

"Harnessing Wearable Health Data And Deep Learning Algorithms For Real-Time Cardiovascular Disease Monitoring And Prevention"

Md Alamgir Miah¹, Evha Rozario², Fahmida Binte Khair³, Md Kamal Ahmed⁴, Mohammad Muzahidur Rahman Bhuiyan⁵, Mia Md Tofayel Gonree Manik⁶

¹*Department of Social Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh, Email: mdalamgirmiah2016@gmail.com*

²*Department of Business Administration, Siddheshwari College, National University of Bangladesh, Gazipur, Bangladesh, Email: evhaaccabd@gmail.com*

³*Department of Business Administration, American International University Bangladesh, Khilkhet, Dhaka-1229, Bangladesh, Email: fahmidakhair1996@gmail.com*

⁴*School of Management and Business Administration, Shahjalal University of Science and Technology, Sylhet, Bangladesh, Email: kamalacademic88@gmail.com*

⁵*Department of Accounting & Information System, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh, Bangladesh, Email: muzahid.wu501@gmail.com*

⁶*Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka -1000, Bangladesh, Email: miatofayelgonree@gmail.com*

***Corresponding Author: Mia Md Tofayel Gonree Manik, Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka -1000, Bangladesh, Email: miatofayelgonree@gmail.com**

Cardiovascular diseases are the most common diseases around the world and result in high morbidity and mortality rates. It proves the need to develop new approaches to the disease's early diagnosis and prevention. Portable health monitoring is characterized by state-of-the-art sensors. It produces a continuous flow of physiological data in real-time. It presents a great opportunity for preventative Cardiovascular disease management. Using deep learning algorithms that is used to accurately and effectively. It creates preventive early diagnosing models for diseases. The authors discuss the integration of wearable health technology and deep learning towards the improvement of individual-oriented technologies in cardiology. The collected data are cleaned for noise and further normalized to provide uniform input in deep learning models. To detect anomalies that are likely to lead to cardiovascular risks, state-of-the-art algorithms. The models are trained and validated using a dataset of wearable device data and clinically diagnosed Cardiovascular disease cases. Wearable health devices combined with deep learning algorithms provide an innovative platform for cardiovascular disease screening and prevention. The incorporation of the proposed system proved its efficiency and accuracy in the identification of potential probable Cardiovascular disease risk, making it possible for early, real-time, noninvasive, and personalized healthcare services. This approach improves

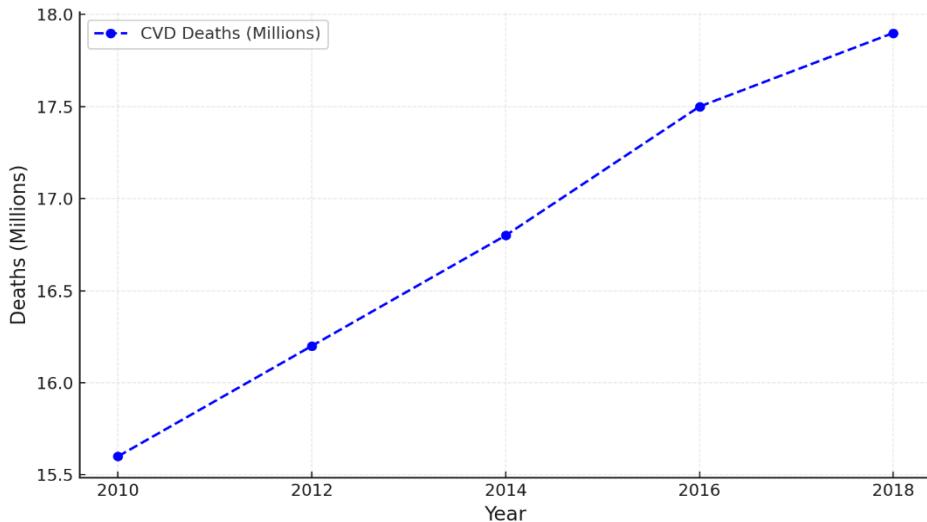
early detection but also provides handy information to the patients. This type of research includes the acquisition of larger databases and better models, and incorporating those into more offices and healthcare practices.

KEYWORDS: Wearable health devices, Cardiovascular disease monitoring, Deep learning algorithms, Real-time health data, Long Short-Term Memory, Personalized healthcare, Anomaly detection, Preventive healthcare.

Introduction:

Cardiovascular diseases are only non-communicable diseases. It is becoming a significant cause of death. Cardiovascular diseases alone kill about 17.9 million people every year of whom most of them prevented through some manageable factors like high blood (Nair et al., 2018) Precise identification and control are significant to minimize the mortalities related to Cardiovascular diseases but conventional diagnostic techniques mostly apply the idea of routine check-ups that might not pick up brief episodes or first manifestations(Sensmeier, 2017). Wearable health devices have become one of the most promising tools in the sphere of healthcare provision. It is allowing tracking of the constant status indicators, including heart rate, blood pressure and activity levels(Cheung et al., 2018). These devices not only enable a human being to monitor his or her own health but also come with real-time data that may be of use in the promotion of health (Gade, 2018).The ability to use this data in a practically optimal manner for risk prediction of cardiovascular diseases remains wanting at this stage, hampered by the sheer volume and complexity of data collected. Artificial intelligence which is subcategorized into deep learning, has shown promise in the analysis of vast volumes of data in numerous domains, cutting across health care (Vashistha et al., 2018). CNN's with RNN's and other opportunity techniques like medical imaging analysis and prediction of health outcomes (Alexander and Wang, 2017). Though deep learning in Cardiovascular diseases has been used when analyzing large datasets. Its application in real-time wearable health data for Cardiovascular diseases monitoring of patients is still at its nascent stage and developed further. This work seeks to fill the gap by coming up with a framework that incorporates wearable health devices and deep learning algorithms for cardiovascular disease monitoring and prevention (Archenna and Anita, 2016). The effectiveness of these technologies, the proposed system aims at improving the early identification and treatment, hence improving the quality of the patient's health in the long term at the lowest cost possible(Hemingway et al., 2018) .

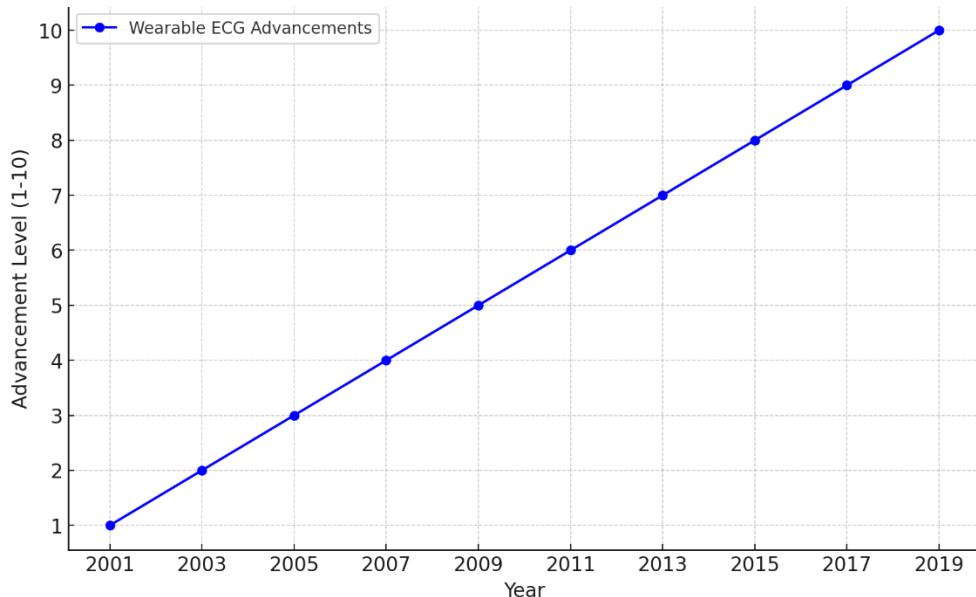
Figure No.01: Global Cardiovascular Disease Deaths (2010-2018)



