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Automation of shop floor tasks can deliver a level of operational efficiency impossible to 

achieve otherwise. However, it is often challenging to achieve workflow automation solutions 

compatibility with companies’ existing IT architecture and to ensure automated workflows are 

efficient and robust. To solve these known problems, an AI-enabled framework consisting of 

three modules is proposed. The first module, Process Mining, observes existing manually 

performed workflows and discovers workflow graphs from them. The second module, 

Recommender System, utilizes the discovered workflow graphs to generate task execution 

recommendations for the end user to help integrate existing workflows into workflow 

automation software. The third module, Simulation, assists with identifying integration-related 

issues with the recommended tasks by enabling “what if” scenario evaluations. 

While the mobile robot approach does not need to be adjusted for the implementation of the 

event simulation methodology, another challenge is to address semiconductor assembly factory 

service engineering aspects. Semiconductor assemblies consist of many chips and transistors 

that require signal processing services across different production processes. Therefore, the 

workshop floor has to depend on the proper service provisioning, routing and scheduling 

approaches that would affect service performance metrics such as workload balancing and 

service make-span. On the other hand, the routing and scheduling have to take ability-to-serve 

criteria in real-time into consideration, which adds onto the computational complexity 

exponentially with respect to the increase of the system size. Therefore, a heuristic approach 

based on resource agent-based analytical methods is applied to address such computationally 

complex problems, and a customized simulation modeling approach is developed to devise test 

cases in workshop floor settings for the validation of given problem instances. 

Keywords: Digital Twin; Simulation Modeling; Work Environments; Shop Floor; 

Manufacturing Layouts; Selecting Factors; Factory Time Simulation; Workflow Automation; 

Digital Twin Development.

1. Introduction  

Today’s industrial world is teetering on the edge of the Fourth Industrial Revolution (Industry 

4.0). The widely discussed connectivity of machines and cyber-physical systems is 

fundamentally changing the way factories develop, operate, plan, and optimize. The 

dissolution of boundaries on the shop floor introduces new obstacles such as data deluge; yet 

it also opens a plethora of opportunities to enhance productivity and flexibility beyond 
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imaginations. It can enable truly new modes of production, characterized by a higher autonomy 

of individual manufacturing resources, self adaption to unforeseen disturbances, and even self-

organization of autonomous production systems. 

The wide availability of high-fidelity data sources enables a profound understanding of the 

complex dependencies and interrelations of the Ontological or Machine Level (i.e., industrial 

assets like CNCs, robots, and AGVs specifically designed to transform raw materials into 

finished products). New modelling paradigms from Data Science, Cyber-Physical Systems, 

Optimization, and Artificial Intelligence can facilitate the self-organization and adaptation of 

shop floor processes and infrastructures. At the same time, advanced analytics can cope with 

the increased complexity and dynamical properties of industrial processes. The deep 

knowledge of the system enables a profound understanding of the complex dependencies and 

interrelations at the design and planning levels, allowing for a more holistic evaluation of 

design alternatives. 

 
               Fig 1: Shop Floor Workflow Automation 

1.1. Background and Significance                                                

The rapid increase in flexibility requirements for manufacturing systems comes with a 

significant increase in complexity. A reaction to this flexibility trend has been to use virtual 

simulations, where manufacturing systems can be simulated based on modeling instead of 

building physical prototype systems. Digital twins have emerged as a technology to predict 

the undesirables and ensure desired performance of complex systems, control actions, and 

production. A digital twin of a manufacturing system can be defined as a virtual factory with 

real-world interactions. Digital twins have got attention in the manufacturing research 

spectrum, as researchers have tried to explore the capabilities offered by this technology. 

However, their industrial application of it has seen only limited successes. 

Simulations can emulate numerous possible scenarios regarding a manufacturing system, to 

select the most desirable one. Virtual simulations are thus becoming an integral part of a digital 

twin. However, the nature of a simulation model is such that creating simulation models that 

can be extended as a digital twin is a challenge. This necessitates a structured approach for 

creating the models, ensuring their accuracy and flexibility, enough to be updated along the 

life cycle of the factory. A collaboration between machine learning and discrete event 

simulation is called an AI simulation joint capability construction framework. This framework 
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can coordinate and orchestrate EN-cooperation with AI-enabled simulation joint capabilities 

as versatile envisioned entities. Generation, and utilization life cycle of ENs can be an example 

of detailed conceptualizations for smart manufacturing that can be made for indicating AE 

capability development mechanisms. Monitoring and reporting structures, hinges capacity can 

be another example of conceptualization for advanced preventive maintenance. 

