($) < =B p(P)p(d) exp (_ Je) @ b “)
=—-pY p(¢) p(9) I:(). (3.19)
x' (P
By letting A := (@) and B (¢) 5@) into (2.3) and (2.4), we obtain
_X "(¢) _ 2
u(v) =28 (@) — s w (é), (3.20)
and
(2 @)  b@)
max p="——r"—. (3.21)

Applying (3.19), (3.20) and (3.21) in (3.16), we get

NOES [BV () P($) 1) X() - %‘ (3:22)
Let S > ¢; be sufficiently large and integrating (3.22) from S to ¢ to obtain
f;"<sv p(@) p(@) 1 () x(a) —M> da < w(S),

4 x(a)

which contradicts (3.14). Hence, the proof is complete. m

4. Examples
In this section, we present an example to illustrate our main results.

Example 4.1. Consider the following second order differential equation with couple of
sublinear neutral terms

(v + 2@ + 2 () + 2@ =0 050 @)

1

where b() =1, w(¢) = v(d) + —vs(j’) + = v (9 k=2 qi(@) = o 0= 1
T =% a:($) = q,,, 2=5 (@) = L (0, v(E®)) = p@) v (&), p(@) = 35
a>1v=1%¢p) =2 3.
With our equation, it is simple to verify that

q)li_r)noo qi(p)=0fori=1.2,

q)lim Ti(p) = oo fori=1,2,
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and
Jim £(¢) = oo.
Along with
(P, ¢1) = pand 1, (9) = (1 +5 B) .

For Theorem3.2, we have

M=

I,(p) = 3¢, wherec = —

Letting x(¢) = ¢, condition (3.14) becomes

2
ey _ K@) b
lim sup J3 (B P() p() I (00 (@) = =505 | da
T ¢ 2 qc,_ 1
_llgj;}pfs (B Z 3« 4a) da

=lim supfs(1> (BaBC —41) & da

p—0

= lim sup ([3 a3¢ — %) In [%]

p—
= 00,
Therefore, if condition (4.2) is satisfied, Equation (4.1) is oscillatory.
Example 4.2. The differential equation (4.1) is once again considered.
For corollary 3.1, condition (3.13) becomes

L h Y — lim inf [$2 ag)e
lim inf fity) P(@) 1, (§(e) doc=lim inf f5' & (145 B) 5 do
a a
>5(1+58)In3
> 1
-

Therefore, if condition (4.3) is satisfied, Equation (4.1) is oscillatory.

5. Conclusion

(4.2)

(4.3)

In this paper, we studied the oscillatory behavior of second order quasi-linear differential
equations with several sublinear neutral terms and obtained new conditions for the
oscillation. The Comparison principle and Riccati approach are two distinct techniques used
to achieve the oscillation of the studied equation. Thus, many known results in the literature

are extended, improved, and complemented by the data reported in this study.
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