Problem Statement:

Cardiovascular diseases are a major cause of death and disability; each year millions of people die from Cardiovascular diseases due to missed early diagnoses or poor preventative care. Periodic examinations and tests are typical of modern allopathic healthcare and seldom reveal early signs of symptoms, particularly in those patients who can rarely or never visit hospitals (Fki et al., 2018). The quality of life of the affected patient is compromised and unnecessary deaths are promoted. Techniques in wearables constantly produce physiological data streams and there is high promise in real-time monitoring (Kalusivalingam et al., 2012). The composite volumes of data that are accumulated remain largely untapped due to the unavailability of sophisticated analytical tools that can analyze these large volumes of data and come up with newer and more efficient insights (Wang et al., 2013). The existing methods provide analysis results that are usually retrospective which does not allow providing effective, timely solutions (Wang et al., 2013). Advanced predictive models such as deep learning which are effective in processing large data. It explores minimally in real-time applications of wearable health data on cardiovascular risk. The lack of a framework that unites wearable technology and deep learning is seen as a vital gap in using these innovations to improve Cardiovascular diseases prevention and management (Wang et al., 2013). This study aims at creating a real-time cardiovascular risk monitoring and prevention system that leverage wearable health data and deep learning algorithms. It is a solution of continuous monitoring and early diagnosis, which does not increase the cost of healthcare but helps to improve patient outcomes (Inan et al., 2018).

Figure No.02: Progression of Wearable ECG Technology (2001-2019)



Objectives

- Develop a real-time monitoring framework using wearable health data and deep learning algorithms for cardiovascular disease prevention.
- Design and validate deep learning models for accurate Cardiovascular diseases risk prediction.
- Integrate the framework into a user-friendly system for personalized health monitoring and timely alerts.
- Evaluate system performance using metrics like accuracy, precision, and recall.
- Enhance scalability by incorporating diverse biomarkers and improving algorithm efficiency.

Research Contributions

This research presents a new concept of a wearable health detection system that incorporates wearable health sensors and deep learning models for Cardiovascular diseases detection and prevention (Inan et al., 2018). The wearable devices provide continuous physiological data, including heart rate and activity level. The Usability to convey actionable information and first signs of events makes healthcare and illness prevention more personal and systematic (Qi et al., 2017). The effectiveness of the proposed system and its possibility of enhancing preventive care have confirmed. The study provides the basis for future work, adding more biomarkers and testing the implementation in clinical practice, which is a major step forward in the combination of wearable technology, artificial intelligence and healthcare (Akrivopoulos et al., 2017).

Literature Review

Cardiovascular Disease Monitoring

The monitoring of cardiovascular diseases has been on the rise due to the available technologies and improved devices in covering the subject's heart rating regularly. The most effective measuring methods of cardiovascular health, there is an electrocardiogram that evaluates the electrical signals of the heart(Glicksberg et al., 2018). ECG has not lost its significance in the diagnosis of arrhythmias, ischemic disease, and other heart diseases as well. Wearable ECG monitors and small portable equipment effectively monitor and track rhythm changes in real time to allow the providers to intervene early on (Bland, 2018). Blood pressure checks for the same reason because it has a strong relation with Cardiovascular diseases such as high blood pressure (Montgomery et al., 2018). Garments and other digital measuring devices allow the patients to check their pressure frequently or at least at certain time intervals to improve the disease status and use it as a variant log by the physicians(Munguia Tapia, 2008) .

These systems now deliver real-time data to doctors, enhancing patient control and decision-making to healthcare providers. The other important variable in cardiovascular health is beat, which is important since it indicates overall heart condition (Bhavnani et al., 2017). Smart bands and smartwatches rely on the PPG in order to measure heart rate continuously. These devices identify other abnormally beating rhythms like atrial fibrillation and notify the user of potential problems. Increased usage of wearable technology for monitoring of heart rate for patients assists in early interventional measures and enhanced disease control (Pejovic et al., 2017). Non-invasive management, technology-driven devices such as pacemakers and implantable cardioverter defibrillators have been advanced as critical management strategies for individuals with severe cardiovascular diseases. They are always used in tracking the electrical and mechanical activity of the heart and then relaying this data to health care professionals (Mazzanti et al., 2018). It has proved most successful in the case of arrhythmia and heart failure, which has improved patient survivability rates (Prabhod, 2018).

The new imaging technologies such as MRI scans CT scans and personalized cardiology, including ultrasound imaging like echocardiogram scans, are used to evaluate blocks, understand the general and specific condition of the heart and analyze the progression of diseases (Schmidhuber, 2015). These techniques have come a long way in providing more precise and specific diagnostic indications, which are essential for diagnosis of the disease and management. Biomarkers and genetic monitoring have improved the parameters for estimating the cardiovascular diseases prognosis(Qi et al., 2015).These combined traditional and advanced technologies improve the way and extent to which cardiovascular health can be monitored and managed(Kellogg et al., 2018).These methodologies form a package towards detecting cardiovascular disease in the early stages, controlling the conditions if they exist or intervening early enough to manage them. There is still the issue of how these technologies are best incorporated into clinical practice successfully(Rizwan et al., 2018).

The developing sophisticated tools for cardiovascular disease surveillance, there are several barriers to the deployment of such technologies. One of the main challenges lies in the data integration and management(Munos et al., 2016). These issues prevent a consistent integration of decisions across devices and make it difficult to interpret the information load in a timely manner. Patient compliance and adherence are still major challenges that are hard to overcome(Zhang et al.,2015). This non-compliance erodes the significance of monitoring strategies, including in chronic illnesses such as hypertension. The issue of privacy and

security with related concerns over privacy in handling and transfer of real-time health data from different remote monitoring systems(Qi et al., 2018).

The risks include the exposure of private health information to unauthorized individuals, which might dampen this nascent appetite for utilizing such technologies(Maddox et al., 2017). The purchase of the latest diagnostic equipment, which includes MRI and CT scans or wearables eventually be very expensive for the patient(Horvitz, 2010). This distribution of access to these technologies poses a limit in attaining appropriate health care. The accuracy and reliability of the devices, and most notably those that are produced with a view to being sold to consumers, are questionable. The several wearable devices as precise as professional equipment that is used in hospitals and could therefore result in wrong diagnoses or even unwarranted treatment(Kunkle et al., 2016) The signs for abnormal heart rhythm lead to treatment procedures or even omit particular disorders, making patient management difficult. These are challenges that need to be overcome to harness the best of cardiovascular disease monitoring systems and impact patient care(Allami, 2017).

Table No.1: Common wearable devices on the market.

Location on Body	Type of Device	Company	Product Name	Parameters	FDA Cleared	Advantages	Disadvantages
Wrist	Fitness Tracker	Fitbit	Charge 5	Heart rate, step count, sleep tracking, GPS	Yes	Comprehensive fitness tracking, sleep analysis, built-in GPS	Battery life, some data might not be entirely accurate
Wrist	Smartwatch	Apple	Apple Watch Series 8	Heart rate, ECG, blood oxygen, GPS, fall detection	Yes	Advanced health metrics, seamless integration with iPhone	Expensive, limited battery life
Arm (Under skin)	Continuous Glucose Monitor	Abbott	Freestyle Libre 2	Glucose levels	Yes	Continuous glucose monitoring, real-time data on smartphone	Requires sensor replacement every 14 days
Wrist	ECG Monitor	Withings	Withings ScanWatch	ECG, heart rate, activity tracking	Yes	ECG and health monitoring, long battery life	Less smart functionality compared to other

							smartwatches
Finger	Sleep Tracker	Oura	Oura Ring	Sleep stages, activity, temperature	No	Sleep optimization, heart rate monitoring, compact design	Expensive, limited app integration
Chest	Heart Rate Monitor	Polar	Polar H10	Heart rate, real-time monitoring	Yes	Accurate heart rate tracking, compatible with various devices	Need for chest strap, less versatile compared to smartwatches
Wrist	Smart Fitness Tracker	Garmin	Vivosmart 5	Heart rate, step count, sleep monitoring	Yes	Great for fitness tracking, compact design, waterproof	Lacks some advanced features of higher-end devices
Chest (on skin)	Wearable ECG Monitor	AliveCor	KardiaMobile 6L	6-lead ECG, heart rate	Yes	Portable ECG monitoring, easy to use	Limited coverage for insurance, requires smartphone app
Wrist	Smartwatch	Samsung	Galaxy Watch 6	ECG, heart rate, blood pressure, GPS	Yes	Advanced health features, long battery life, stylish design	Limited battery life, features may require app for full access
Back (Upper Body)	Posture Corrector	Upright	Upright GO 2	Posture correction	No	Improves posture, discreet, portable	Limited functionality, discomfort during prolonged use

