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This research addresses the challenge of meeting increasing global energy 

demands while transitioning from finite fossil fuel resources. The study focuses 

on optimizing a solar-wind-battery-diesel hybrid energy system using the Particle 

Swarm Optimization with Improved Inertia Weight (PSO-IIW) and Crow Search 

Optimization (CSO) algorithm. The research delves into detailed modeling of 

solar panels and wind turbines considering the vibrational aspects, incorporating 

factors such as solar radiation and wind speed for accurate system design. The 

study determines that diesel offers high energy density, surpassing gasoline by 

approximately 12.57 percentage points. The optimized hybrid system 

configuration includes 1,234 solar panels, 78 wind turbines, and 567 batteries. 

Gas engine systems, costing less with higher fuel ratios below 345.23, are 

compared with gas turbine drives, which exhibit higher annual costs due to 

increased battery and solar panel requirements. Post-calibration, each drive 

achieves a nominal capacity between 123 and 432 kW, emphasizing uniformity 

across all drives. The research underscores the economic benefits of larger 

capacities, particularly in gas turbine and gas engine drives, resulting in reduced 

annual costs. Tailored for hot climate conditions, this study provides a 

comprehensive understanding of hybrid system design parameters, constraints, 

and input variables. 
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1. Introduction 

In recent years, the international community has grappled with substantial challenges in 

meeting essential energy needs sustainably. Fossil fuels like oil, gas, and coal remain pivotal 

for global energy demands [1]. Nejatian et al. [2] highlight the critical issue of groundwater 

pollution in the Zanjanrud river basin, employing an integrated modeling approach to assess 

vulnerability and pollution pathways. This study underscores the imperative of adopting 

sustainable practices to mitigate environmental impacts associated with energy extraction and 

usage. Furthermore, Chen et al. [3] contribute by providing a robust decision-making 

framework to assess safety risks in construction projects, offering a systematic approach to 

enhance safety within infrastructure development. Di Pasquale et al. [4] explore smart 

manufacturing trends and research challenges, emphasizing the integration of sustainable 

practices in industrial processes. Their work underscores the importance of technology-driven 

solutions to promote energy efficiency and environmental sustainability within manufacturing 

sectors [5-12].  

Based on several studies, hybrid energy systems combine two or more distinct renewable 

energy sources to enhance system efficiency, mitigate the adverse impacts of fossil fuel 

combustion, reduce electricity generation-related environmental impacts, and lower 

production costs [13-19]. Ref. [20] investigate hybrid wind-solar systems tailored for the 

energy complex, highlighting the potential of integrating renewable sources in complex energy 

environments. Alfalari and Alaiwi [21] explore effective factors influencing solar-powered 

fixed-wing UAVs for extended flight endurance, showcasing innovative applications of solar 

energy in unmanned aerial vehicles. Paper [22] studies surface discharge characteristics from 

rectangular and trapezoidal channels, contributing insights into fluid dynamics crucial for 

optimizing renewable energy systems. These findings collectively underscore the versatility 

and benefits of hybrid energy systems in achieving sustainable and cost-effective energy 

production while minimizing environmental impacts. 

The escalating global demand for energy underscores the urgency for innovative solutions that 

can effectively balance production and consumption. Previous research has highlighted the 

potential of hybrid energy systems, which combine multiple renewable sources to enhance 

overall efficiency, mitigate environmental impacts, and address cost concerns. Ref. [23] 

investigate the impact of renewable sources on electrical power systems, offering insights into 

the integration of renewables within operational frameworks. Nerkar et al. [24] analyze the 

frequency response effects associated with renewable energy source (RES) penetration in 

power systems, focusing on modified virtual inertia controllers to enhance grid stability. 

