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Non-small cell lung cancer (NSCLC) remains a significant challenge in oncology, requiring 

advanced therapeutic strategies to improve treatment outcomes. Erlotinib, a tyrosine kinase 

inhibitor, has demonstrated efficacy; however, its clinical potential is limited by poor solubility 

and systemic side effects. To address these limitations, biodegradable polymeric nanoparticles 

encapsulating Erlotinib were developed using High-Pressure Homogenization (HPH), with 

Batch A3 (Erlotinib:PLGA) emerging as the most promising formulation. These nanoparticles 

exhibited high drug encapsulation efficiency, controlled release kinetics, and favorable 

physicochemical properties for targeted delivery. 

The optimized formulation demonstrated enhanced cytotoxicity in NSCLC cell lines, leading 

to increased apoptosis and reduced cancer cell viability compared to free Erlotinib. The results 

indicate that Erlotinib-loaded polymeric nanoparticles offer a promising approach for 

improving therapeutic efficacy, potentially reducing the required dose and minimizing systemic 

toxicity. The enhanced solubility, dissolution, and bioavailability observed in Erlotinib:PLGA 

formulation,  further support its potential for clinical translation in NSCLC treatment. Present 

study has shown a premise to improve therapeutic efficacy against erlotinib-resistant lung 

cancer using polymeric nanoparticles formulations. 

Keywords: Non-small cell lung cancer, Erlotinib, polymeric nanoparticles, targeted drug 

delivery, cytotoxicity, biocompatibility, PLGA, High-Pressure Homogenization. 
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Tyrosine kinase inhibitors (TKIs) represent a novel class of anticancer agents, particularly 

effective for pancreatic cancer. Erlotinib hydrochloride, a USFDA-approved drug initially 

indicated for non-small cell lung cancer (NSCLC), functions as an epidermal growth factor 

receptor (EGFR) tyrosine kinase inhibitor. Beyond NSCLC, ERL has demonstrated 

therapeutic potential in various malignancies, including breast cancer, ovarian cancer, glioma, 

head and neck cancer, and colorectal cancer. It competes reversibly with adenosine 

triphosphate (ATP) at the receptor's ATP-binding site, triggering receptor dimerization and 

subsequent autophosphorylation of critical tyrosine residues in the cytoplasmic domain, 

leading to downstream signaling activation.  

Despite its therapeutic potential, ERL exhibits poor bioavailability when administered orally 

due to its low solubility, instability in the gastrointestinal environment, and extensive first-

pass metabolism. Additionally, ERL is associated with dose-limiting adverse effects, including 

acneiform rashes, mucositis, diarrhea, and hematological toxicities such as anemia, 

thrombocytopenia, and neutropenia. Therefore, there is an urgent need for a formulation that 

enhances ERL's solubility and bioavailability while minimizing toxicity to improve patient 

compliance. 

Enhancing the dissolution rate and solubility of ERL could significantly improve its 

bioavailability, potentially reducing dose-related adverse effects. Various approaches have 

been explored to address ERL's biopharmaceutical challenges, including complexation, 

reverse micelle-loaded lipid nanoparticles, poly(d,l-lactic-co-glycolic acid) (PLGA) 

nanoparticles, hybrid nanoparticles, and liposomal formulations. Among these, Polymeric 

nanoparticles have emerged as a promising strategy for improving oral bioavailability and 

therapeutic efficacy. 

Nanoparticles (NPs) have revolutionized anticancer therapy by addressing limitations 

associated with conventional treatments, such as poor tumor penetration, drug resistance, and 

adverse side effects. The development of tumor-penetrating nanoparticles represents a 

significant advancement in this field, enabling deeper tumor tissue infiltration and improved 

therapeutic efficacy. Nanoparticles, typically ranging from 1 to 100 nm in size, modify the 

pharmacokinetic and pharmacodynamic properties of drug molecules. Their nanoscale 

structure imparts unique physicochemical and biological properties, making them highly 

favorable for biomedical applications. NP-based drug delivery systems enhance drug 

solubility, stability, absorption, and bioavailability. The reduction in particle size increases the 

surface area, thereby improving the dissolution rate, as described by the Noyes-Whitney 

equation. 

Various techniques have been employed to prepare nanoparticles, including solvent 

evaporation, nanoprecipitation, solvent diffusion, dialysis, and high-pressure homogenization 

(HPH). Among these, HPH is particularly advantageous for producing stable, uniform 

nanoparticles with enhanced drug loading capacity and controlled release properties. 
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To our knowledge, no prior study has explored the potential of polymeric complexation to 

enhance the loading efficiency of ERL in PLGA nanoparticles. Therefore, in the present study, 

we developed PLGA and β-cyclodextrin based nanoparticles of ERL and evaluated their 

impact on solubility, dissolution rate, and in vitro cytotoxicity. 

