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The fast growth of the Internet of Things (IoT) has created new challenges for energy
consumption and network performance, especially for mobile loT networks, where high energy
consumption is often induced by frequent task offloading and hub allocation, leading to a
reduction in the network lifespan. This work proposes an energy-efficient and secure task
offloading for mobile 10T networks using machine learning. In particular, it utilizes deep
reinforcement learning (DRL) approaches such as Deep Q-Learning and Double Deep Q-
Learning Networks along with AES encryption for data safety. The process is broken down
into steps, where data and tasks from loT devices are collected and the node is clustered,
different prioritizing levels are allotted based on parameters, including data urgency, size, and
energy reserve, and then a combined value is found through training a DRL network to
determine hub placements and data security routines. The main objective is to efficiently handle
resources with minimum time and effort, in a secure and reliable data processing manner.
Different performance metrics (energy consumption, latency, throughput, and security) are
assessed to validate the efficiency of the proposed method. This method considerably lowers
energy consumption in mobile 10T networks, thus enabling long device lifetime and enhanced
environment sustainability, helping inspired secure and energy-efficient 10T applications,
paving the way for next-generation loT-related wireless communication and secure dynamic
network resource management.

Keywords : Energy-Efficient Routing, Mobile 10T Networks, Deep Reinforcement Learning,
Hub Placement, Data Transmission, Double DQN.

1. INTRODUCTION

The Internet of Things (IoT) has revolutionized enterprises by providing the possibility of
gathering, analyzing, and acting on data in real time/ near real time through a network of
connected devices. In contrast, mobile loT (M-1oT) networks are particularly problematic due
to their energy-efficient design but the inherent vulnerabilities of secure data transmission and
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resource utilization. Tackling these challenges is a must for realizing cost-effective, low-power
and high-performance 0T networks with low-latency capabilities especially for mobile
environments where the resources are really scarce. M-loT devices have unique mobility
profiles, and a dynamically changing topology which necessitate intelligent mechanisms for
optimal hub placement, secure data transmission and task offloading with reduced latency and
energy cost.

Deep Reinforcement Learning (DRL) has recently gained traction as an enticing solution to
these challenges, enabling intelligent decisions in complex and dynamic systems [3]-[5].
Reinforcement learning enabled M-1oT devices can learn how to make optimal decisions based
on the network and nodes behaviours for task allocation, hub placement as well as energy
management that benefits the entire network. The performance of the network would further
be improved if DRL is incorporated in both hub placement and task offloading processes
because devices can now adapt to the changing behavior of real-world networks instead of
relying upon static values [7].

The proposed framework is energy-efficient, secure and incorporates DRL to determine
optimal hub placement and data transmission task offloading in M-10T networks. This
framework enhances the effective usage of network resources by concentrating on smart task
placement and adaptable routing mechanisms in a way that guarantees network security while
minimizing expended power. This novel model overcomes the computational intractability of
M-1oT networks as well as the need for minimization of latency associated with real time
applications, thus providing a scalable and effective low latency communicating component
[8]-[10].

The contributions of this work are as follows:

= Development of a DRL-based framework for optimal hub placement and task
offloading in M-10T networks, enhancing energy efficiency.

= Incorporation of secure communication protocols into the DRL framework to ensure
integrity and confidentiality during transmission.

» Simulation and evaluation of the framework’s performance in various network
scenarios, highlighting its potential in reducing energy consumption and improving
task allocation accuracy.

The rest of the paper is organized as follows: Section Il provides a detailed literature review,
Section 1Il describes the proposed DRL-based framework, and Section IV presents the
experimental setup and results. Finally, Section V concludes with future research directions.
This introduction establishes the paper's research context, highlights the novelty of the
proposed DRL-based framework, and outlines its potential impact on energy-efficient and
secure M-1oT network management.

2. RELATED WORKS

The rapid proliferation of the Internet of Things (IoT) has transformed various sectors by
enabling seamless connectivity and communication among a myriad of devices. Among these
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advancements, mobile loT networks have emerged as a pivotal component, facilitating real-
time data collection and transmission across diverse applications, such as smart cities,
healthcare monitoring, and environmental surveillance. However, the successful deployment
of mobile IoT networks faces significant challenges, primarily concerning energy efficiency.
As most [oT devices operate on battery power, optimizing energy consumption during data
transmission and communication is crucial for prolonging device lifespans and ensuring
reliable network performance.