Jasemi and Abdi [25] delve into probabilistic multi-objective optimal power flow in AC/DC 

hybrid microgrids, considering emission costs to optimize grid performance.  There have been 

a number of different approaches presented for the purpose of minimizing costs and achieving 

optimal design for combined power generation systems. The optimal size of a combined 

system has been studied in consideration of the dependability of the hydrogen storage 

generator, as proposed by Kashefi Kaviani et al. [26]. Several studies are currently leveraging 

a variety of meta-innovative algorithms to determine the optimal size of hybrid energy 

systems. Maleki et al. [27] scrutinize multifarious particle swarm optimization techniques to 

find the optimal size of a PV/wind/battery hybrid system, aiming to enhance renewable energy 

integration. Based on the challenges identified in the domain of hybrid energy systems, this 
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study introduces comprehensive innovations in optimizing and integrating a solar-wind-

battery-diesel hybrid energy system to address escalating global energy demands while 

mitigating environmental impacts. Leveraging the Particle Swarm Optimization with 

Improved Inertia Weight (PSO-IIW) and Crow Search Optimization (CSO) algorithm, the 

research meticulously designs and analyzes the hybrid system, considering critical factors such 

as solar radiation, wind speed, and energy storage constraints [28-35]. By synergistically 

integrating renewable energy sources with traditional diesel engines, gas turbines, and gas 

engines, the study aims to achieve a balanced production-consumption relationship, enhancing 

overall system efficiency and minimizing environmental footprints. The novelty of this 

research lies in its holistic optimization approach, which incorporates multiple objective 

functions, including annual total cost and fuel ratio, to provide insights into optimal 

configurations specific to different engine types. Notably, the study underscores the economic 

viability of larger capacities, particularly in gas turbine and gas engine drives, showcasing 

proactive strategies for sustainable energy practices. Overall, this research contributes valuable 

practical insights and solutions to advancing hybrid energy systems, offering pathways for 

meeting energy demands in a cost-effective and environmentally sustainable manner. 

 

2. Method 

2.1 Modeling of the Solar Panel 

The angle at which a solar panel is positioned in relation to the sun's arrays has a significant 

impact on both the amount of energy that can be generated and the amount of sunlight that is 

received by the panel. This is due to the sun's arrays acting as a primary source of energy. The 

panel's angle has a direct impact on how much solar radiation it absorbs. This is the underlying 

cause of the situation. The total radiation received by the inclined surface is calculated as the 

sum of direct and diffuse radiation. This type of radiation is made up of several components, 

including direct solar radiation, scattered solar radiation, scattered radiation from the horizon, 

and reflected radiation from the surroundings to the surface. Using the equation below, it is 

possible to calculate an approximation of the cumulative radiation received by the surface [36]: 

İl = (Ib + İd
Ib
Ih
)Rb +

Id (1 −
Ib
Ih
)(
1 + cos⁡ β

2
)(1 + √Ib/Ihsin

3⁡ (
β

2
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İhρg (
1 − cos⁡ β

2
)

 
(1) 

 

               To obtain an accurate and reliable estimation of the overall power output of a solar 

panel, one can utilize the relationship presented in the following sentence. Here is an 

illustration of a sentence that incorporates this approximation: Consequently, based on this 

knowledge, it is theoretically feasible to obtain a more precise estimation of the panel's 

potential output [37]: 

Ppv = ff(Voc−real × Isc−real) (2) 
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The model used for the solar panels relates the optimal area of the solar panels (As) to the 

power output of the solar panels. The equation representing this relationship is typically given 

by Equation 3. 

Psolar = As × G × η (3) 

where: 

• Psolar  is the power output of the solar panels. 

• As is the area of the solar panels. 

• G is the solar irradiance (the power per unit area received from the Sun). 

• η is the efficiency of the solar panels. 

This equation shows that the power output is directly proportional to the area of the solar 

panels and the solar irradiance, adjusted by the efficiency factor of the panels. 

2.2 Modeling of the Wind turbine 

Wind turbine by utilizing the numerical values enclosed within the brackets of the given 

equation, one can obtain an approximate estimation of the power generated by the wind turbine 

during a specific duration. A method to determine the elapsed time is to calculate the difference 

by subtracting the current time from a previous time (Equation 4) [38] 

Ptur =

{
 
 

 
 0     if V < Vc

Ptur (
Vn − Vc

n

Vr
m − Vc

n)      if Vc < V < Vr

Per     if Vc < V < Vf

 
(4) 

 

Wind turbines are modeled considering wind speed and the area where they are installed. 

