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With the increasing telecommunications demands and limited human and operational 

resources, telecom operators are turning toward AI and ML technologies to modernize their 

networks. Using these algorithms, operators can bring intelligence into the entire network, and 

thus acquire all the capabilities necessary there to allow self-healing and fault management 

automation at any level. As a consequence of this, key performance indicators (KPIs) and other 

vital scene information can be extracted from numerous operational and other source points in 

the network, gravitating to a cloud-based backbone. The coherent labelling and merging of 

these data can allow basic and advanced use cases based on knowledge extraction and pattern 

recognition algorithms. For either the limited classical network technology or the more 

complex modern optical ones, it is now demonstrated that modern AI algorithms can implement 

all important autonomic fault management functions: observability, controlled actuation, 

diagnosis, and actions. 

The new automation platform is easily extensible to both new providers or operational 

technologies and application scenarios beyond the telecommunications scope. Moreover, this 

technology is poised to greatly simplify the increasingly complex operation of communication 

networks. The major drive behind the ongoing network automation effort is the knowledge 

extraction from and observability of the silent components and asset usage within the 

infrastructure. AI algorithms can solve the initial task of KPI extraction, pricing, and pooling 

of scene information within a cloud-based backbone solution platform. Classical techniques 

like rules-based analytical algorithms or renegade statistic approximators can extend the 

understanding of the observed network components. There are some first application scenarios 

of this kind emerging focusing on classic copper networks and cloud infrastructure monitoring 

or KPIs extraction using primary in-car equipment usage telemetry data or spectrum occupancy 

monitoring systems. More granular explanations of general network KPIs across the mean-line 

IT accountancy boundaries are expected there. 

Keywords: Artificial Intelligence, automation, Fault Management, Machine learning, Network 

event classification, Network status forecasting, Resilience, Self-healing networks,Telecom 

Infrastructure Automation,AI in Telecom Networks,Machine Learning for Network 

Resilience,Self-Healing Networks,Autonomous Network Management,Intelligent Network 

Automation,Network Operations AI,Predictive Network Maintenance,Cognitive Network 

Management,AI-Driven Fault Detection,ML-Based Network Optimization,Zero-Touch 

Network Operations,Next-Gen Network Architecture,Resilient Telecom Systems,AI-Powered 

Network Recovery.

http://www.nano-ntp.com/


                                 Next-Generation Telecom Infrastructure.... Shabrinath Motamary 320  

 

Nanotechnology Perceptions 19 No. 3 (2023) 319-338 

1. Introduction  

Telecommunication plays a significant role to keep you connected with the world. Nowadays, 

OT environments and processes in the telecom industry are becoming modernized, intelligent 

and automated with excessive use of hardware and software. Telecom infrastructure market is 

anticipated to reach USD124.5 Billion by 2028, growing at a CAGR of 23.8 %. Telecom 

infrastructure is an always-on system which provides high availability and low-latency service. 

Fault can be created during upgradation, maintenance, component failure and even during 

normal operation. A business impact, due to faulty components, translates to signalling and 

voice unavailability leading to customer dissatisfaction. Regardless of the consequence, the 

automated fault resolution cycle in the viewpoint of ITIL4 takes a long time in comparison to 

the resolution time of the fault. 

Traditional telecom infrastructure consists mostly of proprietary hardware like signalling 

gateway (SG), media gateway (MG), load balancers, fraud detection, firewalls, logging 

systems etc. with simple custom software. The monitoring and management system is built as 

a monolithic console (MCle) to give a view of the entire telecom network slice. MCle checks 

the health of each component/server, its resource consumption and operation with a periodic 

interval and checks per component, the alarms triggered by component os, application, 

network interfaces and logs etc. Since the hardware consists of proprietary and appliances 

designed using network processors and field programmable gate arrays (FPGAs), telemetry 

information collected from each hardware is not structured, it varies from component to 

component vendor and it is difficult to compose a single view of the entire setup due to 

diversity heterogeneity between components. Telecom industry is using ML to identify 

patterns for predictive risk management such as unavailability failure, CPU, memory clogging 

etc. in pre-deployment or off-line mode. ML also assists in churn detection and clustering to 

optimize resource allocation and capacity planning. Also, machine learning (ML) provides 

techniques to adapt to dynamic behavior of networks. 

 
          Fig 1: AI in network operations trust in a self-healing network 

 

1.1. Background and significance                                        

Flexible and less complex Telecom infrastructure, allowing for an easy roll out of services and 

products is the vision for telecom next generation infrastructure. Next generation telecom 

infrastructure will allow for Artificial Intelligence driven cognitive insights and decisions to 

allow for telecommunications network automation. This vision also includes new generation, 
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more efficient products; flexible architecture to allow easy product roll out; and orchestration 

of 3rd party service products that will allow mutual service level agreements. 