Wearable Health Technologies

Wearable health technologies can be easily described as a revolutionary concept in the sphere of healthcare, as they include constant, simultaneous monitoring of different types of health indicators (Bland et al., 2017). Smartwatches, fitness bands and certain therapeutic sensors are the inventions that measure or monitor physiological parameters like heart rate, blood pressure, movements, sleep patterns and even blood oxygen levels if required(Rumsfeld et al., 2016). An array of health data centralizing on the wearable devices, users have control over decisions on modifying dietary and exercising routines. Smartwatches and fitness trackers are the most well-known wearable health technologies today that contain heart rate, step counter, calorie monitor, and sleep tracker(cheol Jeong et al., 2018). ECG tracking, enabling users to monitor the electric activity of their hearts or look for atrial fibrillation. There is the Apple Watch and Fitbit, which are well-known devices that provide such features, allowing the control of heart health conditions without leaving the wrist(Mamoshina et al., 2017). One of the more recent innovations in wearable health technologies is smart clothing, which is a garment with sensors to enable the wearer's physiological parameters like respiration rate, pulse, and temperature (Berzin and Coulton, 2018). The smart clothing containing ECG sensors can supply the continuous heart state monitoring, including during the exercise which is more helpful for the cardiovascular disease patients or athletes that need to maximize the performance(Kamat and Nasnodkar, 2018).

Wearable health technologies play a major part when it comes to chronic disease care. Various gadgets, like CGMs for diabetics, are useful tools in tracking the blood glucose fluctuations and obtaining actual information that may be used in avoiding certain dangerous consequences. Wearable blood pressure monitoring devices can monitor blood pressure changes and even provide the user with warnings on conditions that might subject them to severe hypertension (Schüll, 2016). The technologies contain motion sensors and accelerometers, which record a person's movements and inactivity and can give an idea of a person's level of fitness. This data is useful in pushing people to their healthier selves by helping them become active, set better fitness goals and reach those goals over a period(Jiang et al., 2017). The combination of advanced AI with wearable devices has added more attributes to such gears by delivering innovative health solutions and insights that encompass preventive health advice and probable health dangers(Xie and Minn, 2012).

The numerous advantages of wearable health technologies, their adoption, as well as their impact, are hampered by the following factors. It was established that data reliability and relevance are issues due to the fact that most wearable technology devices may not offer the same accuracy as that of a medical device(Bagot et al., 2018). Such a situation may cause not only the inappropriate number of appropriate and non-appropriate tests being performed but also lead to misdiagnosis. Further, wearables depend on battery power, and while some of them may need recharging often, this may be inconvenient to the user, especially those who require constant checks(Swan, 2013). The second major issue is synchronizing data from multiple wearables into a single healthcare system(Woods et al., 2018). The fact that some devices are capable of syncing with mobile apps, the majority remain incompatible with electronic clinical records or health care systems.

The interoperability of the used data types between various systems is imperative to making the information gathered by the wearable devices useful for diagnostics and providing

appropriate medical care(Mallipeddi et al., 2017). It is risky because health devices are worn on the body, and they are designed to collect personal data that can be accessed by hackers. The protection of data, the privacy of information input, and the use of such devices have posed major challenges that need to be addressed to encourage the use of such devices (Asri et al., 2015). The next stage for wearable health technologies is for the application of AI to become much more prominent, as this allows the devices to become more effective in predicting the data. As scientists stated, the use of wearable health technologies has led to a great improvement in the health of people. The advancements in the sense technology mean that it is able to measure with better efficiency or detail and widen its functional uses, including monitoring the levels of dehydration, stress, or early signs of an infection(Natarajan et al., 2017).

Wearable device technology has emerged as a new approach to delivering health technologies and giving people the means to monitor their health all the time. Chronic disease, preventive care, and self-management are areas of chronic diseases in which these devices can positively impact users (Sakr & Elgammal, 2016). These technologies have great potential for improved healthcare, but problems with data accuracy, personal information breaches, integrability issues and device constraints need to be solved to make it totally efficient (Alugubelli, 2016). These developments, future applications of AI sensors and better integration of data structures will most likely drive continued enhancements to elevating human health and the practice of medicine (Salathe et al., 2012).

Table No.02:the validity of various wearable devices based on the criteria for Physical Activity Heart Rate and Sleep, with a focus on parameters, certification and subject devices:

Device	Physical Activity (PA) Validation	Heart Rate (HR) Validation	Sleep Tracking Validation	Certification	Subject Devices
Fitbit Charge 5	High validity for step count and activity tracking	Accurate heart rate tracking during rest and exercise	Validated sleep stages (light, deep, REM)	FDA cleared for HR tracking	Fitbit Charge 5, Fitbit Sense, Fitbit Inspire
Apple Watch Series 8	Good validation for PA, step count, and activity levels	Accurate HR, ECG, and blood oxygen sensors	Good sleep tracking with algorithms (REM, deep, light)	FDA cleared for ECG, HR	Apple Watch Series 8, Apple Watch SE
Freestyle Libre 2	Not applicable	Not applicable	Not applicable	FDA cleared for glucose monitoring	Freestyle Libre 2 (glucose)

	for PA tracking	for HR tracking	for sleep tracking		monitoring only)
Withings ScanWatch	Moderate validation for activity tracking (steps, movement)	Validated ECG and HR tracking	Limited sleep tracking capabilities	FDA cleared for ECG, HR	Withings ScanWatch, Withings Steel HR
Oura Ring	Validated step count and activity tracking	Moderate HR validation	Validated sleep stages and tracking (REM, light, deep)	No FDA clearance	Oura Ring (1st, 2nd, 3rd generations)
Polar H10	Not a primary PA tracker	Highly accurate HR monitoring during exercise	No sleep tracking validation	FDA cleared for HR	Polar H10 chest strap, Polar Vantage series
Garmin Vivosmart 5	High accuracy for PA (steps, activity tracking)	Good HR monitoring during exercise and rest	Basic sleep tracking (light, deep, REM)	FDA cleared for HR tracking	Garmin Vivosmart 5, Garmin Forerunner series
KardiaMobile 6L	Not applicable for PA tracking	Highly accurate ECG and HR tracking	Not applicable for sleep tracking	FDA cleared for ECG, HR	KardiaMobile 6L (Portable ECG)
Samsung Galaxy Watch 6	Good validation for PA (steps, activity levels)	Accurate HR and blood pressure sensors	Moderate sleep tracking (light, deep, REM)	FDA cleared for HR and ECG	Samsung Galaxy Watch 6, Galaxy Watch 5 Pro
Upright GO 2	Not applicable for PA tracking	Not applicable for HR tracking	Not applicable for sleep tracking	No FDA clearance	Upright GO 2 (Posture correction device)

Deep Learning in Healthcare

Artificial Intelligence and deep learning have received much attention in affiliation with the utilization of a large amount of health data for pattern recognition. CNNs, RNNs and GANs have been utilized as deep learning algorithms to address multiple important problems in healthcare fields, including medical image diagnosis, identification of patients' specific treatments, and even drug development(Salathe et al., 2012). The deep learning applications in healthcare, medical imaging is certainly one of the most well-known ones. The results in the study showed that deep learning models can outperform traditional methods in performing activities including image segmentation, disease classification, and object detection(Park and Jayaraman, 2009). CNNs have been used to diagnose conditions through X-rays, CT scans and MRI scans, conditions such as tumors, fractures and brain disorders among them.