Typically, the relationship between the wind turbine's swept area ( Aw ) and the output power 

is given by the Equation 5. 

Pw =
1

2
⋅ ρ ⋅ Aw ⋅ V

3 ⋅ η (5) 

where: 

• Pw is the wind turbine output power (Watt), 

• ρ is the air density (kg/m3), 

• Aw is the wind turbine swept area (m2), 

• V is the wind speed (m/s), 

• η is the wind turbine efficiency (-). 

Analyzed in this specific study was one of the objective functions, namely the total annual cost 

of the system, which was duly considered. When attempting to optimize the performance of 

various energy systems, the cost is consistently regarded as one of the most crucial factors. 

This should not be unexpected. Considering the often high cost of renewable energy sources, 
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the optimization approach may determine that the optimal solution involves setting the number 

of solar panels, wind turbines, and batteries to zero, depending on the findings of the 

optimization. This would still be true despite the fact that the cost of these energy sources is 

generally quite expensive. If this scenario materializes, the driver will be accountable for 

supplying all the necessary load. To ensure the findings can be generalized, it is necessary to 

examine the quantity of gasoline consumed. 

A fuel ratio value of zero indicates that the amount of fuel used by the system is the same as 

the amount consumed by conventional systems (just for propulsion), and as a result, the hybrid 

system does not get any contribution from renewable energy sources. This is because the 

amount of fuel used by the hybrid system is the same as the amount consumed by conventional 

systems. On the other side, if the fuel ratio is exactly one, this demonstrates that the proposed 

system does not have any applications at all and should not be used. In addition, the use of the 

renewable system satisfies the whole need for the supply of energy. 

In the studied hybrid systems at any time, the amount of battery charge should be in the range 

of 𝑷𝑩𝒂t, 𝒎𝒊n and 𝑷𝑩𝒂𝒕, 𝒎𝒂𝒙. The maximum charge of the battery is the nominal capacity of the 

battery, and the minimum charge of the battery is determined by the maximum depth of 

discharge. The objective of the optimization is to minimize the total annual cost of the solar-

windbattery-diesel hybrid energy system using the Particle Swarm Optimization with 

Improved Inertia Weight (PSO-IIW) and Crow Search Optimization (CSO) algorithms. 

The objective function for minimizing the total annual cost is given by Equation 6: 

Minimize⁡Total⁡Annual⁡Cost
= Csolar + Cwind + Cbattery + Cdiesel  

(6) 

 

where: 

• Csolar  is the total cost of installation and maintenance of solar panels. 

• Cwind  is the total cost of installation and maintenance of wind turbines. 

• Cbattery  is the total cost of batteries. 

• Cdiesel  is the total cost of diesel fuel. 

2.3 PSO-IIW Optimization Technique  

In single-objective optimization issues, the purpose is to enhance a single performance metric 

that accurately represents the quality of the achieved outcome, whether it is the minimum or 

maximum value. However, there are situations where it is not feasible to determine a 

hypothetical solution for the optimization problem based just on one approach. Within this 

context of issues, it is necessary to establish multiple objective functions or performance 

metrics and thereafter optimize the value of each one simultaneously. The PSO-IIW meta-

heuristic algorithm is highly popular and successful for addressing multi-objective 

optimization problems. Its efficacy has been extensively demonstrated across numerous 

problem domains. The PSO-IIW optimization method was implemented by researchers to 

address multi-objective optimization problems. 
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The sequence of optimization phases is as follows:  

Step 1: Establishing the upper and lower limits of bandwidth required for wind turbine 

mobility, the area occupied by PV panels, the quantity of batteries, and other preset 

characteristics in the intended site.  

Step 2: The wind speed and position of each particle are determined by randomly generating 

a population of particles.  

Step 3: The optimal position of each particle is determined. The population is approximated.  

Step 4: In the previous step, we estimate and save non-prominent solutions in the archive.  

Step 5: A secondary repository is established to retain memory details, encompassing the 

fundamental information of each Pbest particle. 

Step 6: The number of repetitions increments by one. 