Rao, M. et al. (2024): This study presents a deep adaptive reinforcement learning model
designed for optimal resource-based data communication in LPWANS, utilizing the Remora
with the Lotus Effect Optimization Algorithm. It focuses on enhancing the efficiency of data
transmission methods through sophisticated Al strategies [1].

Gupta, D. et al. (2024): Concentrating on underwater 10T, this research suggests a combined
Q-learning and predictive learning methodology aimed at optimizing energy-efficient routing.
It investigates innovative techniques to improve communication dependability and conserve
energy in complex underwater settings [2].

Chilamkurthy, N. S. et al. (2024): This paper introduces a new reinforcement learning
framework, SWC, intended to enhance routing protocols within LPWAN:Ss. It highlights the use
of machine learning for better performance and scalability in low-power wide-area networks

[3].

Chowdhuri, R. et al. (2023): By employing hybrid deep reinforcement learning, this research
addresses node position estimation and the detection of coverage gaps in wireless sensor
networks [4]. It offers strategies to improve network coverage and reliability through advanced
clustering methodologies [4].

Jamshed, M. A. et al. (2023): This paper explores reinforcement learning-based allocation of
fog nodes in cloud-based smart grids. It investigates methods to optimize resource allocation
and enhance the performance of distributed computing systems [5].

Dubey, G. P. et al. (2023): Addressing 5G loT networks, this study proposes an ant colony
optimization algorithm integrated with reinforcement learning for optimal path selection [6]. It
aims to improve data transmission efficiency and network reliability in dynamic loT
environments [6].

Muthanna, M. S. A. et al. (2022): Focused on LoRa loT networks, this study employs deep
reinforcement learning for transmission policy enforcement and multi-hop routing [7]. It
addresses quality-of-service considerations to optimize network performance and reliability [7].

Mahmood, M. R. et al. (2022): This comprehensive review discusses Al/ML algorithms
empowering loT towards the 6G era. It surveys various approaches and their potential
applications in advancing loT technologies and networks [8].

Lu, Y. et al. (2022): Introducing RLBR, a reinforcement learning-based V2V routing
framework for 5G loT, this paper aims to offload cellular networks by optimizing vehicle-to-
vehicle communication, enhancing network efficiency and reliability [9].
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Keerthika, A. et al. (2022): This research proposes a reinforcement-learning-based energy-
efficient routing protocol for wireless sensor networks [10]. It explores optimization strategies
to reduce energy consumption and improve network longevity [10].

Ho, T. M. et al. (2022): Converging game theory with reinforcement learning, this paper
addresses industrial 10T by optimizing decision-making processes [11]. It explores strategies to
enhance network management and resource allocation efficiency [11].

Nath, S. B. et al. (2022): Focusing on microservices deployment in fog devices, this study
applies reinforcement learning to optimize containerized deployments [12]. It aims to improve
service availability and resource utilization in fog computing environments [12].

Jamal, E. et al. (2022): This paper discusses reinforcement learning for dynamic spectrum
allocation in cognitive radio-based IoT networks [13]. It explores methods to optimize spectrum
usage and improve network efficiency [13].

Arya, G. et al. (2022): Analyzing deep learning-based routing protocols for 5G WSN
communication, this research evaluates methods to enhance data transmission efficiency and
reliability in next-generation wireless sensor networks [14].

Xu, T. et al. (2022): Introducing an improved communication resource allocation strategy
based on deep reinforcement learning, this paper focuses on optimizing network resource usage
to improve overall system performance [15].

Mahmood, M. R. et al. (2022): This comprehensive review discusses Al/ML algorithms
empowering loT towards the 6G era. It surveys various approaches and their potential
applications in advancing 10T technologies and networks [16].

Natarajan, Y. et al. (2022): Addressing reconfigurable engineering applications, this study
proposes an 10T and machine learning-based routing protocol [17]. It aims to optimize network
configuration and enhance application-specific performance [17].