Equ 1: Objective Function: Optimize Workflow Efficiency 

 
 

2. Understanding Digital Twins 

Although numerous academic articles on digital twins are available, the lack of common 

definitions remains a problem. A digital twin is generally concerned with the virtual 

representation of the physical world but varies in terms of levels of abstraction, fidelity, 

manifest variabilities, and interfaces. Generally, there are three primary types based on the 

components that constitute the digital twin: (1) the mass and energy discrete components; (2) 

the system components at different abstraction levels; (3) the components that constitute the 

twin. No matter what the components are, the data paths that link the twin with its real-world 

counterpart are one of the necessary parts for a digital twin. A digital twin includes a cloud 

model (digital twin cloud) to store the digital representation and links its physical counterpart 

through data paths. 

The digital twin technology creates a virtual representation of a physical asset or process, 

enabling real-time monitoring, analysis, and optimization . Digital twins received attention in 

various industries, including machine tools, assembly shop floors, and smart agriculture, with 

the necessary focus on facility layouts and operations. In a digital twin-based shop floor, digital 

twin-based facility layouts and process plans are proposed to optimize resource usage and 

improve productivity. A digital twin-enabled acceleration structure modeling and usage 

assessment framework is developed to identify the critical limitations of the standardized 

accelerator structure. Facility planning in a digital twin-enabled framework is addressed to 

create a detailed grouping layout for a new shop layout. A customizable simulation framework 

for digital twins of machine tools is created to make them customizable and user-friendly for 

production planners. Hybrid digital twins are proposed to analyze the process planning and 

scheduling methods of neural architecture searches. 
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               Fig 2: Conceptual framework of digital twin 

2.1. Definition and Concept                                                           

A Digital Twin (DT) is a data-connected digital replica of physical factories, enabling 

simulation of shop floor operations through real-time data integration from IoT devices, such 

as sensors and controllers. Thus, it can track shop floor workflow/activity status and simulate 

future workflow. The extensive definitions of a DT sector highlight its multifaceted nature. In 

manufacturing, a DT is a data-connected 3D digital counterpart of the physical system, 

reflecting the past, present, and future behaviors of the physical twin, fully enabling hardware-

software interaction [1]. It relies on a representation of the factory formed using 3D CAD 

models paired with an Industry 4.0-enabled Data Model. Digital data from Internet of Things 

(IoT) sensors is connected to the digital replica factory through the Model-Driven 

Development process. Digital twins can be regarded as one of the key elements of smart 

factories and Industry 4.0. The main aim of digital twins in the shop floor is to represent the 

current status of the shop floor and simulate/analyze future changes to improve the efficiency 

of the shop floor manufacturing process. Digital twins are data-connected, digital 

representations of the physical world formed using data, models, and algorithms. Current 

states of the physical twin are reflected into the digital twin using data from the sensors 

embedded in the physical systems. By combining digital data with models, the past and future 

states of the physical twin can be simulated through a digital twin. This enables the visibility 

of the shop floor to track the current status of each machine, product, and activity, and the 

analytical capability to analyze areas for process improvement. 

This concept includes broad applications of production simulation, optimization, Artificial 

Intelligence (AI), etc. Digital twins can replicate the workflow, jobs, machines, orders, product 

properties, etc. of the physical shop floor using digital data obtained from the physical systems. 

Also, it can support the simulation of the shop floor workflows using a modified and improved 

representation of the current state. Digital twins can illustrate the reproduction/execution of 

workflow/agent-based simulation of the shop floor processes. This application can be used to 

evaluate effects of resource change on process performance indicators, AI techniques for 
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scheduling processes, etc. The simulation model development process involves a selection of 

the modelling approach based on the evaluation objective, an analysis of data to extract meta-

models, and the implementation of simulation models in any discrete event simulation or 

agent-based simulation software. 

