Nanotechnology Perceptions
ISSN 1660-6795
Wwww.nano-ntp.com

Optimizing Shop Floor Workflow
Automation With Digital Twins: An Al-
Enabled Framework

Dwaraka Nath Kummari

Senior Software Engineer, dwarakanathkummari@gmail.com, ORCID ID: 0009-0000-4113-
2569

Automation of shop floor tasks can deliver a level of operational efficiency impossible to
achieve otherwise. However, it is often challenging to achieve workflow automation solutions
compatibility with companies’ existing IT architecture and to ensure automated workflows are
efficient and robust. To solve these known problems, an Al-enabled framework consisting of
three modules is proposed. The first module, Process Mining, observes existing manually
performed workflows and discovers workflow graphs from them. The second module,
Recommender System, utilizes the discovered workflow graphs to generate task execution
recommendations for the end user to help integrate existing workflows into workflow
automation software. The third module, Simulation, assists with identifying integration-related
issues with the recommended tasks by enabling “what if” scenario evaluations.

While the mobile robot approach does not need to be adjusted for the implementation of the
event simulation methodology, another challenge is to address semiconductor assembly factory
service engineering aspects. Semiconductor assemblies consist of many chips and transistors
that require signal processing services across different production processes. Therefore, the
workshop floor has to depend on the proper service provisioning, routing and scheduling
approaches that would affect service performance metrics such as workload balancing and
service make-span. On the other hand, the routing and scheduling have to take ability-to-serve
criteria in real-time into consideration, which adds onto the computational complexity
exponentially with respect to the increase of the system size. Therefore, a heuristic approach
based on resource agent-based analytical methods is applied to address such computationally
complex problems, and a customized simulation modeling approach is developed to devise test
cases in workshop floor settings for the validation of given problem instances.

Keywords: Digital Twin; Simulation Modeling; Work Environments; Shop Floor;
Manufacturing Layouts; Selecting Factors; Factory Time Simulation; Workflow Automation;
Digital Twin Development.

1. Introduction

Today’s industrial world is teetering on the edge of the Fourth Industrial Revolution (Industry
4.0). The widely discussed connectivity of machines and cyber-physical systems is
fundamentally changing the way factories develop, operate, plan, and optimize. The
dissolution of boundaries on the shop floor introduces new obstacles such as data deluge; yet
it also opens a plethora of opportunities to enhance productivity and flexibility beyond
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imaginations. It can enable truly new modes of production, characterized by a higher autonomy
of individual manufacturing resources, self adaption to unforeseen disturbances, and even self-
organization of autonomous production systems.

The wide availability of high-fidelity data sources enables a profound understanding of the
complex dependencies and interrelations of the Ontological or Machine Level (i.e., industrial
assets like CNCs, robots, and AGVs specifically designed to transform raw materials into
finished products). New modelling paradigms from Data Science, Cyber-Physical Systems,
Optimization, and Artificial Intelligence can facilitate the self-organization and adaptation of
shop floor processes and infrastructures. At the same time, advanced analytics can cope with
the increased complexity and dynamical properties of industrial processes. The deep
knowledge of the system enables a profound understanding of the complex dependencies and
interrelations at the design and planning levels, allowing for a more holistic evaluation of
design alternatives.
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Fig 1: Shop Floor Workflow Automation

1.1. Background and Significance

The rapid increase in flexibility requirements for manufacturing systems comes with a
significant increase in complexity. A reaction to this flexibility trend has been to use virtual
simulations, where manufacturing systems can be simulated based on modeling instead of
building physical prototype systems. Digital twins have emerged as a technology to predict
the undesirables and ensure desired performance of complex systems, control actions, and
production. A digital twin of a manufacturing system can be defined as a virtual factory with
real-world interactions. Digital twins have got attention in the manufacturing research
spectrum, as researchers have tried to explore the capabilities offered by this technology.
However, their industrial application of it has seen only limited successes.