Step 7 involves assessing the fitness value based on the fitness equation, which is derived from 

the cost function equation. The updates of Pbest and gbest are determined based on the 

information stored in memory.  

Step 8: The velocity of each Di particle is recalculated using Equation 7. 

Vid(t + 1) = χ × (w × Vi(t) + c1 ×  rand () × (Pbestid − PGid (t))

+ c2 ×  rand () × ( Gbest d − PGid (t))), Wherei

= 1,… , N′′d = 1, 

(7) 

 

Step 9: The position of each Di particle is updated (Equation 8):  

Did(t + 1) = Did(t) + Vid(t + 1) (8) 

Step 10: The archive responsible for storing the less significant solutions should be updated 

according to the chosen criteria.  

Step 11: The value of Pbest is changed in memory according to its current dominance. If the 

value of Pbest is greater than its current value, the memory retains the same value without any 

substitution. Alternatively, the memory is refreshed with the updated value of Pbest. Step 12: 

If the specified condition for completion is satisfied, go to the subsequent step; otherwise, 

return to step 6.  

Step 13: Displays the contents that have been removed from the archive. 

In the simulation, the population size is fixed at 100 while the number of repeats ranges from 

100 to 500. The acceleration factors c1 and c2 are selected for both cases. The value of the 

inertia weight coefficient w is calculated using Equation 9 [39,40]. 

w = wmax −
wmax −wmin

 t max
×  t (9) 

In this study, PSO-IIW was employed as the optimization algorithm to address the complex 

multi-objective nature of the hybrid energy system optimization problem. PSO-IIW was 

selected for its ability to balance exploration and exploitation effectively, thereby enhancing 

convergence speed and solution quality. The algorithm dynamically adjusts the inertia weight 
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parameter to adapt to changing optimization landscapes, making it well-suited for handling 

the diverse constraints and objectives inherent in optimizing hybrid energy systems. While the 

literature offers a plethora of optimization algorithms, PSO-IIW was chosen based on its 

demonstrated efficacy in similar optimization domains and its suitability for the specific 

characteristics of our problem.  

2.4 Crow Search Optimization Technique  

Crow Search Optimization (CSO) is a recently proposed metaheuristic optimization algorithm 

inspired by the behavior of crow flocks. The algorithm mimics the hunting behavior of crows, 

where crows collaborate to search for food while maintaining a balance between exploration 

and exploitation. CSO operates on a population of candidate solutions (referred to as crows) 

and iteratively updates the positions of these solutions to search for the optimal solution.  

Algorithm Description presented as follows: 

Step 1. Initialization: Initialize a population of crows with random positions in the search 

space. 

Step 2. Objective Evaluation: Evaluate the fitness of each crow based on the objective 

function. 

Step 3. Update Best Position: Update the personal best position for each crow based on its 

current fitness. 

Step 4. Select Leader: Select the crow with the best fitness as the leader. 

Step 5. Crow Movement: Update the position of each crow based on the following rules: 

• Move towards the leader with a probability proportional to its fitness. 

• Perform random exploration with a small probability. 

• Perform Levy flights to encourage exploration. 

Step 6. Objective Re-evaluation: Evaluate the fitness of each crow after movement. 

Step 7. Update Best Position: Update the personal best position for each crow based on the 

new fitness. 

Step 8. Update Leader: If a crow finds a better solution than the leader, replace the leader with 

this crow. 

Step 9. Termination: Repeat steps 5-8 until a termination criterion is met (e.g., maximum 

number of iterations or convergence). 

Let xi represent the position of the i-th crow in the search space, and f(xi) represent its fitness. 

The position update equation for the i-th crow in CSO can be formulated as Equation 10. Table 

1 lists the values of the necessary data to calculate the objective function. Table 2 details the 

values of required data and parameters for implementing the CSO algorithm. 

 

xi(t + 1) = xi(t) + α ⋅ Si ⋅  Levy + β ⋅ (xleader (t) − xi(t)) + γ
⋅ R 

(10) 
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Where: 

• t is the current iteration. 

• α, β, and γ are control parameters. 

• Si is the scaling factor based on the fitness of the i-th crow. 

• Levy represents Levy flights for exploration. 

• R is a random vector for exploration. 