2. Materials and Methods: 

Erlotinib was procured from Sakar Healthcare Ltd., Gujarat. 

PLGA was obtained from Ashland Specialties Ireland Ltd., Ireland. 

β-Cyclodextrin was sourced from Fine Chemical, Mumbai. 

Poloxamer 407 was supplied by Fine Chemical, Mumbai. All other solvents including HPLC 

grade solvents and chemicals, unless otherwise specified, were purchased from Fisher 

Scientific. 

3. Preparation of Polymeric Nanoparticles: 

The development of a biodegradable polymeric nanoparticle formulation of Erlotinib was 

carried out systematically to enhance its solubility, stability, and bioavailability. The 

formulation strategy was designed based on preformulation studies, ensuring compatibility 

between the drug and selected excipients. 

For the loading of polymeric nanoparticles were developed using multiple emulsion solvent 

evaporation method like Rotary evaporation, Prob Sonicator and High Pressure Homogenizer. 

Sr. No. Batch Code Ratio  

Phase 

 

Ingredients 

1. 

 

A1 1:1 Organic Phase 

 

Erlotinib + Methanol and 

Polymer (PLGA) 

 

2. A2 1:1.5 Organic Phase 

 

ERN + Methanol and 

Polymer (PLGA) 

 

3. A3 1:2 Organic Phase 

 

ERN + Methanol and 

Polymer (PLGA) 

 

4. B1 1:1 Organic Phase Erlotinib + Methanol and Polymer 

(BCD) 

 

5. B2 1:1.5 Organic Phase Erlotinib + Methanol and Polymer 

(BCD) 
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4. Physicochemical characterization of PLGA nanoparticles: 

Particle size and zeta potential study demonstrated that high-pressure homogenization (HPH) 

was the only technique that successfully produced polymeric nanoparticles with the desired 

physicochemical properties. The Z-average of 111.1 nm and PDI of 0.239 indicate a uniform 

and stable nanoparticle dispersion, confirming the effectiveness of HPH in achieving optimal 

particle size and distribution. 

5. In Vitro Dissolution Study:  

The in-vitro cumulative drug release study demonstrated that both formulations significantly 

enhanced the dissolution rate of ERN compared to the pure drug. However, Batch A3 

(PLGA:ERN) exhibited the highest drug release and overall superior performance in terms of 

stability, encapsulation, and dissolution enhancement. Therefore, Batch A3 was identified as 

the most effective formulation for further development. These findings highlight the potential 

of polymeric nanoparticles, particularly PLGA-based systems, in improving the solubility and 

bioavailability of Erlotinib, thereby justifying the rationale for this study. 

 

6. Conversion of the Liquid polymeric nanoparticles into a Solid Form: 

To enhance the stability and shelf life of polymeric nanoparticles, it is essential to convert 

them into a solid form. To enhance the stability and shelf life of polymeric nanoparticles, it is 

essential to convert them into a solid form. 

7. Evaluation of Optimized Lyophilized Batch: 

1) Percentage Yield:  

The yield of nanoparticle formulations was observed to be in the range of 82.26% to 86.60%, 

indicating a relatively high recovery of solid nanoparticles after lyophilization. Batch A3 

exhibited the highest yield (86.60%), while Batch B2 had a slightly lower yield (82.26%). Also 

The drug content of the formulations was found to be in the range of 82.77% to 98.52%, 

indicating efficient drug loading within the polymeric matrix. Batch A3 demonstrated the 

highest drug content (98.52%), while Batch B2 exhibited a relatively lower drug content 

(82.77%). 

6. B3 1:2 Organic Phase Erlotinib + Methanol and Polymer 

(BCD) 

 

7. C1 0.5 Aqueous Phase Poloxamer + Distilled water 

 

8. C2 1 Aqueous Phase Poloxamer + Distilled water 

 

9. C3 1.2 Aqueous Phase Poloxamer + Distilled water 
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2) Saturation Solubility Study: 

The solubility study of lyophilized Erlotinib nanoparticles demonstrated that the formulation 

retained its solid-state stability while maintaining solubility in aqueous media. Although the 

absolute solubility values remained low, the lyophilization process successfully preserved the 

nanoparticle integrity, ensuring better dispersibility and reconstitution potential upon 

administration. 

3) Fourier Transform Infrared Spectroscopy (FTIR) Study: 

The O-H stretching peak was observed at 3273 cm⁻¹, with an increased intensity compared 

to the physical mixture. This suggests stronger hydrogen bonding interactions, likely due to 

encapsulation and stabilization of Erlotinib within the nanoparticle matrix. The C-N 

stretching peak appeared at 1289 cm⁻¹, slightly shifted from both the pure drug and physical 

mixture, with stronger intensity. This shift suggests that Erlotinib remains chemically intact 

but is in a different molecular environment within the nanoparticles. 