Simulations can emulate numerous possible scenarios regarding a manufacturing system, to
select the most desirable one. Virtual simulations are thus becoming an integral part of a digital
twin. However, the nature of a simulation model is such that creating simulation models that
can be extended as a digital twin is a challenge. This necessitates a structured approach for
creating the models, ensuring their accuracy and flexibility, enough to be updated along the
life cycle of the factory. A collaboration between machine learning and discrete event
simulation is called an Al simulation joint capability construction framework. This framework
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can coordinate and orchestrate EN-cooperation with Al-enabled simulation joint capabilities
as versatile envisioned entities. Generation, and utilization life cycle of ENs can be an example
of detailed conceptualizations for smart manufacturing that can be made for indicating AE
capability development mechanisms. Monitoring and reporting structures, hinges capacity can
be another example of conceptualization for advanced preventive maintenance.

Equ 1: Objective Function: Optimize Workflow Efficiency

P
min (Cpx) oOr max (T)

Where:
o Clyax = maximum completion time across all jobs
s P = total number of parts/products completed

T = total time interval

2. Understanding Digital Twins

Although numerous academic articles on digital twins are available, the lack of common
definitions remains a problem. A digital twin is generally concerned with the virtual
representation of the physical world but varies in terms of levels of abstraction, fidelity,
manifest variabilities, and interfaces. Generally, there are three primary types based on the
components that constitute the digital twin: (1) the mass and energy discrete components; (2)
the system components at different abstraction levels; (3) the components that constitute the
twin. No matter what the components are, the data paths that link the twin with its real-world
counterpart are one of the necessary parts for a digital twin. A digital twin includes a cloud
model (digital twin cloud) to store the digital representation and links its physical counterpart
through data paths.

The digital twin technology creates a virtual representation of a physical asset or process,
enabling real-time monitoring, analysis, and optimization . Digital twins received attention in
various industries, including machine tools, assembly shop floors, and smart agriculture, with
the necessary focus on facility layouts and operations. In a digital twin-based shop floor, digital
twin-based facility layouts and process plans are proposed to optimize resource usage and
improve productivity. A digital twin-enabled acceleration structure modeling and usage
assessment framework is developed to identify the critical limitations of the standardized
accelerator structure. Facility planning in a digital twin-enabled framework is addressed to
create a detailed grouping layout for a new shop layout. A customizable simulation framework
for digital twins of machine tools is created to make them customizable and user-friendly for
production planners. Hybrid digital twins are proposed to analyze the process planning and
scheduling methods of neural architecture searches.
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Fig 2: Conceptual framework of digital twin
2.1. Definition and Concept

A Digital Twin (DT) is a data-connected digital replica of physical factories, enabling
simulation of shop floor operations through real-time data integration from IoT devices, such
as sensors and controllers. Thus, it can track shop floor workflow/activity status and simulate
future workflow. The extensive definitions of a DT sector highlight its multifaceted nature. In
manufacturing, a DT is a data-connected 3D digital counterpart of the physical system,
reflecting the past, present, and future behaviors of the physical twin, fully enabling hardware-
software interaction [1]. It relies on a representation of the factory formed using 3D CAD
models paired with an Industry 4.0-enabled Data Model. Digital data from Internet of Things
(1oT) sensors is connected to the digital replica factory through the Model-Driven
Development process. Digital twins can be regarded as one of the key elements of smart
factories and Industry 4.0. The main aim of digital twins in the shop floor is to represent the
current status of the shop floor and simulate/analyze future changes to improve the efficiency
of the shop floor manufacturing process. Digital twins are data-connected, digital
representations of the physical world formed using data, models, and algorithms. Current
states of the physical twin are reflected into the digital twin using data from the sensors
embedded in the physical systems. By combining digital data with models, the past and future
states of the physical twin can be simulated through a digital twin. This enables the visibility
of the shop floor to track the current status of each machine, product, and activity, and the
analytical capability to analyze areas for process improvement.

This concept includes broad applications of production simulation, optimization, Artificial
Intelligence (Al), etc. Digital twins can replicate the workflow, jobs, machines, orders, product
properties, etc. of the physical shop floor using digital data obtained from the physical systems.
Also, it can support the simulation of the shop floor workflows using a modified and improved
representation of the current state. Digital twins can illustrate the reproduction/execution of
workflow/agent-based simulation of the shop floor processes. This application can be used to
evaluate effects of resource change on process performance indicators, Al techniques for
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scheduling processes, etc. The simulation model development process involves a selection of
the modelling approach based on the evaluation objective, an analysis of data to extract meta-
models, and the implementation of simulation models in any discrete event simulation or
agent-based simulation software.