Telecom AI and ML provide a group of techniques to fundamentally adapt to the dynamic 

network behavior, predicting the future behavior, thus proactively deciding on mitigation, 

recovery, or adaptation actions. These AI and ML techniques and applications can help with 

network awareness, health, and capacity estimation. These learning-based techniques provide 

a promising platform for end-to-end network automation, including fault management. 

Communication networks and services have become an indispensable part of modern society. 

However, their unprecedented complexity and rapid evolution make their correct operation a 

highly challenging task. Thus, the demand for advanced automation solutions is constantly 

increasing. Due to the enormous volumes of data and events of the order of tera-bytes 

generated in real-time and their complex interconnectivity, a set of techniques from the 

machine learning family have been gaining traction, namely: unsupervised learning, deep 

learning, reinforcement learning. 

 

Equ 1: OSS/BSS System Autonomy Score (SAS) 

 
 

2. Background and Motivation 

Telecommunications service providers (TSPs) worldwide strive to build networks able to 

handle unprecedented demand growth and complexity, while minimizing capital and 

operational expenditure (CAPEX/OPEX). Complexity originates not only from rapid growth 

in data traffic but also from more diverse services delivered across more heterogeneous 

networks. Recent surveys indicate networks already face a number of troubles: service and 

device failures, unscheduled maintenance, configuration errors, and performance issues. 

A common characteristic found in all these failure types is triggered path errors. Devices fail 

mainly due to hardware malfunction or software failure. Scheduled maintenance results in 

devices being powered off or undergoing firmware updates, which alters their configuration. 

Configuration errors are usually introduced as part of deployment, and performance errors 

typically originate from automated probing test results or policies not taking in consideration 
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all devices and services in a chain. Errors propagate along the network, producing a wide 

variety of negative effects such as degraded services, customer complaints, net loss of revenue. 

Error management traditionally consists of devices logging alarms and a second operator 

looking into these log files, analyzing them manually, and taking appropriate action. This 

approach yields good results in a number of cases; however, it has a few limitations: it is 

resource hungry, incomplete, slow, and alert intuition-centric. Labor scarcity and increasing 

complexity drive the invention of automated solutions, able to speed up error management 

while reducing TSP cost to operate networks. 

Network automation automates configuration procedures, service deployments, and error 

management, among other things. There are many levels of automation defined with respect 

to the extent to which network management operations are automated, ranging from zero 

automation, where the operator carries out all operations and makes all decisions manually, to 

complete automation, an ideal state where management operations are fully automated and 

require no human oversight. 

2.1. Research design                                                                      

The current state of telecom networks is not on par with their exponential growth. Rapid 

network evolution has outpaced operational automation, forcing telecom companies to depend 

on human resources for operations, resulting in economic losses from slow or incorrect manual 

decisions, service interruptions, high operational costs, and customer erosion. Conventional 

telecommunications network management tools and procedures were designed for the static 

networks of the past and are overstretched in today’s rapidly evolving and high-capacity 

networks. Overall, this lack of automation causes hindrance in the creation of resilient 

communication systems, stalling embedded device integration into industrial communication 

networks and the 5G digital revolution. To counter this situation, there is an immediate need 

to change the status quo. Telecom operators need to urgently build fundamental capabilities to 

autonomously manage their most complex and valuable resource: telecom infrastructure and 

associated decision intelligence. The opiates for alleviating bandwidth growth are exorbitantly 

capital and power hungry. The focus of innovation in the telecommunications industry should 

shift from bandwidth increases through infrastructure expansion to making efficient use of 

bandwidth already developed. Only then, telecom infrastructure resource expansion via fiber 

deployment can return to at least a factor-of-four decade and a third longer. An Intelligent 

Fault Prediction and Recovery tool should be developed that understands the history of the 

network and builds a predictive model of the network in terms of abnormal conditions. This 

tool should also develop access control systems to keep unauthorized users at bay and 

implement dynamic load balancing and routing through soft programming. While telecom 

infrastructure resources are expensive and rare, their consumption prediction has not been 

thought of. It would be worthwhile investigating consumption and deployment and spectrum 

landslides ahead of time, such that the telecom infrastructure is triggered to a light state before 

consumption increases catastrophically. Finally, careful design of the telecom infrastructure 

network and its topography can yield exploitation bottlenecks that impede certain parts of the 

network from being serviced, and should be taken care of in advance. 
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Fig 3: Research design  

3. Telecom Infrastructure Overview 

A modern telecom network consists of a large number of subsystems (elements, interfaces, 

and protocols) that work together to provide communication services. Each of these 

subsystems has a number of different functions. For example, mobile networks subsystems. In 

the current IC aspects, each mobile equipment needs to interact with the common channel 

network substation via the dedicated RF operating from 850MHz to 1.9GHz and B3, B7 bands. 