Abdul, A. et al. (2021): Introducing a clustering-based routing protocol for 5G-based smart
healthcare, this research integrates game theory and reinforcement learning to optimize network
performance and reliability in healthcare applications [18].

Ge, Y. etal. (2021): This study explores cooperative reinforcement learning in clustered solar-
powered wireless sensor networks to maximize network throughput [19]. It investigates
collaborative strategies to improve network efficiency [19].

Zhang, Z. et al. (2021): This research proposes a computing allocation strategy for loT
resources, with a focus on edge computing [20]. The aim is to optimize resource management
and improve computing efficiency in distributed 10T environments [20].

Mondal, A. et al. (2021): This paper introduces a reinforcement learning-based approach for
UAYV trajectory and user association design in 10T networks [21]. It aims to optimize energy
consumption and enhance network performance in UAV-assisted 10T applications [21].
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Deng, S. et al. (2020): This study tackles edge computing in 10T systems by introducing a
reinforcement learning approach for dynamic resource allocation [22]. It investigates methods
to improve trust and dependability in edge-based 10T networks [22].

Rashtian, H. (2020): This dissertation examines the use of reinforcement learning for data
scheduling within 10T networks to enhance the efficiency and reliability of data transmission
through Al-driven scheduling algorithms [23].

Yin, B. et al. (2020): Concentrating on the management of 10T data, this research presents a
scheduling method focused on applications that leverage deep reinforcement learning [24]. Its
objective is to optimize data age management and boost the efficiency of 10T systems [24].

Table 1: Comparative Analysis Table for Recent Development in this Domain
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f. Area of Used Research
Research | Objective Methodology/Te | Conclusion Ga
No | Paper chnique P
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[1] Transmiss transmission over Effect transmission | larger
‘on LPWAN Obtimization efficiency in | networks
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Hybrid Q- energy- Adaptation to
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Learning routing and
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n in Smart dynamic
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. i . for Spectrum spectrum
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] cation for 5G WSN Protocol transmission | and
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The literature review presented above covers a wide array of research focused on optimizing
routing protocols and resource distribution across different network settings, mainly employing
reinforcement learning (RL) and machine learning (ML) methods. The examined studies
involve applications in low-power wide-area networks (LPWANSs underwater 10T, wireless
sensor networks (WSNs), 5G 1oT networks, and fog computing. Recurring themes throughout
these studies include improvements in data transmission efficiency, energy savings, network
dependability, and scalability through advanced algorithms and combined approaches. For
example, Rao and Sundar (2024) along with Gupta et al. (2024) emphasize the implementation
of deep adaptive RL and hybrid Q-learning to achieve efficient resource-based data transfer and
energy-saving routing. At the same time, Dubey et al. (2023) and Jamshed et al. (2023)
concentrate on combining RL with ant colony optimization and fog node distribution to enhance
performance in 5G loT networks and smart grid frameworks. Collectively, these studies reveal
a need for more resilient, scalable, and adaptive routing protocols.

Can better handle dynamic and heterogeneous network conditions? The methodologies
employed range from predictive models and clustering techniques to advanced Al and ML
algorithms, showcasing the ongoing advancements and challenges in optimizing next-
generation network systems.

3. RESEARCH METHODOLOGY

Based on existing literature and identified research gaps, the proposed methodology uses
reinforcement learning (RL), a type of machine learning that focuses on sequential decision-
making. RL is a good fit for this purpose because it can optimize rewards in dynamic
environments, making it a strong candidate for future wireless communication systems.

Step 1: Gather the 10T user list and their assignments

Step 2: Create groups of 10T users

Step 3: Assign priority levels to the 10T users within each group

Step 4: Train a deep reinforcement learning network with the double Deep Q-learning method
Step 5: Data transmission

Step 6: Evaluate performance parameters

The following are step-by-step process flow chart for the research methodology shown in the
figure 5.1. The methodology involves clustering IoT users, determining priority levels, and
using a deep reinforcement learning network with a double DQN algorithm.

Steps & Technique

» Input [oT User Lists and Task Generation- Collect the list of IoT users and their tasks.
Determine the initial state of the network.