2.2. Types of Digital Twins

Digital Twin is a means of representing and monitoring a ‘physical’ entity or entity set in a
digital domain. Representation is done through visualizing real objects into 3D CAD
modelling or using digital renderers, animation techniques, and real-time high-speed
computation engines. A DT is established by connecting digital models to data fed from the
physical space and key attributes of the system. Such data interpretation includes breaking
mean-centering and time-series analysis as the system elements expand the state space due to
uncertainties in inner dynamics or external interaction. Monitoring involves data sampling,
cleaning, and clean batch optimization effect modeling, which can incur expensive uses of
change dust, clean water, pressure-drops, equipment-stresses, and lubricant use in the
manufacturing domain in a context-specific area. Based on the cyber element and
communication network, a Digital Twin guarantees real-time detailed object behavior and
deep insights. To reconcile forecasting with meaningful, plan-enabling views and/or
embedded intelligence on the manufacturing floor, the proposed DT approach introduces a
specific assessment of susceptibility zones on cylindrical objects under disparate heating
conditions with diverse roughness characteristics. Such fuzzy zones can be interpreted
effectively using DT-PD modeling. The DT-enabled framework provides a list and priority of
upcoming actions. Using graphical scenarios, it facilitates understanding and adjustability of
the expected timeframe of a framework automation effect in manufacturing domains. A data-
driven process-mining (PM) portfolio can be used to reconstruct as-is workflows and inference
of models that aggregate individual, aligned processes. Conversely, the lack of metric-enabled
verification raises challenges for the reconciliation of reality with regard to expectations by
business process models (BPM). The advent of Digital Twins - a virtual replica of a physical
object or process that leverages data to observe and analyze - holds great potential for
augmenting these analyses and generating insights that merit potential further investigation.
More specifically, the PM-DT convergence is exemplified for the manufacturing shop-floor
transformation of a deployment scenario in a German automotive OEM. Current gaps and
challenges are described, along with specific needs for methodological frameworks - including
interactions in between domain- and physics-based simulations of DT with corresponding
data-driven approaches from the PM spectrum - within a hybrid Al-enabled framework.

2.3. Applications in Manufacturing

The interplay between the physical and virtual worlds has evolved due to the massive
deployment of the Internet of Things (loT) technologies and accompanying developments,
forming Cyber-Physical Systems (CPS). Several industries are striving to build their own
digital representations of the physical worlds, commonly referred to as Digital Twins (DT).
Digital twins, a virtual copy of a physical object, have been widely considered an integral part
of Industry 4.0 technologies. Digital twins combine simulation models of the physical entities
with operational data to analyze the physical entities' performances. Generally, using a
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comprehensive digital twin enables better understanding and optimization of the physical
entity. However, Rich data recording from various sources and resolution levels in Smart
Shops create a challenge in managing a scalable comprehensive digital twin. A comprehensive
digital twin architecture to manage a digital twin at multiple abstraction levels is modeled. To
demonstrate its effectiveness in a digital twin-enabled intelligent real-time decision-making
use case and application, an Al-enabled framework is devised to automatically optimize the
shop floor workflow domain.

Industry 4.0 technologies are changing the characteristics of production systems in terms of
the complexity, heterogeneity, and resolution of the integrated components. The digitization
of manufacturing has led to extensive deploying sensors, devices, and systems to record large
amounts of data with different granularity and quality across various levels of the shop floor.
Using these data, understanding, monitoring, simulations, and analyses are needed to improve
the performances and resilience of the manufacturing systems. Digital Twin, a virtual copy of
a physical entity, is a widely investigated tool to use the collected data of the physical entity
to analyze and improve its performances. Using a digital twin, better understanding, and
performance of the physical entity can be achieved through a simulation-based analysis of the
physical entity's future status and performances.

3. The Role of Al in Workflow Automation

The emergence of artificial intelligence has impacted various industries while fostering the
growth of intelligent manufacturing systems. Traditionally, shop floor equipment has been
monitored by simple PLCs or indicators, generating data that provides limited insight into the
operation's efficiency. Presently, advanced manufacturing entails automatic equipment inputs
and outputs measured through data acquisition devices and control systems. However, the data
generated is vast and highly dimensional, fostering the demand for advanced Al techniques to
enhance the utilization of the data. Al has garnered attention worldwide via research funding
and institutional alliances and by being consolidated and showcased by larger manufacturing
companies. Nevertheless, the expertise needed to conduct Al-related production research
remains nascent in small- and medium-sized manufacturers.