2.2. Types of Digital Twins                                                     

Digital Twin is a means of representing and monitoring a ‘physical’ entity or entity set in a 

digital domain. Representation is done through visualizing real objects into 3D CAD 

modelling or using digital renderers, animation techniques, and real-time high-speed 

computation engines. A DT is established by connecting digital models to data fed from the 

physical space and key attributes of the system. Such data interpretation includes breaking 

mean-centering and time-series analysis as the system elements expand the state space due to 

uncertainties in inner dynamics or external interaction. Monitoring involves data sampling, 

cleaning, and clean batch optimization effect modeling, which can incur expensive uses of 

change dust, clean water, pressure-drops, equipment-stresses, and lubricant use in the 

manufacturing domain in a context-specific area. Based on the cyber element and 

communication network, a Digital Twin guarantees real-time detailed object behavior and 

deep insights. To reconcile forecasting with meaningful, plan-enabling views and/or 

embedded intelligence on the manufacturing floor, the proposed DT approach introduces a 

specific assessment of susceptibility zones on cylindrical objects under disparate heating 

conditions with diverse roughness characteristics. Such fuzzy zones can be interpreted 

effectively using DT-PD modeling. The DT-enabled framework provides a list and priority of 

upcoming actions. Using graphical scenarios, it facilitates understanding and adjustability of 

the expected timeframe of a framework automation effect in manufacturing domains. A data-

driven process-mining (PM) portfolio can be used to reconstruct as-is workflows and inference 

of models that aggregate individual, aligned processes. Conversely, the lack of metric-enabled 

verification raises challenges for the reconciliation of reality with regard to expectations by 

business process models (BPM). The advent of Digital Twins - a virtual replica of a physical 

object or process that leverages data to observe and analyze - holds great potential for 

augmenting these analyses and generating insights that merit potential further investigation. 

More specifically, the PM-DT convergence is exemplified for the manufacturing shop-floor 

transformation of a deployment scenario in a German automotive OEM. Current gaps and 

challenges are described, along with specific needs for methodological frameworks - including 

interactions in between domain- and physics-based simulations of DT with corresponding 

data-driven approaches from the PM spectrum - within a hybrid AI-enabled framework. 

2.3. Applications in Manufacturing                                        

The interplay between the physical and virtual worlds has evolved due to the massive 

deployment of the Internet of Things (IoT) technologies and accompanying developments, 

forming Cyber-Physical Systems (CPS). Several industries are striving to build their own 

digital representations of the physical worlds, commonly referred to as Digital Twins (DT). 

Digital twins, a virtual copy of a physical object, have been widely considered an integral part 

of Industry 4.0 technologies. Digital twins combine simulation models of the physical entities 

with operational data to analyze the physical entities' performances. Generally, using a 
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comprehensive digital twin enables better understanding and optimization of the physical 

entity. However, Rich data recording from various sources and resolution levels in Smart 

Shops create a challenge in managing a scalable comprehensive digital twin. A comprehensive 

digital twin architecture to manage a digital twin at multiple abstraction levels is modeled. To 

demonstrate its effectiveness in a digital twin-enabled intelligent real-time decision-making 

use case and application, an AI-enabled framework is devised to automatically optimize the 

shop floor workflow domain. 

Industry 4.0 technologies are changing the characteristics of production systems in terms of 

the complexity, heterogeneity, and resolution of the integrated components. The digitization 

of manufacturing has led to extensive deploying sensors, devices, and systems to record large 

amounts of data with different granularity and quality across various levels of the shop floor. 

Using these data, understanding, monitoring, simulations, and analyses are needed to improve 

the performances and resilience of the manufacturing systems. Digital Twin, a virtual copy of 

a physical entity, is a widely investigated tool to use the collected data of the physical entity 

to analyze and improve its performances. Using a digital twin, better understanding, and 

performance of the physical entity can be achieved through a simulation-based analysis of the 

physical entity's future status and performances. 

3. The Role of AI in Workflow Automation 

The emergence of artificial intelligence has impacted various industries while fostering the 

growth of intelligent manufacturing systems. Traditionally, shop floor equipment has been 

monitored by simple PLCs or indicators, generating data that provides limited insight into the 

operation's efficiency. Presently, advanced manufacturing entails automatic equipment inputs 

and outputs measured through data acquisition devices and control systems. However, the data 

generated is vast and highly dimensional, fostering the demand for advanced AI techniques to 

enhance the utilization of the data. AI has garnered attention worldwide via research funding 

and institutional alliances and by being consolidated and showcased by larger manufacturing 

companies. Nevertheless, the expertise needed to conduct AI-related production research 

remains nascent in small- and medium-sized manufacturers. 

With the advancement of AI-enabled hardware and processing capabilities, human intelligence 

can be offloaded on industrial Internet devices, which are essential for tracking, monitoring, 

inferring, and supervising equipment and workflow in manufacturing operations. 