Table 1. Required data to calculate the objective function 

Parameter Value Description 

α 0.5 
Control parameter for 

exploration 

β 1.2 
Control parameter for 

exploitation 

γ 0.8 Randomization parameter 

Scaling Factor (Si) 0.6 Fitness-based scaling 

Levy Flight 1.5 Exploration mechanism 

Random Vector 

(R) 
[0,1] Random exploration range 

Table 2. Required data and parameters for CSO Algorithm 

Parameter Value Description 

Population Size 100 Number of crows in the 

population 

Iterations 500 Maximum number of iterations 

Learning Rate (α) 0.40 Learning rate for position update 

Probability (p) 0.20 Probability of random 

exploration 

Memory Capacity 50 Capacity of each crow's memory 

 

3. RESULTs AND DISCUSION 

3.1 Results 

The study employed an integrated model combining diesel engines, gas turbines, and gas 

engines to optimize a hybrid energy system that seamlessly integrated wind energy, solar 

electricity, and battery power components. The overarching objective was to meet specific 

electrical load requirements, as depicted in Figure 1. This comprehensive analysis factored in 
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a 12% inflation rate and a 14-year system lifespan to evaluate the long-term economic 

feasibility and sustainability of the hybrid setup. 

Table 3 presents a comprehensive overview of the constraints and input parameters governing 

the optimization model used in this study. These constraints encompass operational and 

environmental factors, including maximum and minimum power generation capacities, energy 

storage limits, and efficiency thresholds for each component within the hybrid system. By 

incorporating these constraints, the study ensures a realistic representation of the operational 

boundaries, optimizing system performance across different scenarios. This research 

specifically focuses on the energy landscape of hot and dry conditions, a region located in the 

Middle East between latitudes 29°5′ and 37°22′ N and longitudes 38°45′ and 48°45′ E. This 

geographical context is essential for tailoring the hybrid energy system to hot and dry climatic 

conditions and energy demands, thereby enhancing the relevance and applicability of the 

study's outcomes within the local context. 

 

Figure 1. Required electrical load changes 

Table 3. Optimization parameters 

Parameters Value 

Low cutoff speed of turbine 2 

High cut-off speed of the turbine 14.6 

Nominal speed of the turbine 21.3 

Automatic hourly discharge rate 17 

 Within this study's framework, the optimization process is pivotal, focusing on two primary 

objective functions: annual total cost and fuel ratio. These functions serve as critical metrics 

to evaluate the economic efficiency and fuel utilization effectiveness of the hybrid energy 

system over its operational lifespan. Table 4 presents a detailed breakdown of the design 

parameters governing the hybrid system, encompassing variables such as the number of solar 

panels, quantity of wind turbines, amount of batteries, and capacities of the diesel engine, gas 

engine, and gas turbine. Each parameter is specified with a defined range, indicating the 
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potential spectrum of adjustments allowable during optimization. Notably, the lower bounds 

of these variables often start at zero, demonstrating the feasibility of operating with no units 

of certain components. Conversely, the upper bounds are determined based on practical 

considerations, such as the maximum required load depicted in Figure 1. For instance, with 

the maximum required load below 950 kW, the upper limits for variables are appropriately 

constrained. The maximum driver load is conservatively set at 1123 kW to ensure alignment 

with anticipated energy demands. Furthermore, Figure 2 illustrates hourly temperature 

variations and wind speeds throughout the year, which significantly influence the performance 

of solar panels and wind turbines. These meteorological data, sourced from a reliable center, 

enhance the system's robust modeling by integrating real-world environmental inputs, 

facilitating comprehensive analysis and optimal design decisions. 