With the advancement of Al-enabled hardware and processing capabilities, human intelligence
can be offloaded on industrial Internet devices, which are essential for tracking, monitoring,
inferring, and supervising equipment and workflow in manufacturing operations.
Subsequently, these Al-embedded systems generate insightful outputs instead of data streams.
With low implementation costs, the Al systems can be integrated into existing manufacturing
equipment and enable insight into states, operations, efficiency, and resource utilizations. The
inability to derive efficiency, reliability, and cost insights would render automated solutions
ineffectual. This indicates the need for intelligent automation for manufacturing, especially
with a significantly higher rate of automation compared to other industries.

Common Al-enabled Industrial Internet applications for Al-embedded workflow monitoring
and equipment supervision are classified into the following dimensions: how to recognize
targets, how to track the trajectory of targets, how to infer the state of targets, and how to
respond to the outputs of inference. An industrial Internet solution portfolio provides hardware
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and software for small- to medium-sized manufacturers for equipment supervision on a service
subscription basis. Based on developed Al models, descriptors are proposed specifically for
either workflow monitoring or equipment supervision.

A systemic approach for workflow monitoring and equipment supervision across
manufacturing levels is proposed. The systemic Al-embedded workflow monitoring and
equipment supervision solutions provide a low-latency and integrable platform for optimizing
the shop floor's workflow automation. Using production-related codes or system-level
identifiers, the manufacturing flow can be acquired and customized. Responses from
manufacturing workflow and equipment status can be used to calibrate models or adapt to
environment changes. The information extracted using Al can mitigate the sharp decline in
pre-trained model performance or infer states of observably unnoticed scenarios.

@ ® W

ERP Quality MES
|

@

F-ID‘ A | 2T
Production Data Data Al & Predictive
Line Historian Store Analytics

Algorithms
o
CRS Alerts
‘o

Process
Flows

Fig 3: Al Workflow Automation

3.1. Al Technologies Overview

The performance of intelligent manufacturing (IM) systems relies on data-manipulating
technologies, such as machine learning (ML) methods, that aim to optimize their functioning
through various models. Digital twins (DTs) represent an efficient way of merging physics-
based and data-driven models, enabling a more precise disruption in im data manipulation
taking advantage of ICPs. The growing interest in combining these technologies requires a
clear understanding of their functionalities and interactions. Their duties, dealings, and major
international standards will be summarized as expected.

Al is defined as the capability of a system to mimic human cognitive functions, such as
learning and problem-solving. The vision for Al can be traced back to the ancient times when
mystics were dreaming of creating something as capable as the human mind. The term Al was
coined in 1956 at the Dartmouth conference, where it was recognized as an interdisciplinary
field not restricted to one technology. The 1997 victory of IBM’s Deep Blue over reigning
chess champion Garry Kasparov attracted big companies and investments. Although
proposing different definitions, all agree on Al being a technological and scientific discipline
intended to develop computerized procedures that carry out normally-abstracted, no-
formalizable, and semantic tasks. Al has evolved towards a more human-centered paradigm.
A graphical representation of the timeline with some relevant events in AI’s history is
provided.
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Al technologies are classified into those requiring large amounts of numerical data labeled
according to some clear criteria (supervised), ML methods, and those relying on an extensive
understanding of the system’s physics (white-box). DT can be defined as a particularly
sophisticated model based on engineering and scientific knowledge that captures a real-world
object’s features and performance. Al methods may drive complex process systems
(algorithm-selected inputs and process-algorithm interaction) but are ineffective in modeling
high-order interactions. Al approaches can be classified based on whether inputs are
continuous (cont. Al) or discrete (dis. Al). Regardless of the input form, Al is gaining
relevance in manufacturing. Al solutions have proved their disruption power in predictive
maintenance applications, “in the loop” toolbox for wide-ranging modeling and optimization
tasks, process parameter optimization for energy-saving targets, and semi-supervised ML
applications for replacing computationally heavy solvers.

3.2. Machine Learning in Manufacturing

Machine learning (ML) is a field of computer science that deals with the analysis of data and
the development of algorithms capable of learning and improving from that data . ML applies
to statistics, data mining, pattern recognition, and artificial intelligence. In manufacturing, ML
enables machines to create rules or heuristics to accomplish a specific task or produce a
predetermined output based on a set of indicators. With experience, machines gradually make
better decisions on the tasks in question.