Although the RF-controlled functionality itself is relatively straightforward, a lot of signal 

processing ones are involved (e.g., MAC, timing management, channel equalization, FEC). In 

addition to radio coverage, the interaction between the user equipment and the base stations 

through the distance is also controlled via the transport network. The fixed optical, Ethernet, 

or microwave connection links are used to complete the data packet separation in this 

communication layer of networks. 

Simple networks with few subsystems and less degrees of freedom are built, while complex 

systems have to be based on the integration of numerous subsystems. Some subsystems are 

easy to design, but they are complicated and troublesome to understand in operation. However, 

they sometimes significantly constrain the overall performance; some subsystems might even 

blur the basic understanding of the systems. At this state, network management has come into 

place to ensure that all subsystems work harmoniously towards fulfilling the network 

objective. Among various AS controls, planning, restoration, operation, administration and 

maintenance, performance/ fault/traffic management are regarded as the main work of the 

NMS. Various telecom standards applied IEC61850 to ensure data interoperability and a 

common language among different vendors. In addition to the historic metric gathering, 

specific scripting languages have been proposed to implement automated flowing analysis. 
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           Fig 3: Data & Telecom Infrastructure 

3.1. Current Trends in Telecom                                                 

The advent of Artificial Intelligence (AI) and related machine learning (ML) technologies has 

created opportunities to make future telecommunication networks more autonomous, thus 

improving efficiency and providing higher levels of quality of experience and satisfaction to 

users. There are numerous emerging AI applications in future telecommunication networks, 

both at the wireless radio access network and at a core and backhaul network. Applications 

aimed at improving network performance can be broadly categorized according to the different 

layers through which messages are propagated and routes to their destinations decided. AI can 

anticipate the load at different base stations to distribute it in a way that maintains service 

levels and maximizes energy savings. 

For distribution, traffic can be anticipated at different domains, determining which backhaul 

and core nodes are at risk of being overloaded and reconfiguring paths accordingly. The 

criticality of nodes can be decided through ML training considering a long historical dataset 

of load, and at timescales that allow adequate remedial action to be taken. Performance may 

be improved in terms of quality of experience through applications concentrating on signal 

processing. AI can help adjust network parameters using a priori knowledge of current 

measurements and channel states, or to determine channel and scheduling parameters through 

cooperatively training neural networks (NN). This will be made possible thanks to the 

deployment of flexible hardware architectures capable of efficiently performing ML 

algorithms. 

The implementation of these and the myriad applications that will build upon them will, 

however, require a firm understanding of the AI paradigm and the ML algorithms leading its 

implementation. Cross-application exchange of information representing other estimates of 

the state of the system and cooperation of the learning stages may enhance the convergence of 

NN training. The huge number of potential scenarios may require the adaptation of the AI 

implementation. 

3.2. Challenges Facing Telecom Networks  Telecommunication service providers are 

challenged to build and maintain networks of vastly increased scale and complexity than in 

previous generations of networks. Users expect instant, uninterrupted services from the 
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network infrastructure. Mechanisms enabling self-healing, automatic, and fast restoration 

procedures should be adopted. Currently deployed telecom networks are largely manual, both 

in operations and troubleshooting. Manual troubleshooting requires human domain experts 

engaging in each RCA step: preparing the monitoring data, raw KPI data preprocessing, and 

interpreting the processed data. Having human experts troubleshoot network faults is not 

reliable, fast, or cost-effective, since the KPI-preprocessing domain knowledge accumulated 

by human experts is seldom documented, and human domain experts are often not available. 

Faster, automatic troubleshooting frameworks should be deployed, which can scale with the 

fast-growing KPIs and expert opinions. 

A telecommunication fault recovery system should consist of a knowledge base and inference 

engine. A well-preprocessed knowledge base consists of historical data: monitoring data, fault 

information, and domain knowledge derived using human domain expertise. Pre-processed 

KPI data typically consist of various variants of the raw KPI data. Correlation should be found 

among different KPI variants and between a variation of the KPI and a failure. Human domain 

experts derive fault correlation using domain knowledge and past experience. This knowledge 

should be codified into a knowledge base. AI-driven fault recovery functions to process 

telemetry streams, infer correspondence between faulty KPIs and fault type batches, and take 

onsite remedial actions for various troubles. Once the Inference Engine is trained, it can 

process KPI data streams to detect anomalies and their associated root causes, and take onsite 

remedial actions. 