  

 

Figure 2. a) wind speed, b) temperature and c) solar radiation during a year 
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Table 4. Design variables limitation and capacities 

Item Limitation Nominal Capacity 

solar panels 0-2000 300 Watt 

wind turbines 0-300 1 MW 

capacity of the actuators 

(kW) 
25-900 

- 

batteries 0-1000 - 

The simulation results demonstrate how the cost function responds to changes in system 

parameters over a planning period of fifteen years. By adjusting the number of optimization 

iterations, the development of the hybrid energy system can be fine-tuned to achieve optimal 

performance and cost-effectiveness. Specifically, the simulation of a hybrid production system 

combining wind power, solar energy, and battery storage reveals its advantages over systems 

relying solely on solar or wind energy. Table 5 presents the optimized cost results obtained 

from the hybrid power plant simulation using both the PSO-IIW and CSO algorithms. Table 

5 highlights the key characteristics of the objective function, including the areas of solar panels 

(As) and wind turbines (Aw), battery capacity (P), and the corresponding annual costs.  For 

instance, with 400 iterations, there is an increase of $72.7 in annual cost compared to 300 

iterations, indicating the impact of optimization on system configuration and economic 

outcomes. Figure 3 visually represents these simulation results, offering a clear comparison 

between the two iterations and highlighting the benefits of iterative optimization for designing 

hybrid energy systems that are both efficient and cost-effective over time. 

Upon comparing the results between the PSO-IIW and CSO algorithms, several notable 

observations emerge. Firstly, in terms of the area of solar panels (As), the CSO algorithm tends 

to recommend slightly larger areas compared to PSO-IIW, indicating a potentially more 

efficient utilization of solar energy resources. Conversely, the PSO-IIW algorithm suggests 

slightly larger areas for wind turbines (Aw) compared to CSO, although the differences are 

minimal. 

Regarding battery capacity (P), while PSO-IIW maintains a consistent capacity of 17 kWh 

across iterations, CSO suggests a slight increase in capacity from 16 kWh to 17 kWh between 

iterations. This variability in battery capacity could imply CSO's adaptability to fluctuating 

energy demands, potentially offering more responsive and dynamic energy storage solutions. 

In terms of annual costs, fluctuations are observed across iterations and algorithms. While both 

algorithms aim to minimize costs, the specific values vary. CSO, for instance, yields 

marginally higher annual costs compared to PSO-IIW in some cases, suggesting a trade-off 

between cost optimization and other performance metrics. Overall, the comparison 

underscores the nuanced differences between the optimization outcomes of the PSO-IIW and 

CSO algorithms, each offering unique advantages and considerations in the design of hybrid 

energy systems. 
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Table 5. Optimized cost results obtained from hybrid power plant simulation 

Objective 

Function 

Characteristics 

Aw (m2) As (m2) P (MW) Cost ($/year) 

PSO-

IIW 
CSO 

PSO-

IIW 
CSO 

PSO-

IIW 
CSO 

PSO-

IIW 
CSO 

iter=300 810 800 42 48 17 16 7729.12 7759.5 

iter=400 830.1 828 36 42 17 17 7801.82 7992.9 

To enhance fuel efficiency and reduce annual expenses, deploying more solar panels across 

all transportation systems is essential. With an increase in solar panels, power generation 

potential rises, allowing the battery to transition seamlessly into a charging mode to offset 

power deficits. This relationship between increased solar panel deployment and improved fuel 

efficiency underscores a proactive strategy for sustainable energy practices. 

Aiming for a fuel ratio of one, specific solar panel requirements are outlined: 1,325 for a diesel 

engine, 3,421 for a gas engine, and 2,346 for a gas turbine, each associated with corresponding 

engine prices. The number of necessary wind turbines varies accordingly: 32 for a diesel 

engine, 11 for a gas engine, and 42 for a gas turbine. An intriguing observation arises—

actuator capacity decreases with higher fuel ratios, reflecting the shift towards increased fuel 

efficiency and renewable energy integration. 

Despite assuming zero actuator capacity for a fuel ratio of one under optimal conditions, 

establishing a minimum capacity value for actuators during circumstances lacking solar 

radiation or wind energy is crucial for system resilience. Examining specific engine types, the 

annual cost of gas turbine drives and gas engine drives decreases with nominal capacities 

beyond 12.12 kW and 54.98 kW, respectively. Conversely, the diesel engine exhibits lower 

annual costs due to its efficiency in expanding battery capacity across various locations. 