Subsequently, these AI-embedded systems generate insightful outputs instead of data streams. 

With low implementation costs, the AI systems can be integrated into existing manufacturing 

equipment and enable insight into states, operations, efficiency, and resource utilizations. The 

inability to derive efficiency, reliability, and cost insights would render automated solutions 

ineffectual. This indicates the need for intelligent automation for manufacturing, especially 

with a significantly higher rate of automation compared to other industries. 

Common AI-enabled Industrial Internet applications for AI-embedded workflow monitoring 

and equipment supervision are classified into the following dimensions: how to recognize 

targets, how to track the trajectory of targets, how to infer the state of targets, and how to 

respond to the outputs of inference. An industrial Internet solution portfolio provides hardware 
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and software for small- to medium-sized manufacturers for equipment supervision on a service 

subscription basis. Based on developed AI models, descriptors are proposed specifically for 

either workflow monitoring or equipment supervision. 

A systemic approach for workflow monitoring and equipment supervision across 

manufacturing levels is proposed. The systemic AI-embedded workflow monitoring and 

equipment supervision solutions provide a low-latency and integrable platform for optimizing 

the shop floor's workflow automation. Using production-related codes or system-level 

identifiers, the manufacturing flow can be acquired and customized. Responses from 

manufacturing workflow and equipment status can be used to calibrate models or adapt to 

environment changes. The information extracted using AI can mitigate the sharp decline in 

pre-trained model performance or infer states of observably unnoticed scenarios. 

 
               Fig 3: AI Workflow Automation 

3.1. AI Technologies Overview                                                   

The performance of intelligent manufacturing (IM) systems relies on data-manipulating 

technologies, such as machine learning (ML) methods, that aim to optimize their functioning 

through various models. Digital twins (DTs) represent an efficient way of merging physics-

based and data-driven models, enabling a more precise disruption in im data manipulation 

taking advantage of ICPs. The growing interest in combining these technologies requires a 

clear understanding of their functionalities and interactions. Their duties, dealings, and major 

international standards will be summarized as expected. 

AI is defined as the capability of a system to mimic human cognitive functions, such as 

learning and problem-solving. The vision for AI can be traced back to the ancient times when 

mystics were dreaming of creating something as capable as the human mind. The term AI was 

coined in 1956 at the Dartmouth conference, where it was recognized as an interdisciplinary 

field not restricted to one technology. The 1997 victory of IBM’s Deep Blue over reigning 

chess champion Garry Kasparov attracted big companies and investments. Although 

proposing different definitions, all agree on AI being a technological and scientific discipline 

intended to develop computerized procedures that carry out normally-abstracted, no-

formalizable, and semantic tasks. AI has evolved towards a more human-centered paradigm. 

A graphical representation of the timeline with some relevant events in AI’s history is 

provided. 
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AI technologies are classified into those requiring large amounts of numerical data labeled 

according to some clear criteria (supervised), ML methods, and those relying on an extensive 

understanding of the system’s physics (white-box). DT can be defined as a particularly 

sophisticated model based on engineering and scientific knowledge that captures a real-world 

object’s features and performance. AI methods may drive complex process systems 

(algorithm-selected inputs and process-algorithm interaction) but are ineffective in modeling 

high-order interactions. AI approaches can be classified based on whether inputs are 

continuous (cont. AI) or discrete (dis. AI). Regardless of the input form, AI is gaining 

relevance in manufacturing. AI solutions have proved their disruption power in predictive 

maintenance applications, “in the loop” toolbox for wide-ranging modeling and optimization 

tasks, process parameter optimization for energy-saving targets, and semi-supervised ML 

applications for replacing computationally heavy solvers. 

3.2. Machine Learning in Manufacturing                           

Machine learning (ML) is a field of computer science that deals with the analysis of data and 

the development of algorithms capable of learning and improving from that data . ML applies 

to statistics, data mining, pattern recognition, and artificial intelligence. In manufacturing, ML 

enables machines to create rules or heuristics to accomplish a specific task or produce a 

predetermined output based on a set of indicators. With experience, machines gradually make 

better decisions on the tasks in question. 

AutoML is specifically designed to automate ML processes. It essentially consists of 

recommending specific algorithms for specific datasets or optimizing feature 

selection/configuration and hyperparameters for a given algorithm on a specific dataset. With 

great benefit for small and medium-sized companies or industries with technical staff limited 

in knowledge of ML and data science, this kind of software, tools, or libraries is in great need. 