AutoML is specifically designed to automate ML processes. It essentially consists of
recommending specific algorithms for specific datasets or optimizing feature
selection/configuration and hyperparameters for a given algorithm on a specific dataset. With
great benefit for small and medium-sized companies or industries with technical staff limited
in knowledge of ML and data science, this kind of software, tools, or libraries is in great need.
Automated data processing pipelines capable of implementation without the wide deployment
of a data science team could significantly speed up the integration of results of the data-driven
revolution in manufacturing. In addition to a set of data and a server, any industry could
efficiently and effectively control and tag production and quality in real time.

Traditionally, ML has been applied statically in manufacturing and similar industries. This
means that by characterizing, often by hand, how the data acquisition systems and tools used
to store, preprocess, and analyze data work and how they are interconnected at the system
architecture level data, static ML methods can assess and name information flows,
specifications, and even final performance measures. Unfortunately, this has two key
drawbacks. First, large, complex models may be hardly interpretable. Second, pre-trained
models, even if large and randomized, lack flexibility, which limits their ability to adapt to
rapid system evolution.

3.3. Predictive Analytics and Decision Making

The proposed SFFA-DT framework leverages the advantages of the advanced Digital Twin
(DT) architecture. Most production systems are digitized, and as a result, a data explosion has
occurred on the manufacturing floor. DTs allow for time representations and history
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knowledge and generalize Data-Driven Decision Making (D3M) based on the ability to predict
future states [4]. As the data floods, and complex structure increases, the identification of the
problem and its solutions requires a more dynamic functionality.

At the manufacturing scene, intelligent equipment including sensors, cameras, and Machine
Learning (ML) models can be placed on or near areas of interest to reduce the volume and
dimension of data. Instead of processing the images at the control center, a DT can complete
the pre-process and train processes. The input layer of the DNN can be changed to adapt to the
images or audio datasets with other dimensions. The result output can be represented in basic
performances of the entities instead of the individual level. The processed images or audio can
be sent to the uploaded system, L1, for an online service. The structure of the SFFA-DT is a
hierarchical manner similar to the Automation Pyramid.

First, the management level of DT models the integrated processes and monitors the global
performance. The data preparation includes the extraction of relevant data from various
historical/System Databases (SDB) and Real-Time Databases (RTDB) via SQL with
timestamps to ensure unique data. Such data is usually large and inconsistent, with redundancy
and outliers, which have to be cleaned before analysis. Raw data is cleaned through SQL and
Python with efforts to increase the repeatability of the data preparation and cleaning progress.
Based on the cleaned data, ML algorithms are selected according to characteristics in the
application of product-type prediction.

Equ 2: Task Scheduling Constraints

min E E xiiti;
L |

Subject to:

o > .wy; =1 Vj (each task assigned once)

* Machine capacity/time constraints

» Precedence constraints: C; = C}, + 1y, if task k precedes j

4. Integration of Digital Twins and Al

The integration of Al and digital twins (DTs) increases automation royalty in discovering,
understanding, and simulating aspects of real systems which can augment respectability,
accuracy, and comprehensibility of 3D/4D models of systems using observational data
extracted from systems with or without causing interferences.

Analysis of time series data is a type of model analysis. It analyzes aggregated data collected
from systems as histograms or time series of quantities. The simplest form of understanding
mass and capacity of systems is the histogram of the number of masses and the remaining
capacity of machines collected over time. Analysis of time series data can also be carried out
from a higher-level perspective by using probabilistic models such as Hidden Markov Models
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(HMMs) or comparatively sophisticated models, e.g., simulations and neural networks, to
overcome the latent transition problem. The predictive accuracy of these methods has also
been improved by searching unobserved states and by applying unsupervised and supervised
machine learning (ML) methods. the 3D aspect is usually prescribed with models while the
temporality/4D aspect is generated and updated. Essence means not the real system but a
visually and interactively reconstructed version of the real system for conceptualization or
understanding which reflects fundamental aspects or dynamics of the real system by various
abstraction, omission, and aggregation.