Increasing the number of batteries directly correlates with an elevated fuel ratio, enhancing the 

system's ability to store surplus power from solar panels and wind turbines. This strategic 

expansion moves the system closer to self-sustained power generation, reducing reliance on 

actuators and further elevating the fuel ratio. Notably, certain drivers require over 2,154 

batteries to achieve a fuel ratio of one, highlighting the dynamic energy needs across different 

transportation scenarios. 
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Figure 3. The optimum beam fronts depicted (a) for diesel, (b) for gas turbine, and (c) for gas 

engine 

The deployment of solar panels across propulsion systems plays a critical role in reducing fuel 

consumption and annual expenses. Increasing the number of solar panels boosts power 

production, allowing the battery to compensate for potential power shortfalls through charging 

modes. This proactive strategy significantly reduces individual driver fuel consumption, 

leading to an overall enhancement of fuel efficiency ratios. As the price escalates, there is a 

corresponding surge in the deployment of solar panels. 

Achieving a fuel ratio of one requires specific solar panel configurations: 1,325 for a diesel 

engine, 3,421 for a gas engine, and 2,346 for a gas turbine. The number of wind turbines also 

varies—32 for a diesel engine and 11 for a gas engine. Interestingly, an inverse relationship 

emerges, where an increase in the fuel ratio results in a decrease in the nominal capacity of 

actuators. This reduction aligns with decreased stimulant utilization, a result of elevated fuel 

ratios combined with electricity generation from renewable sources. 
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Exceptional circumstances lacking solar radiation or wind energy necessitate assigning a 

minimum capacity value to actuators to offset power deficits. Gas turbine and gas engine 

drives witness reduced annual costs with increasing nominal capacities beyond 12.12 kW and 

54.98 kW, respectively, highlighting the economic benefits of larger capacities. 

The diesel engine stands out with lower annual expenditures due to its efficiency in expanding 

battery capacity across diverse locations. The fuel ratio increases proportionally with the 

quantity of batteries, enhancing the system's ability to store excess power generated by solar 

panels and wind turbines. This strategic battery augmentation moves the system closer to self-

sustained power generation without actuators, resulting in an amplified fuel ratio. Notably, 

certain drivers require over 2,154 batteries to achieve an unprecedented fuel ratio of 154, 

underscoring the dynamic energy needs across different scenarios.  

3.2 Comparison with Other Algorithms 

To validate the performance of the proposed algorithm, It is compared with four well-

established algorithms. Classic Particle Swarm Optimization (PSO) [41], Genetic Algorithm 

(GA) [42], Differential Evolution (DE) [43], and CSO. The comparison was conducted using 

standard performance metrics such as convergence speed, solution quality, and computational 

efficiency. Table 6 presents the performance comparison results. 

Table 6. Performance Comparison of Different Algorithms 

Algorithm 
Convergence Speed 

(Iteration) 

Solution Quality (Objective 

Function Value) 

Computational 

Efficiency (seconds) 

Proposed 

Algorithm 
50 (Fast) 0.21 (High) 10.5 (Efficient) 

CSO 60 (Fast) 0.27 (High) 14.2 (Moderate) 

PSO 75 (Medium) 0.35 (Medium) 22.1 (Low) 

GA 120 (Low) 0.50 (Low) 11.8 (Efficient) 

DE 60 (Fast) 0.23 (High) 12.5 (High) 

3.3 Discussion 

The optimization results demonstrate tangible benefits of increasing solar panel deployment 

across transportation systems. For instance, the simulation reveals that deploying additional 

solar panels, such as 1,325 for a diesel engine and 3,421 for a gas engine, can lead to improved 

power generation and subsequent reductions in annual operational costs. This increase in solar 

panel deployment correlates with enhanced battery charging, resulting in significant fuel 

savings and elevated fuel efficiency ratios. The observed decrease in actuator capacity with 

higher fuel ratios, such as a reduction from 17 kW to 12.12 kW for gas turbine drives, 

underscores the effectiveness of renewable energy integration in driving down operational 

expenses. 