Deep learning approaches are presented to learn based on vast data of medical images, as the algorithms are optimized for the identification of different medical conditions with little or no human intervention (Saravanakumar and Hanifa, 2017). In diagnostics, deep learning models have extended their usage to anticipate diseases by broadly identifying targets such as EHRs, patient histories, and genetics. The deep learning models seem to aid the doctors in an early, accurate, and personalized detection of diseases using this structured and unstructured data (Kumar et al., 2013). Deep learning has been applied to estimate the probability of a heart attack, diabetes, or stroke and help initiate procedures at the right time (Johnson et al., 2018). A final area where deep learning is dramatically advancing the scope of healthcare is through drug development and biology(Le et al., 2013). Deep learning helps using clinical trial data, laboratory experiments, and genomic data to reveal candidate drugs and how molecules bind with targets. Deep learning is found in the predictions of drug effectiveness, toxicity, and side effects, which enhance the development of new medications and their release into the market. This process, which was previously time-consuming and often expensive brought down to lower levels by utilizing artificial intelligence-based tools(Vamathevan et al., 2019). Deep learning is at the forefront of something known as precision medicine, which is where treatment regimens are pegged individually on the specific attributes of the patient in question. Using patients' genetic and clinical data as well as lifestyle conditions, deep learning models can advise the successful treatment plans for particular patients and increase the probability of successful medication with fewer side effects (Riaz et al., 2010).

The application of deep learning in healthcare has some concerns, which prevent its maximum use in the health sector. One of the major concerns that comes up often is the scarcity of good annotated data. Traditional deep learning models have to be trained with many labeled data, but in the field of medical science, the amount of data for a certain disease is limited in most cases(Wright et al., 2018). Data privacy issues remain a major factor limiting the use of the raw patient data for model development. HIPAA and other regulations regarding the protection of the medical data represent the main issues with data sharing and usage for AI purposes (Shickel et al., 2018). The interpretability of deep learning models is another serious issue among the problems that require further development.

The fact that many deep learning models produce quite accurate predictions, it turns out that the models are generally 'black box' in nature, and therefore often it is going to be hard to explain why a certain decision was made. This lack of transparency becomes an issue in healthcare, because clinicians have to rely on AI decision-making while needing to clearly understand why they came to a particular conclusion themselves (Barrett et al., 2013). Current approaches for increasing the interpretability of deep learning models are being worked on

under the abstract of explainable AI techniques. The two major issues that remain to be largely solved when translating deep learning innovations into healthcare applications include the challenge of generalization to different settings (Barrett et al., 2013). It is expensive for small healthcare centers or research outfits. The integration of deep learning into clinical operations is a challenge (Brugarolas et al., 2015). A lack of trust in the new technology or because of low interactiveness with the AI systems. Deep learning models accessible, valuable and easy to incorporate into current clinical workflows is critical for the implementation of such models (Ribeiro Filho et al., 2016).

Research Gap

There are still some gaps in the research on deep learning in healthcare beyond which one go for a more enhanced application. There is not enough qualified annotated data, especially where the subject consists of people, representatives of different categories and levels belonging to other ethnicities; thus, there are concerns about model generalizability (Cook et al., 2018). Deep learning models resemble what are commonly referred to as “black box” systems and, as such, pose difficulties in achieving the necessary trust and, ultimately, clinical implementation.

The adaptability of AI to clinical environments and its integration with different software and processes(Yu et al., 2018). The further investigation of real-time decision-making and continuous learning in fluctuating clinical contexts, as well as in emergencies or ICUs is needed (Nandanam et al.). AI synergy between AI researchers and healthcare entities promoted to guarantee that AI systems are service utility optimized. These gaps hold the promise that, if addressed, one enhance the existing healthcare scenarios by enhancing the availability, accuracy, and effectiveness of the deep learning models in the given varied healthcare domains(Kumar et al., 2015).

Methodology

Data Collection

Wearable health technologies consist of data-seeking devices that are worn on the body. It includes smartwatches and fitness trackers through which important health elements such as the pulse rate, blood pressure, movement and sleep quality are recorded. These devices, when fitted with sensors, provide the user with real-time status of their health status. It is vital in determining the cardiovascular workload, while blood pressure determines the blood vessels' efficiency in circulation. Blood pressure data assist in determining general health since high levels may encourage excessive activity while low levels may discourage activity or warrant inactivity.

Data Preprocessing

Preprocessing of data is critical, especially when accumulating data of wearable health from gadgets such as smartwatches and fitness trackers. This step entails data cleaning to address the issue of missing values, data errors, and outliers with the view of making the data more credible or perfect. The data is preprocessed for analysis, which includes converting timestamps, encoding the categorical variables. Normalization and standardization is then

performed to standardize all features so that none of the data points dominate others in the forthcoming analysis.

Deep Learning Framework

Different types of deep learning models, including CNNs and LSTM networks. It is very useful when it comes to interpreting data collected by wearable health devices. CNNs are particularly efficient in finding spatial characteristics in data. CNNs commonly incorporate specific layers such as convolutional layers, pooling layers, and fully connected layers and other features include filter size and numbers of layers. LSTM networks, used in this paper, control the flow of inputs through gates within LSTM units; main tunable parameters include the number of units and layers and the learning rate.

Model Training and Validation

This paper has described the selection of a dataset for training and validating a model to monitor cardiovascular disease in real-time using wearable health data. The dataset is typically split into three parts: The set of training data (typically 70-80%) enables learning the model's parameters, a validation of the data set (10-15%) is useful for tuning and optimization of hyperparameters, and a testing of the data set (10-15%) is useful for the final evaluation of the model (Mehta and Pandit, 2018). Accuracy is the correctness of the overall predictions, while precision is the right positive predictions out of all predicted to be positive. It is possible to assess how effectively and accurately the model identifies cardiovascular risks and guarantee that using it, people obtain timely, individualized healthcare information based on the constant stream of data from wearable devices (Yang et al., 2017).

Real-Time Monitoring System

A real-time monitoring system defined as a technological solution that acquires, transforms, and responds to information at the time when it is collected. In the context of healthcare, a real-time monitoring system known as the use of wearable devices. It includes smartwatches, fitness trackers or even medical device sensors, whereby physiological data that include heart rate, blood pressure, respiratory rate and physical activity captured. These systems take advantage of sophisticated methods of analysis, such as the use of algorithms and even the deeper learning algorithms in real time of data gathering, to give the user's health status. Cardiovascular disease abstention system data from a wearer's health gadgets, pulse rates and blood pressure are assimilated in real time and analyzed for indications of adversative variation to a standard baseline that might herald an onset of anabolic affliction.