Automated data processing pipelines capable of implementation without the wide deployment 

of a data science team could significantly speed up the integration of results of the data-driven 

revolution in manufacturing. In addition to a set of data and a server, any industry could 

efficiently and effectively control and tag production and quality in real time. 

Traditionally, ML has been applied statically in manufacturing and similar industries. This 

means that by characterizing, often by hand, how the data acquisition systems and tools used 

to store, preprocess, and analyze data work and how they are interconnected at the system 

architecture level data, static ML methods can assess and name information flows, 

specifications, and even final performance measures. Unfortunately, this has two key 

drawbacks. First, large, complex models may be hardly interpretable. Second, pre-trained 

models, even if large and randomized, lack flexibility, which limits their ability to adapt to 

rapid system evolution. 

3.3. Predictive Analytics and Decision Making                           

The proposed SFFA-DT framework leverages the advantages of the advanced Digital Twin 

(DT) architecture. Most production systems are digitized, and as a result, a data explosion has 

occurred on the manufacturing floor. DTs allow for time representations and history 
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knowledge and generalize Data-Driven Decision Making (D3M) based on the ability to predict 

future states [4]. As the data floods, and complex structure increases, the identification of the 

problem and its solutions requires a more dynamic functionality. 

At the manufacturing scene, intelligent equipment including sensors, cameras, and Machine 

Learning (ML) models can be placed on or near areas of interest to reduce the volume and 

dimension of data. Instead of processing the images at the control center, a DT can complete 

the pre-process and train processes. The input layer of the DNN can be changed to adapt to the 

images or audio datasets with other dimensions. The result output can be represented in basic 

performances of the entities instead of the individual level. The processed images or audio can 

be sent to the uploaded system, L1, for an online service. The structure of the SFFA-DT is a 

hierarchical manner similar to the Automation Pyramid. 

First, the management level of DT models the integrated processes and monitors the global 

performance. The data preparation includes the extraction of relevant data from various 

historical/System Databases (SDB) and Real-Time Databases (RTDB) via SQL with 

timestamps to ensure unique data. Such data is usually large and inconsistent, with redundancy 

and outliers, which have to be cleaned before analysis. Raw data is cleaned through SQL and 

Python with efforts to increase the repeatability of the data preparation and cleaning progress. 

Based on the cleaned data, ML algorithms are selected according to characteristics in the 

application of product-type prediction. 

Equ 2: Task Scheduling Constraints 

 
 

4. Integration of Digital Twins and AI 

The integration of AI and digital twins (DTs) increases automation royalty in discovering, 

understanding, and simulating aspects of real systems which can augment respectability, 

accuracy, and comprehensibility of 3D/4D models of systems using observational data 

extracted from systems with or without causing interferences. 

Analysis of time series data is a type of model analysis. It analyzes aggregated data collected 

from systems as histograms or time series of quantities. The simplest form of understanding 

mass and capacity of systems is the histogram of the number of masses and the remaining 

capacity of machines collected over time. Analysis of time series data can also be carried out 

from a higher-level perspective by using probabilistic models such as Hidden Markov Models 
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(HMMs) or comparatively sophisticated models, e.g., simulations and neural networks, to 

overcome the latent transition problem. The predictive accuracy of these methods has also 

been improved by searching unobserved states and by applying unsupervised and supervised 

machine learning (ML) methods. the 3D aspect is usually prescribed with models while the 

temporality/4D aspect is generated and updated. Essence means not the real system but a 

visually and interactively reconstructed version of the real system for conceptualization or 

understanding which reflects fundamental aspects or dynamics of the real system by various 

abstraction, omission, and aggregation. 

Potentially, countless models themselves without energy may be represented. Even the holy 

grails of the models, Mahalanobis–Taguchi Systems (MTS), and pre-defined environment pre-

supposed for Simba can be violated. Digital twins work as E-Transition based on CCS and T-

S Systems in both sending aspects to digital worlds and in receiving aspects to understand or 

analyze aspects of systems in the interactive way mentioned above. Even different types of 

state or aspect spaces of digital twins work jointly and in harmony with expected 

fusion/symbiosis merits and their efficiency/sophistication can be improved by having more 

models. However, this fusion virtual space is disentangled on the modeling side in 

computational implementation. Computationally, DT works independently as a graphical e-

world or model world and as the model specification and operation is confined in this e-world. 