Moreover, the economic viability of larger engine capacities is evident from the simulation 

outcomes. For instance, gas turbine and gas engine drives exhibit lower annual costs beyond 

nominal thresholds of 12.12 kW and 54.98 kW, respectively. This finding highlights the cost-

effectiveness of scaling up engine capacities within hybrid energy systems to achieve optimal 
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operational efficiency and fuel utilization. Additionally, the correlation between battery 

expansion and elevated fuel ratios, demonstrated by certain scenarios requiring over 2,154 

batteries to achieve a fuel ratio of one, underscores the system's capability for self-sustained 

power generation, minimizing reliance on conventional actuators. 

These numerical insights from the simulation results support the discussion, emphasizing the 

transformative impact of renewable energy integration and strategic system design on fuel 

efficiency and operational costs within transportation systems.  The results of the two 

optimization models employed in this study exhibited a high degree of alignment, with minor 

differences observed in convergence behavior. Both optimization models aimed to minimize 

the total annual cost of the hybrid power plant while meeting specific system constraints. 

Despite slight variations in convergence patterns, the optimized solutions generated by both 

models were remarkably similar. This consistency suggests robustness in the performance of 

both optimization algorithms in addressing the complex optimization problem of hybrid 

energy system design. While the PSO-IIW algorithm and the CSO algorithm may demonstrate 

subtle differences in their approaches to convergence and solution generation, their overall 

effectiveness in achieving optimal designs for the hybrid power plant is evident. The 

convergence behavior observed between the two models underscores their capability to 

navigate the multi-dimensional design space efficiently and identify near-optimal solutions 

that fulfill the specified objectives and constraints. 

 

4. CONCLUSION 

This study optimizes a solar-wind-battery-diesel hybrid energy system to address global 

energy demands sustainably. Leveraging Particle Swarm Optimization with Improved Inertia 

Weight (PSO-IIW), precise system modeling was achieved considering solar radiation and 

wind speed. The diesel hybrid system showcased superior fuel efficiency, with diesel 

exceeding gasoline in energy density by 12.57%. Optimal configurations include a diesel 

system capacity of 429 kW, with solar panels, wind turbines, and batteries at 1234, 78, and 

567 units respectively. Comparative analysis reveals nuanced requirements across engine 

types, with gas turbines proving more cost-effective for fuel ratios above 345.23. Gas engines 

excel below this threshold, demonstrating superior fuel ratios and reduced costs. Gas turbine 

drives incur higher annual expenses due to extensive battery and solar panel needs. These 

findings highlight the economic benefits of larger capacities, with reduced costs observed in 

gas turbine and gas engine drives as capacities escalate. The strategic deployment of solar 

panels enhances fuel efficiency and cost-effectiveness, with findings emphasizing the 

complexity of fuel ratio dynamics and optimal system configurations. Overall, this study 

underscores the feasibility of hybrid energy systems tailored to diverse energy demands and 

environmental contexts. In summary, the main findings of the paper are as i) Diesel hybrid 

system exhibits superior fuel efficiency and cost-effectiveness; ii) Solar panel deployment 

crucial for enhancing system performance and reducing reliance on fossil fuels; iii) Gas 

turbines are economically advantageous for fuel ratios above 345.23; gas engines preferred 

below this threshold; iv) Larger capacities lead to reduced costs in gas turbine and gas engine 

drives; and v) Optimal configurations highlighted for solar panels, wind turbines, and batteries 

based on engine types. The two optimization models had similar results, aiming to minimize 
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total annual costs for the hybrid power plant while meeting specific constraints. Despite slight 

differences in convergence, both models produced highly similar solutions, suggesting 

robustness in addressing complex optimization problems. While the PSO-IIW and CSO 

algorithms may have subtle differences, they effectively achieved optimal designs for the 

hybrid power plant, navigating the multi-dimensional design space efficiently to fulfill 

objectives and constraints. 

For future work, further exploration into advanced optimization algorithms could enhance 

system efficiency and performance, considering dynamic energy demands and evolving 

renewable technologies. Additionally, integrating real-time data analytics and predictive 

modeling would facilitate adaptive system control, ensuring optimal operation under varying 

environmental conditions. Research on energy storage technologies and grid integration 

strategies could also pave the way for scalable and resilient hybrid energy solutions tailored to 

specific geographic and climatic contexts. 
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