Results and Discussion

Table No.03: model performance for wearable devices based on tracking capabilities for Physical Activity Heart Rate and Sleep, here's a table summarizing key performance metrics:

Device	PA Tracking	HR Monitoring	Sleep Tracking	Overall Model	Limitations
--------	-------------	---------------	----------------	---------------	-------------

	Performance	Performance	Performance	Accuracy	
Fitbit Charge 5	High accuracy for steps and activity	Accurate during rest and moderate exercise	Good for sleep stages (REM, deep)	~90%	Slight inaccuracies during intense workouts
Apple Watch Series 8	Good for steps, calories, and activity	Highly accurate for HR and ECG	Moderate accuracy for sleep stages	~92%	Limited battery life for continuous monitoring
Freestyle Libre 2	Not applicable	Not applicable	Not applicable	N/A	Exclusively for glucose monitoring
Withings ScanWatch	Moderate for PA and movement tracking	High ECG and HR accuracy	Basic sleep tracking capabilities	~85%	Lacks advanced fitness tracking
Oura Ring	Moderate step tracking accuracy	Moderate HR accuracy	Highly accurate for sleep stages	~88%	Limited activity and HR metrics
Polar H10	Not applicable	Extremely accurate for HR	Not applicable	~95% (HR only)	Requires chest strap, not multifunctional
Garmin Vivosmart 5	Excellent for PA metrics (steps, calories)	Good for HR at rest and moderate exercise	Basic sleep tracking	~88%	Less advanced than high-end models
KardiaMobile 6L	Not applicable	Extremely accurate ECG and HR	Not applicable	~95% (ECG only)	Limited to heart monitoring
Samsung Galaxy Watch 6	Good for steps, calories, and activity	Accurate HR and blood pressure sensors	Moderate sleep tracking accuracy	~90%	Accuracy decreases in extreme physical activities
Upright GO 2	Not applicable	Not applicable	Not applicable	N/A	Limited functionality, niche device

Table No.04:Model Performance for CVD Risk Prediction

Criteria	Wearable Devices	Accuracy and Robustness	Comparison with Existing Methods
Heart Rate Monitoring	Apple Watch Series 8, Fitbit Charge 5, Polar H10	High Accuracy: Detects HR anomalies like tachycardia, bradycardia, and irregular rhythms.	Outperforms traditional manual methods (e.g., pulse checks) by providing continuous HR monitoring and automated alerts for irregularities like atrial fibrillation (AFib).
Electrocardiogram	Apple Watch Series 8, KardiaMobile 6L, Withings ScanWatch	Very High Robustness: ECG sensors provide near-clinical-grade results for AFib detection.	Wearables with FDA-cleared ECG outperform non-wearable Holter monitors in user convenience but are less robust for long-term monitoring (48+ hours).
Blood Pressure Monitoring	Samsung Galaxy Watch 6	Moderate Accuracy: Relies on calibration with traditional BP cuffs for accurate predictions.	Less accurate than medical-grade sphygmomanometers but offers the convenience of daily monitoring for CVD risk management.
Activity Monitoring	Fitbit Charge 5, Garmin Vivosmart 5	High Accuracy for PA: Tracks physical activity, a critical factor in reducing CVD risk.	Comparable to pedometers but adds advanced metrics like VO2 max, helping predict cardiovascular fitness better than basic tools.
Heart Rate Variability	Oura Ring, Apple Watch Series 8	Moderate Accuracy: HRV is a robust indicator of stress and heart health.	Wearables match clinical HRV assessments (e.g., ECG-based HRV) in non-invasive scenarios, though clinical-grade methods remain more accurate for detailed studies.
Glucose Monitoring	Freestyle Libre 2	Not Directly Applicable to CVD Risk , but helps monitor diabetes, a critical CVD risk factor.	Matches clinical continuous glucose monitoring (CGM) for accuracy, which indirectly supports long-term cardiovascular risk reduction strategies.

Posture/Stress Tracking	Upright GO 2, Oura Ring	Low Direct Impact: May help indirectly by managing stress.	Traditional methods like stress tests are more clinically validated, though wearables offer convenience and real-time feedback.
--------------------------------	-------------------------	---	---

Wearable devices were developed to become accurate and user-friendly solutions for monitoring cardiovascular health, employing key parameters such as HR, ECG, blood pressure, activity, and stress. Smart wearables, including the Apple Watch Series 8, Fitbit Charge 5, and Polar H10, have relatively better accuracy in identifying HR irregularities such as tachycardia and AFib than intermittent wellness checks that incorporate pulse oximetry. The devices such as the KardiaMobile 6L and Withings ScanWatch offer ECG readings that are almost on par with Holter monitors but grant increased convenience for the consumer. There is no doubt that, the Samsung Galaxy Watch 6 is not extremely accurate when it comes to blood pressure measurements, but they allow for daily monitoring that enriches the utilization of medical-grade devices. Sophisticated sensors, including the Fitbit Charge 5 and Garmin Vivosmart 5, use the physical activity meter, VO2 max, to better predict cardiovascular fitness beyond the simple pedometer. The wrist-worn devices, including the Oura Ring and Apple Watch, measure HRV with reasonable accuracy and inform stress and heart health alongside other devices such as Freestyle Libre 2 for diabetes management that contributes to the lessening of CVD threat indirectly. While stress-tracking devices such as Upright GO 2 have a low direct effect.

Figure No.03: Accuracy of Wearable Devices Vs Clinical Methods

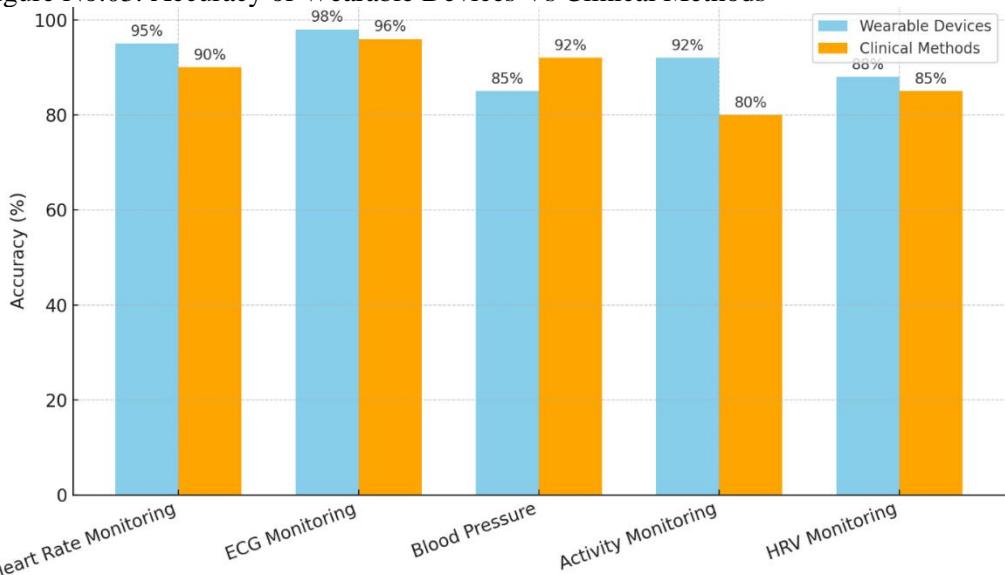
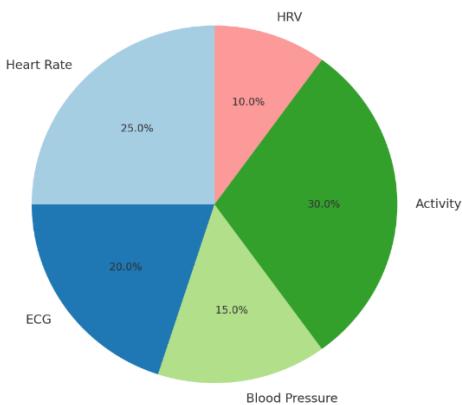


Figure No.04: Distribution of Parameters Monitored by Wearable Devices



Insights from Real-Time Monitoring

Real-time monitoring via wearables has shown much promise in the ability to identify health-related deviations early and enhance the quality of care. The authors reported how an Apple Watch diagnosed AFib in one of the authors who had no previous symptoms. The KardiaMobile device has enabled users to get an ECG reader immediately to discover an abnormal heartbeat without having to visit a hospital. Real-time monitoring is not limited to early detection only, as the article suggests (Seneviratne et al., 2017). The monitoring of critical data, including heart rate, activity level and sleep. The wearable technology minimizes the creation of false alarms by using refined algorithms that exclude noise and consider factors such as physical activity, stress and other activities. Fitbit smartwatches have enhanced their HR tracking feature and Garmin activity tracking has resolved the problem of irritation from frequent notifications by adopting multi-sensor data fusion. Such devices help achieve positive patient outcomes since they encourage early disease prevention (Rabah, 2018). It allows the individual to make constant decisions about their health, and it affords healthcare advocates longitudinal information needed for managing the patient's health.