= Clustering IoT Users- Apply clustering algorithms (e.g., K-Means) to group IoT users
based on proximity and other factors. Form clusters to manage users efficiently.
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= Determining Priority Levels- Assign priority levels to clusters based on criteria such as
data transmission frequency, energy levels, and task urgency. Use a priority assignment
algorithm to ensure balanced load distribution.

= Deep Reinforcement Learning (DRL) Network Training- Initialize the DRL network. Use
a double DQN algorithm to train the network:

* Hub Placement Optimization - Use the trained DRL network to determine optimal hub
placements dynamically. Adjust hub locations based on the network state and learned
policy.

» Data Transmission Optimization- Determine the optimal routes for data transmission using
the trained DRL network. Minimize energy consumption and latency while ensuring
reliable communication.

= Performance Evaluation- Evaluate the performance of the proposed method against
traditional routing protocols. Metrics: Energy consumption, latency, reliability, and overall
network efficiency.

= Jteration and Learning- Continuously update the network model with new data. Iterate the
process to adapt to changing network conditions and improve performance.
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Figure 1: Flowchart for Proposed Methodology using Double DQN
DQN Algorithm

Q-learning is a reinforcement learning algorithm used to find the optimal action-selection
policy for any given finite Markov decision process (MDP). The DQN formula is given by:

Q(s,2)=Q(s,a)+a[r+ymax_{a'} Q(s',a")-Q (s, a)]
Components of the DQN Formula:

Nanotechnology Perceptions 20 No. 8 (2024) 55-76



65 Vishal Shrivastava et al. An Energy Efficient Secure Framework....

= Q (s, a): This is the current Q-value, which represents the expected utility (or reward) of
taking action in states.

= o The learning rate, which determines how much new information overrides the old
information. It ranges from O to 1. A value of 0 means the agent does not learn anything
new, while a value of 1 means the agent only considers the most recent information.

» 1: The reward received after taking action an in states.

= v: The discount factor, which determines the importance of future rewards. It also ranges
from 0 to 1. A value of 0 makes the agent short-sighted by only considering immediate
rewards, while a value close to 1 makes it far-sighted by valuing future rewards more.

* max_{a'} Q (s, a"): The maximum Q-value for the next state’s', over all possible actions
a'. This term represents the best possible future reward that can be obtained from states.

» [r+ymax_{a'} Q(s',a")—Q (s, a)]: This is the temporal difference error, which measures
the difference between the current estimate and the new estimate of the Q-value.

Double DQN Algorithm

Double DQN learning addresses a problem known as overestimation bias in DQN-learning.
Overestimation bias occurs because the max operator in the DQN-Learning update step can
lead to overestimating the value of some actions.

To reduce this bias, Double DQN-Learning uses two separate Q-value estimates, Q A and
Q_B, which are updated independently:

1. Selection Step: One Q-function is used to select the best action.

2. Evaluation Step: The other Q-function is used to evaluate the action. Double Q-Learning
Update Rules.

The updated rules for Double DQN-Learning are as follows:

For the Q-value update of Q_A:

Qa(s,a)=Qa(s,a) ta[r+vyQs(s',argmax_{a'} Qa(s',a) - Qa (s, a)]

For the Q-value update of Q_B:

Qe (s,a)=Qg(s,a) +a[r+yQal(s,argmax_{a'} Qs (s',a")- Qs (s, a)]
Explanation of the Double DQN Learning Update

1. Action Selection: Use Qa to select the action that maximizes the expected reward.
2. Action Evaluation: Use Qg to evaluate the value of the action selected by Qa.

This method reduces overestimation because the action selection and evaluation are
decoupled, spreading the overestimation error over two different Q-functions, leading to a
more accurate estimate of the true Q-values. Only the target network has been changed.

DDQN with AES encryption-based secure task offloading system
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Step 1: Environment Setup (IoT-WSN)

= The environment is an IoT Wireless Sensor Network with multiple devices that need
to process tasks.

= Each device can either process tasks locally or offload them to an edge server.
Step 2: State Initialization

The agent initializes the state based on the current network conditions, energy level, device
workload, etc.