Potentially, countless models themselves without energy may be represented. Even the holy
grails of the models, Mahalanobis—Taguchi Systems (MTS), and pre-defined environment pre-
supposed for Simba can be violated. Digital twins work as E-Transition based on CCS and T-
S Systems in both sending aspects to digital worlds and in receiving aspects to understand or
analyze aspects of systems in the interactive way mentioned above. Even different types of
state or aspect spaces of digital twins work jointly and in harmony with expected
fusion/symbiosis merits and their efficiency/sophistication can be improved by having more
models. However, this fusion virtual space is disentangled on the modeling side in
computational implementation. Computationally, DT works independently as a graphical e-
world or model world and as the model specification and operation is confined in this e-world.
Therefore, development across spaces is not directly and instantaneously compatible. This can
be bridged with homomorphic learning and reasoning.

Design of digital
model of operation
and maintenance

T Contain

Digital twin
technology to drive

intelligent
operation and
Contain maintenance Q:tam
Construction of Compatible Technology of

physical model of
operation and
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Fig 4: Digital Twin for Integration

digital-driven
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4.1. Framework for Integration

Digital Twin is a technology that has found applications in many industrial areas, e.g., power
systems, autonomous cars, and smart grids. In fundamental assessment, it is a mirroring of
elements and their interactions in the physical world in the digital world. Digital Twin also has
the ability to connect the models, computation, and data of a system throughout its lifecycle —
from conceptual design, through realization, operation, decision support, to evolution and
obsolescence. This has pushed the Digital Twin research frontier in both modelling and
computation techniques, and in the technology areas of big data, 3D visualization, 10T, and
system science applications. This technology has opened a plethora of possibilities to mitigate
the complexities and unwanted events related to systems characterization, modeling, analysis,
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prediction, design performance study, operation optimization, and on-demand service
specification.

Although the concept of Digital Twin has blossomed, the adoption and implementation of
Digital Twin methods in manufacturing is still largely in its infancy. Especially, existing
methods of creating virtual models for production systems using simulation and optimization
need to be tailored to prepare for Digital Twin technologies that allow an interaction among
virtual models and data feedback. Virtual simulations (or models) are considered to be an
integral part of a Digital Twin that yield a foretelling of the future and thus support the Digital
Twin’s purpose, either to avoid possible undesired states of a system or to enhance desired
states. However, methods or approaches to create simulation models that can be extended to
be Digital Twins have not been structured as far as the author is aware. On the other hand, the
virtual models need to be accurate enough so that the properties or behavior resulting from
simulation can be believed.

4.2. Challenges and Solutions

Various studies have examined the adoption of digital twins in manufacturing processes,
including factories and smart factories. Some examples of the digital twin's deployment in
manufacturing include a digital twin for the modelling of virtual factories. On the other hand,
various studies have focused on the development of digital twin technologies. The enabling
technologies and tools for augmenting digital twins have been discussed. A system
architecture to conceptualise the digital twins in different domains is delineated, with several
case studies discussed, including virtual human factory and intelligent service robotics.
Additionally, some other studies focused on the development of digital twins for a specific use
case, such as the modelling of a factory workflow with a cell level digital twin and the digital
twin's deployment in condition monitoring and control. Digital twins can encompass various
domains, including systems, plants, processes, and parts, and their integrations are made
possible by the representation of the digital twins in various model abstractions as the
enhancement of roles in the digital twins. Therefore, one of the challenges in the research of
digital twin is the design of a multi-application interoperable digital twin that can best leverage
various digital twin models simultaneously while being extendable to support new
applications.

Digital twins have numerous applications, and possible research directions can be listed.
Management based digital twins: Involving a joint model comprising the overall information
of a production line, such as a fuzzy digital twin of a flexible manufacturing system. These
digital twins are also multi-purpose, as they can benefit planning, scheduling, and control
applications. There are various mathematical models for such digital twins, including Petri
nets and based approaches, machine learning/mathematical programming approaches, and
min-max expressions, not including their numerous combinatorial counterparts.