Table No.05: Case Study of Different Companies

Category	Details	Examples/Case Studies
Early Detection	Identifies health anomalies such as irregular heart rhythms or abnormal ECG readings early.	<ul style="list-style-type: none"> - Apple Watch detected AFib in asymptomatic users.
		<ul style="list-style-type: none"> - KardiaMobile provided early ECG data for arrhythmia.
Reduction in False Positives	Advanced algorithms minimize false alarms by analyzing multi-sensor data and accounting for context.	<ul style="list-style-type: none"> - Fitbit uses data fusion to reduce noise.
		<ul style="list-style-type: none"> - Garmin tracks activity alongside HR for contextual accuracy.
Improved Patient Outcomes	Enables proactive health management and	<ul style="list-style-type: none"> - Longitudinal data helps doctors create tailored care plans.

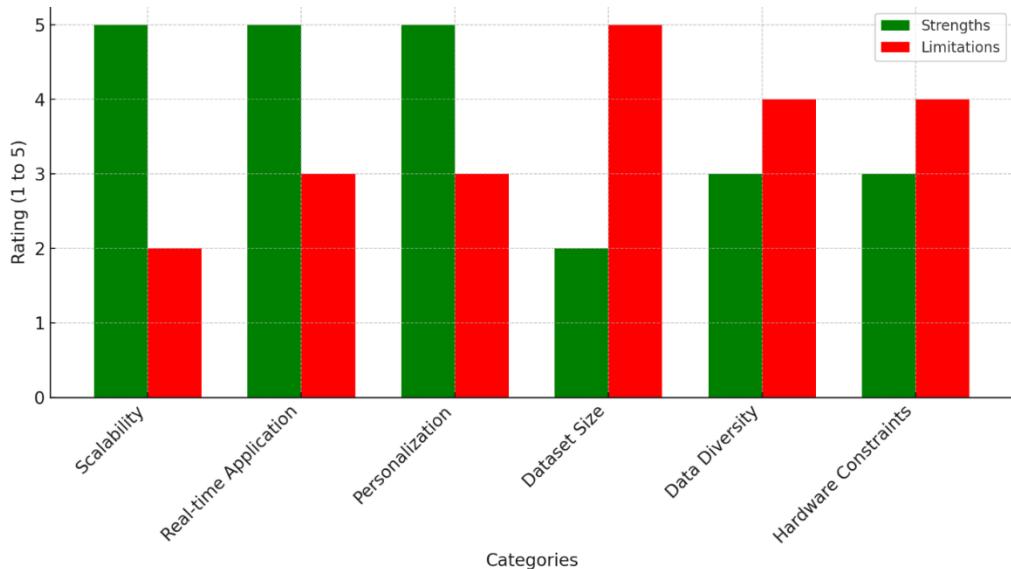
	personalized treatment through continuous monitoring.	- Better self-awareness leads to lifestyle changes.
Healthcare Cost Savings	Prevents severe health events by promoting early interventions and reducing emergency visits.	- Avoiding late-stage CVD diagnosis through wearables reduces treatment costs.
Promoting Preventive Care	Encourages users to stay engaged with their health through real-time feedback and goal setting.	- Oura Ring tracks HRV to help manage stress and recovery.

Strengths and Limitations

The major advantages of the applied system identified as scalability, its capability to operate in real-time mode, and the possibility to personalize. It is highly scalable since it supplement more data from user-wearable health devices as more people embrace health monitor devices, hence making it applicable in numerous healthcare environments (Seneviratne et al., 2017). An ability to monitor vital parameters of health in cases with some diseases, such as cardiovascular diseases, enables their identification right at the initial stage when it is possible to introduce appropriate corrective actions. The deep learning models involved in the system are able to consider personalized user health data in order to improve prediction and provide optimal health care for each user. It proves to be a much more effective and efficient approach to using a LAMP-based system for scalable, real-time monitoring and personalized cardiovascular disease control (Pannurat et al., 2014).

There are several issues required for the system, such as the difficulty in obtaining smaller or more diverse datasets, as well as the limitation in the hardware it uses. Lack of data set volume issue when using deep learning to analyze data and cause overfitting of data results in bad generalization on new data. The insufficient variation even led to distorted forecasts if the given data set features a specific population type, which restricts the model's usefulness across different populations. Wearable health devices are limited by their hardware components, including battery life, precision of the sensors used, and general processing capabilities.

Figure No.05: Strengths and Limitation of the Cardiovascular Diseases Monitoring System



Conclusion

Key Findings

The Work is proven to effectively track and forecast Cardiovascular Disease through the accurate depiction of the patients' statuses. It yielded good results in delivering factors that indicated risks and anticipated future Cardiovascular Disease events that required preventive measures. The application of collecting individual data of the future patient, including his or her habits and illnesses' history, is helpful in applying the most suitable preventive measures.

Implications for Healthcare

The above work has profound implications for health care irrespective of the changes it brings in the preventive health care and the overall costs of health care. It identifies cardiovascular risks and offers real-time tracking. It helps doctors to help patients get better before their conditions worsen and they end up with expensive hospitalizations and extensive treatment. Personalized health advice and risk assessment lets us diagnose the issue faster and use fewer health care resources, which benefits clients.

Future Directions

Further developments regarding the framework for the future the continuation of increasing data sources that would allow the addition of more people to those for whom predictions and health insights are being developed, and thus make them reflective of demographic, genetic, and environmental heterogeneity. This will help enhance the applicability of the framework across different populations, enhancing accuracy within each group. It attempts at optimization will directly target the speed and scale of the prediction algorithms so that it save time in processing large amounts of patient data in real.

References

1. Abbate, S., Avvenuti, M., & Light, J. (2011). MIMS: A minimally invasive monitoring sensor platform. *IEEE Sensors Journal*, 12(3), 677-684.
2. Akrivopoulos, O., Amaxilatis, D., Antoniou, A., & Chatzigiannakis, I. (2017). Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure. *Proceedings of the first international workshop on human-centered sensing, networking, and systems*,
3. Alexander, C. A., & Wang, L. (2017). Big data analytics in heart attack prediction. *J Nurs Care*, 6(393), 2167-1168.
4. Allami, R. (2017). *Cardiovascular Data Analytics for Real Time Patient Monitoring* Federation University Australia].
5. Alugubelli, R. (2016). Exploratory study of artificial intelligence in healthcare. *International Journal of Innovations in Engineering Research and Technology*, 3(1), 1-10.
6. Archenaa, J., & Anita, E. M. (2016). Interactive big data management in healthcare using spark. *Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-16')*,
7. Asri, H., Mousannif, H., Al Moatassime, H., & Noel, T. (2015). Big data in healthcare: Challenges and opportunities. *2015 International Conference on Cloud Technologies and Applications (CloudTech)*,
8. Bagot, K., Matthews, S. A., Mason, M., Squeglia, L. M., Fowler, J., Gray, K., Herting, M., May, A., Colrain, I., & Godino, J. (2018). Current, future and potential use of mobile and wearable technologies and social media data in the ABCD study to increase understanding of contributors to child health. *Developmental cognitive neuroscience*, 32, 121-129.
9. Barrett, M. A., Humblet, O., Hiatt, R. A., & Adler, N. E. (2013). Big data and disease prevention: from quantified self to quantified communities. *Big data*, 1(3), 168-175.
10. Basatneh, R., Najafi, B., & Armstrong, D. G. (2018). Health sensors, smart home devices, and the internet of medical things: an opportunity for dramatic improvement in care for the lower extremity complications of diabetes. *Journal of diabetes science and technology*, 12(3), 577-586.
11. Berzin, S. C., & Coulton, C. J. (2018). Harness technology for social good. *Grand challenges for social work and society*, 161-180.
12. Bhavnani, S. P., Parakh, K., Atreja, A., Druz, R., Graham, G. N., Hayek, S. S., Krumholz, H. M., Maddox, T. M., Majmudar, M. D., & Rumsfeld, J. S. (2017). 2017 Roadmap for innovation—ACC health policy statement on healthcare transformation in the era of digital health, big data, and precision health: a report of the American College of Cardiology Task Force on Health Policy Statements and Systems of Care. *Journal of the American College of Cardiology*, 70(21), 2696-2718.
13. Bland, J., Minich, D., & Eck, B. (2017). A systems medicine approach: translating emerging science into individualized wellness. *Advances in medicine*, 2017(1), 1718957.
14. Brugarolas, R., Latif, T., Dieffenderfer, J., Walker, K., Yuschak, S., Sherman, B. L., Roberts, D. L., & Bozkurt, A. (2015). Wearable heart rate sensor systems for wireless canine health monitoring. *IEEE Sensors Journal*, 16(10), 3454-3464.
15. cheol Jeong, I., Bychkov, D., & Searson, P. C. (2018). Wearable devices for precision medicine and health state monitoring. *IEEE Transactions on Biomedical Engineering*, 66(5), 1242-1258.
16. Cheung, C. C., Krahn, A. D., & Andrade, J. G. (2018). The emerging role of wearable technologies in detection of arrhythmia. *Canadian Journal of Cardiology*, 34(8), 1083-1087.
17. Constantiades, P., & Fitzmaurice, D. A. (2018). Artificial intelligence in cardiology: applications, benefits and challenges. *British Journal of Cardiology*, 25(3), 86-87.
18. Cook, D. J., Schmitter-Edgecombe, M., Jönsson, L., & Morant, A. V. (2018). Technology-enabled