Therefore, development across spaces is not directly and instantaneously compatible. This can 

be bridged with homomorphic learning and reasoning. 

 
              Fig 4: Digital Twin for Integration 

4.1. Framework for Integration                                                

Digital Twin is a technology that has found applications in many industrial areas, e.g., power 

systems, autonomous cars, and smart grids. In fundamental assessment, it is a mirroring of 

elements and their interactions in the physical world in the digital world. Digital Twin also has 

the ability to connect the models, computation, and data of a system throughout its lifecycle – 

from conceptual design, through realization, operation, decision support, to evolution and 

obsolescence. This has pushed the Digital Twin research frontier in both modelling and 

computation techniques, and in the technology areas of big data, 3D visualization, IoT, and 

system science applications. This technology has opened a plethora of possibilities to mitigate 

the complexities and unwanted events related to systems characterization, modeling, analysis, 
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prediction, design performance study, operation optimization, and on-demand service 

specification. 

Although the concept of Digital Twin has blossomed, the adoption and implementation of 

Digital Twin methods in manufacturing is still largely in its infancy. Especially, existing 

methods of creating virtual models for production systems using simulation and optimization 

need to be tailored to prepare for Digital Twin technologies that allow an interaction among 

virtual models and data feedback. Virtual simulations (or models) are considered to be an 

integral part of a Digital Twin that yield a foretelling of the future and thus support the Digital 

Twin’s purpose, either to avoid possible undesired states of a system or to enhance desired 

states. However, methods or approaches to create simulation models that can be extended to 

be Digital Twins have not been structured as far as the author is aware. On the other hand, the 

virtual models need to be accurate enough so that the properties or behavior resulting from 

simulation can be believed. 

4.2. Challenges and Solutions                                                 

Various studies have examined the adoption of digital twins in manufacturing processes, 

including factories and smart factories. Some examples of the digital twin's deployment in 

manufacturing include a digital twin for the modelling of virtual factories. On the other hand, 

various studies have focused on the development of digital twin technologies. The enabling 

technologies and tools for augmenting digital twins have been discussed. A system 

architecture to conceptualise the digital twins in different domains is delineated, with several 

case studies discussed, including virtual human factory and intelligent service robotics. 

Additionally, some other studies focused on the development of digital twins for a specific use 

case, such as the modelling of a factory workflow with a cell level digital twin and the digital 

twin's deployment in condition monitoring and control. Digital twins can encompass various 

domains, including systems, plants, processes, and parts, and their integrations are made 

possible by the representation of the digital twins in various model abstractions as the 

enhancement of roles in the digital twins. Therefore, one of the challenges in the research of 

digital twin is the design of a multi-application interoperable digital twin that can best leverage 

various digital twin models simultaneously while being extendable to support new 

applications. 

Digital twins have numerous applications, and possible research directions can be listed. 

Management based digital twins: Involving a joint model comprising the overall information 

of a production line, such as a fuzzy digital twin of a flexible manufacturing system. These 

digital twins are also multi-purpose, as they can benefit planning, scheduling, and control 

applications. There are various mathematical models for such digital twins, including Petri 

nets and based approaches, machine learning/mathematical programming approaches, and 

min-max expressions, not including their numerous combinatorial counterparts. 

5. Workflow Optimization Techniques 
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An important optimization area is the evaluation of the balance of production allocations when 

new production orders are being introduced. In this case, a weighted boolean sum function 

with dynamic weights can be considered concerning the workload, setup changeover times, 

production schedule, delivery dates, and deadlines of completion. The weights of the 

production behavioral characteristic factors can be assigned ordinal precedence, or 

heuristically estimated, through expert judgments or heuristics upon initial production 

allocation generation. The production resource agents can then ensure the awareness and 

observance of the prioritization goals or constraints regarding the refinement of the initial 

target behavior on dedicated neighboring computational nodes. The fittest schedules can then 

be replicated and dispatched to neighboring production agents while detouring through the 

evaluator agents and following their intrinsic AI-based competitive or synthetic-based 

heuristics. A configurable genetic algorithm can also choose tagged candidate schedules and 

let them evolve over generations to finally converge towards optimization near the best 

schedules. Inputs may flow according to each found schedule estimate, and the corresponding 

agent’s production scheduler can execute the acquired input feeds by initializing, changing or 

abridging the actively scheduled production resources’ states. 