AI research efforts are classified into AI for telecommunications: incorporating AI to better 

design individual subparts of telecom equipment, such as an AI-NR base station radio unit; AI 

in telecommunications: automating the management of 5G networks, typical equipment 

deployment, configuration, fault recovery, performance monitoring, service rollout, slice 

management, and AI in telecom cloud data centers; and AI oversight. AI in 

telecommunications should change telecommunication service delivery. With the increasing 

scale and complexity of commercial telecom networks, fast on-demand service delivery is 

critical. AI in telecommunications promotes orchestration, where a significantly increased 

amount of AI-infused knowledge is rendered on high-level service and orchestrators. 

Equ 2: System Stability under Autonomous Change (SSA) 
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4. Artificial Intelligence in Telecom 

Artificial Intelligence (AI) has emerged as an important enabler for value creation and 

operational excellence in the telecom supply and service industry. It has been applied to all 

telecom functions from planning to design, deployment, operation, and maintenance of 

networks including networks supporting Fixed, 4G, and 5G Core, Transport, and RAN. AI is 

used across the value chain from network and service planning, demand prediction, traffic 

management, inventory management, routing, assurance, performance management to root 

cause analysis, customer experience management, and fraud prevention. However, it would be 

incorrect to assume AI/ML use across the Telecom industry is uniform. AI maturity widely 

varies across players and functions and machine learning (ML) is more deployed than other 

forms of AI. Natural language processing (NLP) and knowledge-based systems are prominent 

in use cases related to customer interactions and infrastructure planning, while optimization is 

more used for delivery and operation respectively. 

The growing complexity and interconnectedness of telecom environments and service 

offerings raise the stakes for more intelligent telecom systems. Coupled with an onslaught of 

generative AI technologies with vast potential applicability, this can be expected to spur more 

significant and widespread investment in AI. Firm involvement in the area of telecom AI-

native systems extending beyond a strategy, becoming an active participant in the 

standardization space, or the marketplace for such systems is an important objective behind 

this research. A nascent step towards working towards that is, therefore, to scan the current 

trends and understand where telecom AI systems are today and which road a telecom provider 

should ideally take tomorrow. 

 
                  Fig 4: AI in Telecom 

4.1. AI Techniques Used in Telecom                                       

This figure highlights how the underlying AI techniques fit into the various functional blocks 

for overarching solutions incorporating data utilization, presentation, machine learning, and 

statistical techniques into the wireless domain, such as their use in the radio access portion. As 

in many telecom workflows, support for insights or automation based on real-time data is a 

key requirement. This means that many scenarios require real-time changes in performance 

information asset utilization. Purely post-facto workflows relying on historical information for 

techniques like regression would not apply here, as they could miss an important share of 

performance changes when they occur. Communication Layer and Transceiver Parameter 
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Optimization Techniques. Communication layer and transceiver parameter optimization 

techniques primarily focus on joint transceiver design and optimization to achieve the desired 

performance while taking into account the end user’s resource constraints. Techniques from 

both statistical and machine learning can be applied across a broad variety of use cases. For 

example, joint transceiver development has been historically addressed by per-tone 

optimization based on statistical physics. Both batch learning and gradient descent techniques 

from machine learning are also suitable for reviewing the optimization of performance 

measures with regards to a sample of mobile positions. Meanwhile, parametrically trained 

neural networks are a highly applicable alternative here, with a variety of applications already 

reported for high-performance communication up to rates approaching a few bits per channel. 

However, as they are slower to train than many tuning-free population-based approaches, these 

neural network parametric techniques may not be the widest circle of applicability. 

Management and Power Coordination Techniques. Management techniques are likely to 

include tuning-free recursive models from machine learning to upscale mesh data structures 

are typically ‘flatter’ due to the provision of a service, such as regular end-user coding 

adjustment as driven by capacity limits (as in more traditional telephony). Power coordination 

techniques that are more involved might be simpler to apply in a shared fashion across multiple 

operator areas to avoid duplication of effort. Understanding the meaning of the techniques for 

tuning parameters (e.g., in daily usage, flexgrid state changes etc.) is often retained following 

traditional additivity- and smoothness-like properties of the underlying quantities. 