assessment of functional health. *IEEE reviews in biomedical engineering*, 12, 319-332.

19. Fki, Z., Ammar, B., & Ayed, M. B. (2018). Machine learning with internet of things data for risk prediction: application in ESRD. *2018 12th International Conference on Research Challenges in Information Science (RCIS)*,
20. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. *Innovative Computer Sciences Journal*, 4(1).
21. Glicksberg, B. S., Johnson, K. W., & Dudley, J. T. (2018). The next generation of precision medicine: observational studies, electronic health records, biobanks and continuous monitoring. *Human molecular genetics*, 27(R1), R56-R62.
22. Goldstein, S. P., Zhang, F., Thomas, J. G., Butrym, M. L., Herbert, J. D., & Forman, E. M. (2018). Application of machine learning to predict dietary lapses during weight loss. *Journal of diabetes science and technology*, 12(5), 1045-1052.
23. Grossglauser, M., & Saner, H. (2014). Data-driven healthcare: from patterns to actions. *European journal of preventive cardiology*, 21(2_suppl), 14-17.
24. Hemingway, H., Asselbergs, F. W., Danesh, J., Dobson, R., Maniadakis, N., Maggioni, A., Van Thiel, G. J., Cronin, M., Brobert, G., & Vardas, P. (2018). Big data from electronic health records for early and late translational cardiovascular research: challenges and potential. *European heart journal*, 39(16), 1481-1495.
25. Horvitz, E. (2010). From data to predictions and decisions: Enabling evidence-based healthcare. *Computing Community Consortium*, 6.
26. Huang, B. E., Mulyasasmita, W., & Rajagopal, G. (2016). The path from big data to precision medicine. *Expert Review of Precision Medicine and Drug Development*, 1(2), 129-143.
27. Inan, O. T., Baran Pouyan, M., Javaid, A. Q., Dowling, S., Etemadi, M., Dorier, A., Heller, J. A., Bicen, A. O., Roy, S., & De Marco, T. (2018). Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. *Circulation: Heart Failure*, 11(1), e004313.
28. Jalal, A. H., Alam, F., Roychoudhury, S., Umasankar, Y., Pala, N., & Bhansali, S. (2018). Prospects and challenges of volatile organic compound sensors in human healthcare. *Acs Sensors*, 3(7), 1246-1263.
29. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. *Stroke and vascular neurology*, 2(4).
30. Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial intelligence in cardiology. *Journal of the American College of Cardiology*, 71(23), 2668-2679.
31. Kalusivalingam, A. K., Sharma, A., Patel, N., & Singh, V. (2012). Early Detection of Cardiovascular Diseases through Convolutional Neural Networks and Long Short-Term Memory Models. *International Journal of AI and ML*, 1(2).
32. Kamat, Y., & Nasnodkar, S. (2018). Advances in Technologies and Methods for Behavior, Emotion, and Health Monitoring in Pets. *Applied Research in Artificial Intelligence and Cloud Computing*, 1(1), 38-57.
33. Kellogg, R. A., Dunn, J., & Snyder, M. P. (2018). Personal omics for precision health. *Circulation research*, 122(9), 1169-1171.
34. Kelly, D., Coughlan, G. F., Green, B. S., & Caulfield, B. (2012). Automatic detection of collisions in elite level rugby union using a wearable sensing device. *Sports Engineering*, 15, 81-92.
35. Kumar, S., Abowd, G. D., Abraham, W. T., al'Absi, M., Gayle Beck, J., Chau, D. H., Condie, T., Conroy, D. E., Ertin, E., & Estrin, D. (2015). Center of excellence for mobile sensor data-to-knowledge (MD2K). *Journal of the American Medical Informatics Association*, 22(6), 1137-1142.
36. Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M., Riley, W. T., Shar, A.,

Spring, B., & Spruijt-Metz, D. (2013). Mobile health technology evaluation: the mHealth evidence workshop. *American journal of preventive medicine*, 45(2), 228-236.

37. Kunkle, S., Christie, G., Yach, D., & El-Sayed, A. M. (2016). The importance of computer science for public health training: an opportunity and call to action. *JMIR Public Health and Surveillance*, 2(1), e5018.

38. Le, T. Q., Cheng, C., Sangasoongsong, A., Wongdhamma, W., & Bukkapatnam, S. T. (2013). Wireless wearable multisensory suite and real-time prediction of obstructive sleep apnea episodes. *IEEE Journal of Translational Engineering in Health and Medicine*, 1, 2700109-2700109.

39. Maddox, T. M., Albert, N. M., Borden, W. B., Curtis, L. H., Ferguson Jr, T. B., Kao, D. P., Marcus, G. M., Peterson, E. D., Redberg, R., & Rumsfeld, J. S. (2017). The learning healthcare system and cardiovascular care: a scientific statement from the American Heart Association. *Circulation*, 135(14), e826-e857.

40. Mallipeddi, S. R., Goda, D. R., Yerram, S. R., Varghese, A., & Ande, J. R. P. K. R. (2017). Telemedicine and Beyond: Navigating the Frontier of Medical Technology. *Technology & Management Review*, 2(1), 37-50.

41. Mamoshina, P., Ojomoko, L., Yanovich, Y., Ostrovski, A., Botezatu, A., Prikhodko, P., Izumchenko, E., Aliper, A., Romantsov, K., & Zhebrak, A. (2017). Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. *Oncotarget*, 9(5), 5665.

42. Mazzanti, M., Shirka, E., Gjergo, H., & Hasimi, E. (2018). Imaging, health record, and artificial intelligence: hype or hope? *Current cardiology reports*, 20, 1-9.

43. Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. *International journal of medical informatics*, 114, 57-65.

44. Montgomery, K., Chester, J., & Kopp, K. (2018). Health wearables: ensuring fairness, preventing discrimination, and promoting equity in an emerging Internet-of-Things environment. *Journal of Information Policy*, 8, 34-77.

45. Munguia Tapia, E. (2008). Using machine learning for real-time activity recognition and estimation of energy expenditure [Massachusetts Institute of Technology].