The targeted estimated outcomes can be periodically released to specified production resource 

agents, which can then undertake relevant adjustments on their production resources for 

ensuring alignment with the desired scheduled behavior. The same initial conditions can also 

be evaluated in another phase with other agent configurations on other computational nodes 

for balancing diversification in search and demand evolvement scenarios. Dynamic production 

workflow perturbation can be autonomously regarded as a newly incepted disruption event. 

Initially, whether or not to accommodate input flows of unfolded tasks is to be considered. If 

positively regarding the occasional incidence of excessive workload, a bi-level optimization 

scenario wide in workload distribution equilibrium and production schedule adaptation can be 

undertaken. The new load task can then be forwarded to relevant adaptive production resource 

agents if the input tasks are relegated to existing rush items, and no related condition will be 

proceeded accordingly. An optimization layer constructed atop the agents can perform high-

level estimations. 

 
            Fig 5: Workflow Optimization Techniques 
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5.1. Process Mapping and Analysis                                            

The AI-enabled framework was developed in three subsections. In the first subsection, a 

framework for process mapping and evaluating automated workflow processes is introduced. 

The as-is process mapping flow was reformatted in the DSL. Further, the automated workflow 

was also notated using the modified process mapping flow. The matching of the two notations 

leads to the analysis of the gaps in the automated workflow process. Process mapping and 

analysis provides the foundations for model generation and re-engineering and evaluates the 

current status of the automated workflow process to suggest possible changes based on the 

factory and goal preferences. This study developed a framework for process mapping and 

analysis based on the DSL that includes methods for as-is and to-be process mapping and 

comparing the two mapping notations. Based on this framework, the as-is and to-be process 

mapping flows were produced, and initial matching was conducted. The initial matching led 

to the redesigning process of the automated workflow process, which has been discussed in 

detail in the next section. 

Digital twin offers simulation capabilities to enable robust evaluation of the correct and 

efficient operation of the object under consideration. A generic definition of computational 

simulations is "virtual models that exploit mathematical principles and algorithms to simulate 

physical phenomena." In a digital twin context, the virtual model should mimic the physical 

system at least in the context of output fidelity, i.e., a measure of the "exactitude" of predicted 

behaviour based on the models being practically feasible. Considering the twin nature of the 

method, the former forms the foundation of the latter. Thus, the virtual models need to be 

accurate and flexible enough to be updated along the lifecycle of the object as desired in a 

digital twin. Otherwise, it cannot be a proper digital twin. Based on this perspective, the study 

at hand proposes the process of developing and maintaining the digital twins of manufacturing 

systems via discrete event simulation models, considering the best practices of conventional 

modelling efforts. 

5.2. Lean Manufacturing Principles                                            

An ideal shop floor in an automated factory should be consistent with shop floor kinematics 

and shop floor current state. To get an appropriate workflow plan, a model is trained that 

connects DTs with shop floor control software. This AI-enabled Workflow Automation model 

has been successively applied to the assembly line of engine brackets. This model can be 

customized and generalized to any kind of factory by considering their specific automata 

parameters. DT is used to build real-time visual states of the assembly line, and automation 

intervals are predicted with LSTM-based networks. Concurrently, the collaboration among 

robots and materials is simulated by DTs pre-manufacturing and on-site period. By utilizing 

generative and deep learning technologies, shop floor localized optimization has been 

conducted successfully. In this proposal, the smart factory design-to-automation pipeline is 

significantly enhanced by this DT-driven automatic design task. This DT-enabled assembly 

shop floor DT is an integrated hybrid digital world that visualizes the real aspect of thousands 

of interactive parts from a supply-facing view and a detailed virtual representation of on-site 

tracks and motions. A factory space is coupled with the simulation of every manufacturing 

logic. Synchronizations are introduced to eliminate day-to-day conflicts. A blueprint is 
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generated and auto-piloted to off-the-shelf hardware, followed by repair provisioning. Finally, 

the shop floor is automatically cleaned and ready for production. As the requested showcase, 

a series of new automated processes for adding water in a hydrant is designed by DTs. Pipe 

lifts are systematically integrated with robotic arms and flexible conveyors for consecutive 

parts retrieval and water transfer.  