4.2. Benefits of AI Implementation                                           

The telecommunications industry is leading a wave of competitive disruption fueled by ever-

increasing demands for seamlessly-connected services and the growing complexity of 

networks. Despite enormous advances in technology and interconnectivity, Telco networks 

are still largely outdated aggregates of disparate systems designed only to handle basic black-

and-white network management functions. This has resulted in excessive human attention and 

complexity, a rise of unforeseen outages, a lack of automated fault recovery, and has held back 

the competitive advantages operators could reap. Implementing AI in Telco networks presents 

an opportunity to turn things around and implement state-of-the-art cognitive network 

management models. 

AI has the potential to revolutionize nearly every aspect of Telco operations by creating 

intelligent and automated systems that can achieve the long-desired goals of unprecedented 

performance, user experience, and reliable guarantees. Implementing an intelligent and 

orchestrated AI platform would eliminate the inefficiencies common to Telco networks by 

consolidating maintenance, service management, and fault recovery functions. A well-

designed knowledge representation and reasoning engine, well integrated with operations and 

a multi-modal input API, would enable an entirely new ecosystem of automated applications 

that conduct multi-sourced, multi-metric analyses of networks in near real-time, something 

which is currently neither possible nor practical with standard operating practices. 

5. Machine Learning Applications 
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Fast and efficient network provisioning, re-provisioning, upgrades, and maintenance tasks rely 

on appropriate fault management techniques being in place. These are supported by monitoring 

functionalities that ensure the timely detection of any adverse conditions that may compromise 

the expected performance of the network. The traffic engineering and design of data networks 

can amount to a complex and time-consuming endeavor. This is due to constraints imposed by 

service-level agreements, engineering rules, physical impairment considerations, and 

topological details. E2E service provisioning, including virtual network embedding in multi-

domain scenarios, new service protection, and service upgrade requests such as bandwidth 

changes, rely on joint planning of network-wide diverse paths through a combination of 

potentially different equipment-type. 

On this set of given requirements, wireless access in mobile networks can be seen as a complex 

and dynamic process that entail the constant monitoring and analysis of a steady evolving 

knowledge base that several instances of an intelligent agent attempts to properly 

represent/model at different hierarchical levels of detail. The decision process will depend on 

local information feedback on resource utilization and mobility, the overall performance of 

the multiservice traffic termination, the satisfaction of the user with the service quality, or the 

network revenue and operation conditions. The learning framework can be either in the form 

of reinforcement learning, assessing the utilities of actions to take given states, or through the 

modeling of the network with an architecture suited for deep learning recommendations. 

 
             Fig 5: Applications of Machine learning 

5.1. Predictive Maintenance                                                

Network operators continuously monitor the network to ensure optimal operation and 

performance. This can be achieved through fault, configuration, performance, and security 

management. Network operation and management are tougher to achieve with the increasing 

complexity of next-generation telecommunications networks. In present-day networks, only 
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network and service alarms are monitored. These alarms indicate problems that require 

operator attention. By the time alarms are made available for processing, the problems usually 

have already occurred. There is a need for improved asset management to avoid unexpected 

network outages, traffic disruption, and revenue loss. Often network infrastructure is unable 

to discover problems before they impact operation. Properly addressing the correct problems, 

excluding "false alerts," can save costs and operator time needed for intervention. Typically 

telecommunication network operators monitor problems after they occur. This can mean 

power issues in cooling units or the degradation of semiconductor lasers. These issues often 

cause multiple alarms as the chain reaction propagation path ripples through the elements of 

the network. By analyzing the alarms triggered by such a fault, it is possible to reconstruct 

knowledge about the faulty device. Actively monitoring such events can prevent the future 

occurrence of similar failures and a noticeable dip in the performance of the network. Another 

device failure can be anticipated and scheduled maintenance can be performed before the 

device fails. Operators continuously monitor the functioning of the network looking for 

equipment whose characteristics change significantly from normal values. Such faults 

normally involve gradual degradation rather than bulk failure. Equipment in current networks 

is designed to keep functioning under adverse conditions and only after the equipment tolerates 

a certain number of errors, averages converging to steady state thresholds are exceeded. Such 

degradation needs to be detected in due time to allow re-routing of lightpaths before network 

disruption. Identification of the location of the failures is paramount for the computation of 

the alternative route. For this new electronic and optical architectures are being designed. 

Nevertheless, the topology of the network, and service demands are still needed to obtain the 

route. Ultimately, this use case investigates a network management application related to the 

automatic detection and localization of failures in optical networks. An analytics-enabled 

architecture for a fault discovery and diagnosis process to support proactive detection of 

failures and root cause analysis in current and next-generation networks is described, based on 

knowledge discovery from network and SDN-wide monitoring. For a condition monitoring 

system, a segment of the network is analyzed by considering the network, the utilized 

hardware, the monitored traffic, and the applied analysis solution. 