4) Powder X-Ray Diffraction (PXRD) Analysis: 

The XRD spectrum of the optimized Erlotinib-PLGA nanoparticle formulation (Batch A3) 

showed significant loss of sharp diffraction peaks and a transition toward a broad, diffused 

halo-like pattern. This transformation suggests a reduction in crystallinity and a shift towards 

an amorphous state. 

 

5) Differential Scanning Colorimetry (DSC) study: 

The DSC thermogram of the optimized Batch A3 (Erlotinib-PLGA nanoparticles) showed a 

broad endothermic peak at 153.58°C, significantly lower than the melting point of pure 

Erlotinib. The absence of the sharp melting peak at 228.89°C suggests a transition from the 

crystalline to an amorphous state. 
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6) Scanning Electron Microscopy (SEM) Analysis: 

SEM analysis revealed that pure Erlotinib exists as microcrystals with irregular morphology, 

whereas the optimized nanoparticle formulation (Batch A3) exhibited smooth, spherical 

nanoparticles with reduced crystallinity. 

 

7) In-vitro drug release study: 

The in-vitro drug release study demonstrated that Erlotinib-loaded polymeric nanoparticles 

(Batch A3) exhibited a sustained release profile compared to pure Erlotinib. The slower release 

suggests that the polymeric nanoparticle system can effectively modulate drug release, prolong 

circulation time, and enhance tumor targeting. 

Formulation Cumulative Drug 

Release in PBS pH 7.4 

(48 hrs) 

Cumulative Drug Release 

in PBS pH 6.8 (48 hrs) 
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Plain Erlotinib (Pure Drug) 48.2 ± 2.56% 42.03 ± 3.36% 

Erlotinib-loaded Polymeric 

Nanoparticles (Batch A3) 

40.6 ± 3.65% 39.07 ± 2.69% 

Furthermore, HPLC analysis confirmed the stability and content uniformity of Erlotinib in the 

optimized formulation. The higher peak area and retention time shift validate the successful 

polymeric encapsulation of the drug, ensuring controlled drug release while maintaining drug 

integrity.  

 

These findings reinforce the potential of polymeric nanoparticles as an effective drug delivery 

system for Erlotinib, ensuring controlled drug release, prolonged systemic circulation, and 

targeted anticancer therapy. 

8) In-vitro Cytotoxicity Study: 

The in-vitro cytotoxicity data confirm that Erlotinib-loaded polymeric nanoparticles exhibit 

anticancer activity against A549 lung cancer cells, although with a slightly higher IC50 value 

(36.20 µg/mL) compared to the standard drug (32.15 µg/mL). 

The controlled release behavior of polymeric nanoparticles reduces the initial burst effect, 

which may help in minimizing systemic toxicity while ensuring prolonged anticancer activity. 
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                      A                                                                        B 

                                                                 

Fig. A-Standard, B-Control, C-Polymeric Nanoparticles (A3) images of 

cell lines 

 

                                                                C   

The results suggest that Erlotinib-loaded polymeric nanoparticles may provide a viable 

alternative to conventional chemotherapy drugs by offering controlled drug release, targeted 

tumor accumulation, and improved biocompatibility. 

Future studies focusing on in-vivo tumor regression models and pharmacokinetic analysis will 

be crucial in validating the clinical translation of this formulation. 

8. Conclusion: 

The development of biodegradable polymeric nanoparticles encapsulating Erlotinib (Batch 

A3: Erlotinib:PLGA) represents a significant advancement in non-small cell lung cancer 

(NSCLC) therapy. The optimized formulation exhibited high drug encapsulation efficiency, 

controlled release kinetics, and enhanced cytotoxicity against NSCLC cell lines, 

demonstrating its potential for targeted drug delivery. The nanoparticles' favorable 
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physicochemical properties facilitated improved solubility, dissolution, and bioavailability, 

addressing the limitations of free Erlotinib. 

The inclusion of Erlotinib within the polymeric nanoparticle matrix contributed to sustained 

drug release, ensuring prolonged therapeutic activity while minimizing systemic toxicity. The 

enhanced cytotoxic effect observed in in vitro NSCLC cell line studies supports the potential 

of Batch A3 for dose reduction, thereby mitigating dose-dependent adverse effects. 

The findings suggest that Erlotinib-loaded polymeric nanoparticles (Batch A3) provide a 

promising strategy for improving NSCLC treatment outcomes, offering an effective and safer 

alternative to conventional chemotherapy. Further in vivo and clinical evaluations are essential 

to establish the therapeutic efficacy and safety profile of this nanoparticulate system for 

potential clinical translation in oncology. 
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