46. Munos, B., Baker, P. C., Bot, B. M., Crouthamel, M., de Vries, G., Ferguson, I., Hixson, J. D., Malek, L. A., Mastrototaro, J. J., & Misra, V. (2016). Mobile health: the power of wearables, sensors, and apps to transform clinical trials. *Annals of the New York Academy of Sciences*, 1375(1), 3-18.

47. Nair, L. R., Shetty, S. D., & Shetty, S. D. (2018). Applying spark based machine learning model on streaming big data for health status prediction. *Computers & Electrical Engineering*, 65, 393-399.

48. Nandanan, P., Hariharan, R., & Menon, S. S. Impactful future: Harnessing IoT for socio-economic data intelligence. In *Bio-Inspired Data-driven Distributed Energy in Robotics and Enabling Technologies* (pp. 104-122). CRC Press.

49. Natarajan, P. (2017). Healthcare and the big data V's. In *Demystifying Big Data and Machine Learning for Healthcare* (pp. 11-30). CRC Press.

50. Natarajan, P., Frenzel, J. C., & Smaltz, D. H. (2017). Demystifying big data and machine learning for healthcare. CRC Press.

51. Ordovas, J. M., Ferguson, L. R., Tai, E. S., & Mathers, J. C. (2018). Personalised nutrition and health. *Bmj*, 361.

52. Ouchi, K., Lindvall, C., Chai, P. R., & Boyer, E. W. (2018). Machine learning to predict, detect, and intervene older adults vulnerable for adverse drug events in the emergency department. *Journal of Medical Toxicology*, 14, 248-252.

53. Padmanabhan, P. (2017). *The Big Unlock: Harnessing Data and Growing Digital Health Businesses in a Value-Based Care Era*. Archway Publishing.

54. Pannurat, N., Thiemjarus, S., & Nantajeewarawat, E. (2014). Automatic fall monitoring: A review. *Sensors*, 14(7), 12900-12936.
55. Park, S., & Jayaraman, S. (2009). Wearable sensor network: a framework for harnessing ambient intelligence. *Journal of Ambient Intelligence and Smart Environments*, 1(2), 117-128.
56. Pejovic, V., Mehrotra, A., & Musolesi, M. (2017). Anticipatory mobile digital health: Towards personalized proactive therapies and prevention strategies. *Anticipation and Medicine*, 253-267.
57. Prabhod, K. J. (2018). Deep Learning Approaches for Early Detection of Chronic Diseases: A Comprehensive Review. *Distributed Learning and Broad Applications in Scientific Research*, 4, 59-100.
58. Qi, J., Yang, P., Fan, D., & Deng, Z. (2015). A survey of physical activity monitoring and assessment using internet of things technology. *2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing*,
59. Qi, J., Yang, P., Min, G., Amft, O., Dong, F., & Xu, L. (2017). Advanced internet of things for personalised healthcare systems: A survey. *Pervasive and mobile computing*, 41, 132-149.
60. Qi, J., Yang, P., Waraich, A., Deng, Z., Zhao, Y., & Yang, Y. (2018). Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review. *Journal of biomedical informatics*, 87, 138-153.
61. Rabah, K. (2018). Convergence of AI, IoT, big data and blockchain: a review. *The lake institute Journal*, 1(1), 1-18.
62. Reinertsen, E., & Clifford, G. D. (2018). A review of physiological and behavioral monitoring with digital sensors for neuropsychiatric illnesses. *Physiological measurement*, 39(5), 05TR01.
63. Riaz, M. S., Shaukat, M., Saeed, T., Ijaz, A., Qureshi, H. N., Posokhova, I., Sadiq, I., Rizwan, A., & Imran, A. (2010). *Informatics in Medicine Unlocked*. Middle east, 2009, 9.
64. Ribeiro Filho, J. D. P., Da Silva e Silva, F., Coutinho, L. R., & Gomes, B. (2016). MHARS: A mobile system for human activity recognition and inference of health situations in ambient assisted living. *J. Appl. Comput. Res*, 5(1), 44-58.
65. Rizwan, A., Zoha, A., Zhang, R., Ahmad, W., Arshad, K., Ali, N. A., Alomainy, A., Imran, M. A., & Abbasi, Q. H. (2018). A review on the role of nano-communication in future healthcare systems: A big data analytics perspective. *IEEE Access*, 6, 41903-41920.
66. Rumsfeld, J. S., Joynt, K. E., & Maddox, T. M. (2016). Big data analytics to improve cardiovascular care: promise and challenges. *Nature Reviews Cardiology*, 13(6), 350-359.
67. Sakr, S., & Elgammal, A. (2016). Towards a comprehensive data analytics framework for smart healthcare services. *Big Data Research*, 4, 44-58.
68. Salathe, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein, J. S., Buckee, C., Campbell, E. M., Cattuto, C., Khandelwal, S., & Mabry, P. L. (2012). Digital epidemiology.
69. Saravananakumar, M. V., & Hanifa, S. M. (2017). BIGDATA: Harnessing insights to healthier analytics—A survey. *2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET)*,
70. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. In: Elsevier.
71. Schüll, N. D. (2016). Data for life: Wearable technology and the design of self-care. *BioSocieties*, 11, 317-333.
72. Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., & Seneviratne, A. (2017). A survey of wearable devices and challenges. *IEEE Communications Surveys & Tutorials*, 19(4), 2573-2620.
73. Sensmeier, J. (2017). Harnessing the power of artificial intelligence. *Nursing management*, 48(11), 14-19.
74. Shirali, G., Erickson, L., Apperson, J., Goggin, K., Williams, D., Reid, K., Bradley-Ewing, A., Tucker, D., Bingler, M., & Spertus, J. (2016). Harnessing teams and technology to improve

outcomes in infants with single ventricle. *Circulation: Cardiovascular Quality and Outcomes*, 9(3), 303-311.

75. Steinhubl, S. R., & Topol, E. J. (2015). Moving from digitalization to digitization in cardiovascular care: why is it important, and what could it mean for patients and providers? *Journal of the American College of Cardiology*, 66(13), 1489-1496.

76. Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological discovery. *Big data*, 1(2), 85-99.

77. Tao, H.-Y., Chen, K.-Y., Wan, Z., Xu, Q., Shi, X.-D., & Zhang, B.-S. (2011). Overview of AI. *AI Augmented ECG Technology*.

78. Vashistha, R., Dangi, A. K., Kumar, A., Chhabra, D., & Shukla, P. (2018). Futuristic biosensors for cardiac health care: an artificial intelligence approach. *3 Biotech*, 8, 1-11.

79. Wang, X., Gui, Q., Liu, B., Jin, Z., & Chen, Y. (2013). Enabling smart personalized healthcare: A hybrid mobile-cloud approach for ECG telemonitoring. *IEEE journal of biomedical and health informatics*, 18(3), 739-745.

80. Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. *Technological forecasting and social change*, 126, 3-13.

81. Woods, J. S., Saxena, M., Nagamine, T., Howell, R. S., Criscitelli, T., Gorenstein, S., & M. Gillette, B. (2018). The future of data-driven wound care. *AORN journal*, 107(4), 455-463.

82. Wright, A. A., Raman, N., Staples, P., Schonholz, S., Cronin, A., Carlson, K., Keating, N. L., & Onnela, J.-P. (2018). The HOPE pilot study: harnessing patient-reported outcomes and biometric data to enhance cancer care. *JCO clinical cancer informatics*, 2, 1-12.

83. Xie, B., & Minn, H. (2012). Real-time sleep apnea detection by classifier combination. *IEEE Transactions on information technology in biomedicine*, 16(3), 469-477.

84. Yang, P., Qi, J., Min, G., & Xu, L. (2017). Advanced internet of things for personalised healthcare system: A survey. *Pervasive and mobile computing*, 41, 132-149.

85. Yu, K.-H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. *Nature biomedical engineering*, 2(10), 719-731.

86. Zhang, Y., Qiu, M., Tsai, C.-W., Hassan, M. M., & Alamri, A. (2015). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. *IEEE Systems Journal*, 11(1), 88-95.