5.2. Network Optimization                                                       

Aside from reconfigurations, the definition of expected behavior must consider optimal states 

as part of the resolution context. The expected network state is thus defined as the expected 

distribution of network variables over time taken under network resource constraints. Quality 

of Experience (QoE)-aware optimization approaches can generally be categorized into two: (i) 

control loop-initiated queue conditions based approaches; and (ii) queue-less network states 

approaches. The onset of the former type of approaches involves deterministic calculations 

and careful evaluations from prediction parameters to actions unlike the latter types. The 

control loop-initiated approach in conjunction with a humanity model focuses on how QoS 

can be factored into the joint action in a probabilistic model. This approach thus reveals the 

extent of control room implications of general approaches across protection. The queue-less 

approach takes various protocols independently into account for fairness beyond protection. It 

can accommodate multi-layer various quantification to mitigate the black-box model required 

to catalogue protection. 
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The anticipated distribution of QoE can thus solely decide on exact traffic parameters to handle 

with minimum abuse in access networks. The former approach is generally appealing to study 

between QoS and QoE, however, it is susceptible to variabilities of seasons and channels. On 

the counter side, approaches of the latter category can be advantageous against sudden weary 

but can only limit to average performance assessment. The distribution of control loop-

initiated expected adjustments may inhibit aberrated transitions by running global optimization 

algorithms per era transitions and thus warrant the uniqueness of redressable mal-congeniality. 

The fate of inflation states anticipated by those without inferencing approximate queues and 

observables even per horizon time is prone to qualitatively game-like networks. Coarse 

headroom assessment heuristics may save intermediate-level devices from protocol abuse, on 

the other hand, the queries themselves and induced bandwidth split may nevertheless 

instantaneously refrain devices of late major types from redress. 

5.3. Anomaly Detection                                                            

The network complexity is expected to further increase with the introduction of technologies 

such as 5G, network slicing, low-Earth orbit satellites, and the deployment of mobile fog. 

Furthermore, 5G will be more software-defined and equipment agnostic under the 

virtualization trend, enabling the introduction of solutions like OpenRAN with greater 

flexibility in the architecture and an openness in terms of vendors [8]. Those are expected to 

lower OPEX and CAPEX but will bring challenges in further automating the operations. 

The ongoing combination of networks, infrastructure, and business services is by new and 

enhanced topology monitoring, performance monitoring, logging, and traces across equipment 

and software boundaries. Current monitoring and analytics mostly focus on a specific network 

technology type in isolation. A new generation of tools and systems for automated, 

multidomain, multilayer, multi-technology observability is required to monitor new services 

and anomalies. Those fold enhancements in observability will leverage the introduction of 

intelligent big data-driven and model-based predictive and prescriptive operations. 

Current big data backends and technology stacks are too rigid, too heavy, and unsuitable to 

capture fast and agile IoT and network edge growth with the introduction of high-speed fiber-

based connections and gigabit-speed wireless. New concepts for high speed observability into 

the core of the network are required. New strategies, tools, technologies, and architectures 

deployed in the operation support domain might degrade service events in terms of monitoring 

granularity and the overhead incurred. A new generation of diskless, stateless, and temporary 

metric storage concepts must enable faster monitoring and analytics with very efficient 

observability across network devices and technology types. As with observability, a new 

generation of agile data-driven telemetry protocols must be defined. Such consumers might 

rent a data-driven telemetry service on a per-event and per-slice basis from the vendor, which 

would implement a formal MAP on the network element-side or at a network-to-network 

operations edge. 

Software systems must accompany the new observations, which may craft supergraphs of 

relevant technology pieces by utilizing on-priority software engineering principles. Such 

introspective software is planned to edit protocol buffers to specify target observability and 
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expose telemetry sinks to wire with off-the-shelf ingestion tools and databases. Such 

introspective software may also specify which observables at what granularity are adhered to, 

monitoring on ports over chosen observance telemetry types. 

Equ 3: Self-Healing Response Time (SHRT) 

 

 
 

6. Self-Healing Networks 

As the telecommunication system coordinates control and data plane communications flow 

between different components that operate at the base station (BS), core and transport levels, 

the monitoring of the health and performance of the whole system is a massive challenge to 

assure quality of service (QoS) and quality of experience (QoE) to customers. The coordinated 

effort of monitoring data collection, statistics calculation, performance metrics assessment, 

and fault detection and recovery are essential but labor intensive. The network automation 

framework employs AI/ML-based self-healing techniques that can automatically detect a wide 

range of faults or anomalies in both the physical health and performance levels of the network 

infrastructure including hardware, software, and configuration. As such, the necessity of 

performance metric accounting involves two important components, namely the performance 

monitoring (PM) statistics collection and reporting, and the performance monitoring 

enhancement. 