5.3. Continuous Improvement Strategies                                             

Continuous improvement is a structured approach that is applied systematically over long 

periods of time. The premise is that any activity that an organization engages in can be 

analyzed, redesigned, and/or improved. Expected benefits from continuously improving 

operations include increased productivity, enhanced quality and customer satisfaction, 

improved safety, and reduced costs. The case for continuous improvement requires ongoing 

attention, commitment, and education because of the risks associated with the implementation 

of a new way of doing business. Continuous improvement makes good sense intuitively. 

Continuous improvement is the incremental improvement of the efficiency and effectiveness 

of products, processes, and services over time, which is of special importance in manufacturing 

companies. The need of modern manufacturing companies is to improve products and 

processes more quickly and effectively and to deliver improved services. Also, they have to 

invest more money in more capable technologies, which in turn is needed to develop increased 

value. 

The goal of work presented was to help manufacturers to improve shop floor operations by a 

systematic process with help of TOC and CI techniques. It is common in manufacturing 

factories that once new machines or processes that will increase throughput are implemented, 

those machines or changes are not analyzed further and are considered to be just maintained. 

On the contrary, improvements should be assessed and measured periodically against KPIs. 

The SHOP analysis tool was built and is intended to help Agile, Lean, and Mistake-proofing 

teams to analyze improvements in many dimensions. The application together with 

methodology is considered to be an asset that can widen the range of means for measurements 

and analyses by CI practitioners and researchers. For this work in manufacturing practice, the 

introduction of new technologies and machines focuses on obstacles that are inherent in 

production improvement projects. 

Equ 3: KPI-Driven Feedback Loop for the Digital Twin 

6.  

 

Conclusion 

This paper proposes AI-enabled intelligent frameworks to optimize Workflow Automation 

regarding digital twins of shop floor processes. Automation workflows continuously receive 
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input data and produce output data. To automate with AI, the ability to understand the output 

data, gain predictive insights and maintain the output-dependent workflow are required. The 

output data of shop floor processes require object-specific understanding. For shop floor 

automation, the approaches based on a conventional data-centric method fail to grasp the 

required specific understanding. They lack the ability to “understand” the output data object-

specifically. This paper proposes to use an object-centric representation for automated 

understanding, predicting insights, explaining insights, maintaining the automation pipelines, 

and safeguarding the production process. 

The object-centric understanding enables an indication-aware and system-agnostic predictive 

analysis and explanation to mitigate the sophistication, prevent model errors for varied 

instances, and customize user requirements. Furthermore, by virtue of the model reuse, 

monitoring automation can be developed and sustained efficiently. For optimal parameter 

tuning on complex systems while ensuring system constraint satisfaction, a model-free 

optimization method is proposed. It ensures convergence to optimal settings regardless of the 

initial condition and enables the propagation of dynamic constraints during the operation based 

on the control approach. Other model-free process plans are realized regarding conservation 

and production line design. They can work for other tools beyond shop floor automation. 

 
                

Fig : Digital Twin Based Optimization of a Manufacturing Execution System to Handle 

High Degrees of Customer Specifications 

6.1. Future Trends                                                                   

In recent years, the rapid integration of AI into various facets of society has spurred the need 

to clarify how best to develop, deploy, and govern AI systems. However, as AI reveals its 

potential to augment and change how work is organised and performed, there is a pressing 

need to revisit shop floor workflow automation. This data-driven AI-enabled Framework for 

Optimizing Shop Floor Workflow Automation provides a new foundation for analysing, 

designing, and optimising shop floor workflow automation across industries. This research 

makes advances in extending a full stack framework, methodologies, tools, and workflows for 

building both assessable and controllable implementations of smart workflow automation. 
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These newly introduced capabilities are validated using industrial-grade case studies involving 

the application of legacy industrial bots and current, state-of-the-art digital twins. Future 

research will explore integrating emerging AI techniques to provide an ever-richer toolbox for 

analysing, designing, and optimising complex smart workflow automation. Additionally, the 

applied domains will be expanded to include other aspects of smart workflow automation at 

different scales, and real implementations proposals will be developed in collaboration with 

responsible industrial partners. The digital twin models and technologies are well suited to 

examine and improve these complicated production processes where material handling 

robotics systems are already used to automate these complicated processes. In this regard, for 

an interface between the digital twins and the web-based environment, they have designed the 

architecture of a digital twin web-based comparative learning simulation platform with both 

localised and cloud computing embedded, which can create the authorable digital twin based 

on highly parametric digital twin model. 
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