Step 3: Decision-Making Process (DQN Agent)

The DQN agent takes the current state as input and selects an action based on an epsilon-
greedy policy:

= Action 0: Process task locally.
= Action 1: Offload task to the edge server with AES encryption.
Step 4: AES Encryption and Offloading

= If the chosen action is to offload, the data is encrypted using AES encryption
(encrypt_data function) to secure it during transmission.

= The encrypted data is then sent to the edge server for processing.
Step 5: Data Decryption and Processing

= At the edge server, the encrypted data is decrypted using AES decryption
(decrypt_data function), and the task is processed.

= The task completion result is sent back to the IoT device, providing confirmation of
successful offloading and processing.

Step 6: Reward Calculation
The environment calculates a reward based on the action taken:
= [fthe task was offloaded securely, a higher reward is assigned.
= Ifthe task was processed locally, a smaller reward is provided.
= Ifthe offloaded data was not encrypted successfully, a penalty is applied.
The agent stores this experience in replay memory for future training.
Step 7: DQN Training (Experience Replay)

= At each time step, the agent samples random batches from replay memory and trains
the DQN model. It uses a target network to stabilize the Q-values.

= This process improves the DQN agent's performance over time, allowing it to learn an
optimal policy for secure and energy-efficient task offloading.
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Step 8: Model Update and Target Synchronization

» The agent periodically updates the target network with weights from the policy
network to improve stability in the Q-value updates.

Algorithm
1. AES Encryption

= encrypt_data and decrypt data functions encrypt and decrypt task data using
AES-128 in EAX mode. The encrypted data is encoded in base64 to simplify
transmission.

2. DQN Network

= The DQN class defines a simple feedforward neural network with ReLU
activations.

= The Replay Memory class stores transitions for experience replay, enhancing
the stability of DDQN learning.

3. Agent Training

= The agent interacts with the environment, choosing actions based on epsilon-
greedy exploration.

= After each step, the replay function optimizes the DDQN by sampling a batch
from memory and minimizing the loss between Q-values and expected Q-
values.

= The agent updates the target network at fixed intervals to improve training
stability.

This setup performs secure task offloading in a simulated [oT-WSN environment, balancing
offloading decisions, and security through encryption.
4. SIMULATION RESULTS

The simulations were conducted using a Python 3.10 designed to model the dynamic nature of
mobile [oT networks. The following parameters were used in the simulations:

e Network Area: 500m x 500m

e Number of IoT Devices: 100

e Number of Hubs: Variable (5-20)

e Communication Range of Devices: 100 meters
e Initial Energy per Device: 100 joules

e Mobility Model: Random Waypoint Model

e Data Generation Rate: 1 packet per second
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e Transmission Power: 0.1 watt per transmission
¢ Reinforcement Learning Algorithm: DQN and Double DQN

e Simulation Duration: 1000 seconds
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Figure 2: Formulation and Initial State of loT Network
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Figure 3: Apply K-Means clustering

Figure 2 generated graph represents the formulation and initial state of the [oT Network where
the X-axis and Y-axis: Represent two standardized features from the dataset (e.g., location x
and location y after standardization). In Figure 3 graphs X-axis and Y-axis: Represent two
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standardized features from the dataset (e.g., location x and location y after standardization).
Here each Colour represents a different cluster. This graph visualizes the clustering of IoT
users based on their features. It helps in understanding how users are grouped according to
their characteristics like geographical location, data transmission needs, and energy
constraints. The scatter plot shows distinct clusters where IoT users with similar features are
grouped. This clustering helps in organizing the network efficiently for resource allocation.
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Figure 4: Assign priority levels based on the number of tasks

In the above Figure, 4 shows the X-axis: [oT User indices and the Y-axis: Normalized priority
levels of IoT users within their clusters. This graph visualizes the priority levels assigned to
each IoT user based on factors like urgency, data size, and energy reserves. The bar heights
represent the normalized priority levels, showing which users have higher or lower priority
within their respective clusters. This prioritization ensures that critical data is transmitted first,
optimizing the network's performance.
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Hub Placement Optimization
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Figure 5: Hub placements based on clusters

The above Figure 5, This visualization illustrates the placement of hubs within the loT network
based on the clustering of [oT users. Effective hub placement is crucial for minimizing energy
consumption and improving network performance. The clusters shown indicate the optimal
positioning of hubs to facilitate efficient data transmission.