AI/ML-based self-healing on the system control and operation level of SON in 

telecommunication infrastructure can automatically adjust different policies to dynamically 

change parameters for components in air interface, infrastructure, network control, signaling 

and core. This technique needs to be standard and defined into a group of action cases to cover 

a wide range of common problems, similar to how KPI, PM, fault and performance monitoring 

classification are defined. A group of mathematical statistical models and thresholds are 

trained beforehand to monitor and collect sample Poisson statistics of the target performance 

metrics. All models are able to detect on-anomaly metrics. Anomalies in the overall network 

can be classified into performance and resource exhaustion. A group of models based on theory 

of probability distribution is used to detect performance metric-triggered performance 

degradation events automatically, with high accuracy. A group of multivariate Gaussian 

distribution-based clustering models detects resource exhaustion-triggered performance 

blackouts that telecommunication networks can face. 
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             Fig : AI in Telecom industry 

6.1. Concept of Self-Healing Networks                             

There are many views on what self-healing means. The wording self-healing has also been 

adopted in many fields like medicine or engineering. The meaning can vary from a simple 

response that fixes something to an end-to-end monitoring and reaction scheme that is able to 

detect, analyze and repair damage by itself. One definition says that self-healing is a system 

element in a communication element that is able to monitor itself and take appropriate actions 

to repair damage to avoid end-to-end service level agreement violations. Hence, the repair 

should happen primarily within the element, but repairs could be conducted in cooperation 

with other elements. By a more general view of self-healing, a system architecture is proposed 

that focuses on network events that need to be healed. Data is collected from the network on a 

system level and stored. On the development level, the data is pre-processed, for instance, by 

deriving key performance indicators. 

The system level is defined by a tree structure. Each tree node contains data and generates an 

understanding including cause analyses. Causes are classified by how they will affect the user. 

Depending on the circumstances, actions can be determined, but this is not trivial as actions 

can have unexpected effects. Additionally, there can be a growing number of concurrent 

effects. However, there is human knowledge and experience that should be added to the 

knowledge base. Skills are defined how healing can be done on criteria based on the 

understanding level. Each node of the tree can be healed by adding additional necessary parts 

relying on experience developed by engineers. As a byproduct, each successful heal will lead 

to heuristics on how to attack the problem. It is assumed that the healing will be performed 

automatically by machines, but some heuristics may require human intervention. 

For complex systems like telecommunications systems, where integration is high, and where 

the continuous addition of new components and interrelations is standard, self-healing is a 

complex task. Think of a simple case where a monitoring system identified a fault in the 

telecom system. The reaction could be to choose one of several available alternatives. 

Depending on the chosen alternative, new errors could arise or existing errors could be 

aggravated. The complexity of interference grows with the power of the agents, and natural 

reasoning seems generally infeasible. In telecom systems, automatic heuristics based on data-

driven methods have been successfully applied. Examples are alarms scaling, cause analysis, 

correlation, fault prediction and the evaluation of fault location and effect. Here expert systems 

were used that rely on home variables and derived statistics. 
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6.2. Key Technologies Enabling Self-Healing                        

Recent years have witnessed the rapid deployment of numerous physical and virtual functions 

in telecom networks. There are large numbers of new network elements, services, machines, 

connections (e.g., IoT), and users being rolled out in networks. As a result, telecom networks 

have become extremely complex with a large number of interaction dimensions and 

complicated dependencies among network elements and services. Accordingly, it is important 

to guarantee the quality of services in the networks with minimal time and effort. 

Unfortunately, it is becoming increasingly difficult and challenging to ensure that telecom 

networks are adequately operated and maintained. Generally, network providers rely on 

engineers to understand the states of network components. Upon discovering a failure event, 

the engineers inspect the minimal set of components which potentially caused the failure and 

eventually identify the root cause of the failure. Currently, the operational tasks in telecom 

networks are largely manual and thus inefficient, triaging issues which take hours to crash 

hundreds of millions in annual revenue loss, or resolving issues which take weeks to impact 

millions of users. There is an increasing market demand for intelligent algorithms and systems 

which can automatically help the operational tasks and avoid the undesired economic loss. 

Recently, the world has witnessed dramatic breakthroughs in artificial intelligence (AI) and 

machine learning (ML) technologies. Many leading technology companies as well as telecom 

network providers are investing heavily in these technologies, motivated by the promising 

achievements they have brought in various industries. It is expected that telecom networks can 

be analogical to other domains where many operational tasks can be effectively solved by 

AI/ML techniques. It is urgent to leverage the machine learning algorithms alongside cloud-

based servers to construct self-healing systems for telecom networks. The training process will 

require obtaining a sufficient amount of raw data from real telecom networks. In addition, 

telecom networks evolve rapidly, and the data distribution usually changes accordingly. As a 

result, it is important to achieve performance robustness in terms of generalization in newly 

observed data distributions. 

7. Conclusion 

Telecom operators recognize that deploying 5G requires a significant overhaul of existing 

infrastructure and a shift from a CAPEX-intensive model to a value-based OPEX one, enabling 

them to compete with new entrants. To meet this challenge, an effective automation strategy 

and architecture are needed. While the literature on AI/ML-based telecom automation 

architectures and associated techniques is extensive, there is little understanding of how to 

deploy standards-based transport networks, including virtualized fronthaul and midhaul 

networks. The taxonomy of AI/ML-based automation techniques for transport networks is 

largely nonexistent, as is an understanding of industry initiatives driving the automation 

evolution in the transport domain. 

Telecommunications networks used to be a world of straight through wiring. As services grew 

more complex, wider network routers were introduced in the core, and complex hierarchical 

structures were used to manage mobile users. This network gradually evolved from voice/data-

centric to IP-centric. Today, one of the oldest and most complex industries, 

telecommunications, is being confronted with systems and realism that are well beyond its 
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founding fathers’ dreams. Cloudification, over-the-top players, a post-COVID connected 

world, and a new digital economy have made telecom the backbone of society. 

Telecommunications networks comprise heterogeneous technologies over different time 

scales used by a wide range of applications. These networks are designed, sized, and operated 

separately, resulting in suboptimal performance and huge operational costs. Machine learning 

(ML) is a discipline that has rekindled artificial intelligence invigorated by the availability of 

big data, an increase in computational resources, and theoretical advancements. ML is being 

viewed as a game changer to tame the complex intertwined systems of large-scale 

telecommunication networks. 

Automated solutions based on AI/ML are already actively deployed in large-scale 

telecommunication networks and regularly provide benefits in terms of per-ph cable plan, use, 

and ops analytics. AI/ML provides a collection of techniques to fundamentally automate 

complex qualitative, quantitative, and subjective tasks of transported networks. The different 

aspects of transport networks present different deployment scenarios for AI/ML: data 

abundance, size, sparsity; performance, interpretability, and accuracy targets; the availability 

of computational resources. In the domain of end-to-end network automation, AI/ML provides 

a family of solutions in line with the different automation levels and operational aspects. 

7.1. Emerging Technologies                                            

Automation of telecom infrastructure is a progressive response intended to correct the general 

inadequacies in today’s telecommunications networks. As network functions are deployed to 

serve applications, a virtualized telecom infrastructure entails knowing how to version, 

instantiate, respond to state changes, etc. This all requires operations automation. As telecom 

networks evolve towards an end-to-end composite network of accelerator chains comprising 

optical networking, packet switching, cloud infrastructure, and IT, their operation and simple 

co-management become more complex. Additionally, the chosen selection of deployment 

technologies creates wider their respective vendors ranging from electro-optical transmission, 

to cross-connects, to synchronized switches, to routing, switches. Management of traditional 

resource-oriented data has been replaced by policy-based management as telecommunications 

systems comprise numerous static systems. The typical ownership and operation of systems 

were once sectioned by technology, network layer, and domain (i.e., access, metro, core, IN, 

etc.), but it followed towards an ICT-leading multi-protocol layer network and witnessed fault-

domain spanning layers, networks, and systems. The intent of the telecommunications industry 

to massively deploy 5G has met with the decades-long need for a more EU-like 

telecommunications environment that is neutral, open to any technology complexity, and 

multivendor. Prominent SDN/ML-based attempts have recently been made to move 

fundamental net layer switching to cloud, however open issues include restaurant-style 

control; prediction of cascading failures; and cross-management of equipment, optical 

channels, and routing trees. Add-on equipment and vendor-specified reported performance 

have prevailed, ruining perceived performance comparison and network agility. Proposals do 

exist for migration towards rental servers, but product definitions widely differ rendering 

impossible even response/decoupling bandwidths. The massive 5G deployment needs and 

wide-ranging cloudification offer a rich field for searching neural network architectures, but 

vastly varied product definitions, overly simplified network descriptions with negligible 
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realism, and/or application specificity are confounding the path towards general applications 

even approximating to desired telecommunications patterns or control. 
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