Data Transmission Optimization
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Figure 6 visualization of optimal routes as lines from users to their assigned hubs
Above Figure 6 shows the optimal routes determined by the RL algorithm, connecting IoT
users to their assigned hubs. The lines represent the paths taken for data transmission,

optimized to reduce energy usage and latency. This visualization helps in understanding the
efficiency of the routing decisions made by the RL agent.
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Figure 7: Visualization of rewards over episodes in DQN and Double DQN Algorithm

The above Figure 7 shows the cumulative rewards obtained by the RL agent over several
episodes during the training phase using the DQN and Double DQN learning algorithm. The
upward trend in the graph indicates that the RL agent is learning and improving its policy over
time. Higher rewards suggest better performance in optimizing the routing and hub placement.

Energy Consumption Improvement
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Figure 8: Energy consumption improvement (Double DQN)
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Figure 10: Reliability Improvement (Double DQN)
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Network Efficiency Improvement
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Figure 11: Network Efficiency Improvement (Double DQN)

Above Figures 8,9, 10, and 11 illustrate the iterative improvements in performance parameters
as the RL model is trained over multiple iterations. The continuous improvement trend
indicates that the RL model is effectively learning and adapting to optimize the routing and
hub placement, leading to better overall network efficiency over time.

Finally, it observed that the above depicted graphs collectively demonstrate the effectiveness
of the proposed RL-based approach in optimizing hub placement and data transmission in
mobile IoT networks. The visualizations help in understanding the training process,
performance improvements, and efficiency gains achieved by the model.
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Figure 12: Training Convergence (Reward over Episodes)

The graph depicted in the figure 12, The Training Convergence shows the increasing average
reward over episodes, indicating the agent’s learning progress.
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Figure 13: Latency Comparison (Local Processing and Secure Offloading)

The comparison graph depicted in the figure 13, Latency Comparison, compares the average
latency between local processing and secure offloading, with offloading showing lower
latency.
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Figure 14: Energy Consumption Comparison (Local Processing Vs. Secure Offloading)

The graph depicted in the figure 14, Energy Consumption Comparison, Displays the average
energy consumption for local processing and secure offloading, with offloading being more
energy-efficient.
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Figure 15: Success Rate of Encrypted Offloading Over Episodes

The graph depicted in the figure 15 Success Rate of Encrypted Offloading: Shows the success
rate of encrypted offloading increasing over time, reflecting improvement in encryption
reliability. These plots provide insights into the model’s efficiency, security, and resource usage
across different scenarios.

5. CONCLUSION

This research investigates the critical challenges of energy-efficient routing and hub placement
in mobile IoT networks, with a focus on integrating advanced Reinforcement Learning (RL)
techniques, specifically Double Q-Learning and Modified Double Q-Learning. By analyzing
the energy consumption patterns and optimizing communication strategies, the framework
developed in this thesis successfully addresses the complexities associated with dynamic
mobile networks. Key contributions include the introduction of adaptive hub placement
algorithms that account for device mobility and topology changes, resulting in significant
energy savings and enhanced network performance.

The RL-based framework demonstrates its effectiveness in optimizing routing strategies,
reducing latency, and ensuring data transmission reliability even under constantly changing
network conditions. Simulation results validate the superior performance of the proposed
methods over traditional routing protocols, highlighting improvements in energy efficiency
and overall network sustainability.

Through extensive simulations, the proposed framework was evaluated against key
performance metrics such as energy efficiency, data transmission reliability, latency, and
network lifetime. The RL-based model consistently outperformed traditional routing
protocols, reducing energy consumption by 25% and extending network lifetime by
approximately 20%. While the RL model introduced slightly higher latency due to its energy-
saving focus, it remained within acceptable limits for most loT applications. Overall, the
framework demonstrated significant improvements in network performance and efficiency,
establishing its potential for real-world IoT implementations.
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