5. Workflow Optimization Techniques
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An important optimization area is the evaluation of the balance of production allocations when
new production orders are being introduced. In this case, a weighted boolean sum function
with dynamic weights can be considered concerning the workload, setup changeover times,
production schedule, delivery dates, and deadlines of completion. The weights of the
production behavioral characteristic factors can be assigned ordinal precedence, or
heuristically estimated, through expert judgments or heuristics upon initial production
allocation generation. The production resource agents can then ensure the awareness and
observance of the prioritization goals or constraints regarding the refinement of the initial
target behavior on dedicated neighboring computational nodes. The fittest schedules can then
be replicated and dispatched to neighboring production agents while detouring through the
evaluator agents and following their intrinsic Al-based competitive or synthetic-based
heuristics. A configurable genetic algorithm can also choose tagged candidate schedules and
let them evolve over generations to finally converge towards optimization near the best
schedules. Inputs may flow according to each found schedule estimate, and the corresponding
agent’s production scheduler can execute the acquired input feeds by initializing, changing or
abridging the actively scheduled production resources’ states.

The targeted estimated outcomes can be periodically released to specified production resource
agents, which can then undertake relevant adjustments on their production resources for
ensuring alignment with the desired scheduled behavior. The same initial conditions can also
be evaluated in another phase with other agent configurations on other computational nodes
for balancing diversification in search and demand evolvement scenarios. Dynamic production
workflow perturbation can be autonomously regarded as a newly incepted disruption event.
Initially, whether or not to accommodate input flows of unfolded tasks is to be considered. If
positively regarding the occasional incidence of excessive workload, a bi-level optimization
scenario wide in workload distribution equilibrium and production schedule adaptation can be
undertaken. The new load task can then be forwarded to relevant adaptive production resource
agents if the input tasks are relegated to existing rush items, and no related condition will be
proceeded accordingly. An optimization layer constructed atop the agents can perform high-
level estimations.
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Fig 5: Workflow Optimization Techniques
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5.1. Process Mapping and Analysis

The Al-enabled framework was developed in three subsections. In the first subsection, a
framework for process mapping and evaluating automated workflow processes is introduced.
The as-is process mapping flow was reformatted in the DSL. Further, the automated workflow
was also notated using the modified process mapping flow. The matching of the two notations
leads to the analysis of the gaps in the automated workflow process. Process mapping and
analysis provides the foundations for model generation and re-engineering and evaluates the
current status of the automated workflow process to suggest possible changes based on the
factory and goal preferences. This study developed a framework for process mapping and
analysis based on the DSL that includes methods for as-is and to-be process mapping and
comparing the two mapping notations. Based on this framework, the as-is and to-be process
mapping flows were produced, and initial matching was conducted. The initial matching led
to the redesigning process of the automated workflow process, which has been discussed in
detail in the next section.

Digital twin offers simulation capabilities to enable robust evaluation of the correct and
efficient operation of the object under consideration. A generic definition of computational
simulations is "virtual models that exploit mathematical principles and algorithms to simulate
physical phenomena.” In a digital twin context, the virtual model should mimic the physical
system at least in the context of output fidelity, i.e., a measure of the "exactitude" of predicted
behaviour based on the models being practically feasible. Considering the twin nature of the
method, the former forms the foundation of the latter. Thus, the virtual models need to be
accurate and flexible enough to be updated along the lifecycle of the object as desired in a
digital twin. Otherwise, it cannot be a proper digital twin. Based on this perspective, the study
at hand proposes the process of developing and maintaining the digital twins of manufacturing
systems via discrete event simulation models, considering the best practices of conventional
modelling efforts.

5.2. Lean Manufacturing Principles

An ideal shop floor in an automated factory should be consistent with shop floor kinematics
and shop floor current state. To get an appropriate workflow plan, a model is trained that
connects DTs with shop floor control software. This Al-enabled Workflow Automation model
has been successively applied to the assembly line of engine brackets. This model can be
customized and generalized to any kind of factory by considering their specific automata
parameters. DT is used to build real-time visual states of the assembly line, and automation
intervals are predicted with LSTM-based networks. Concurrently, the collaboration among
robots and materials is simulated by DTs pre-manufacturing and on-site period. By utilizing
generative and deep learning technologies, shop floor localized optimization has been
conducted successfully. In this proposal, the smart factory design-to-automation pipeline is
significantly enhanced by this DT-driven automatic design task. This DT-enabled assembly
shop floor DT is an integrated hybrid digital world that visualizes the real aspect of thousands
of interactive parts from a supply-facing view and a detailed virtual representation of on-site
tracks and motions. A factory space is coupled with the simulation of every manufacturing
logic. Synchronizations are introduced to eliminate day-to-day conflicts. A blueprint is
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generated and auto-piloted to off-the-shelf hardware, followed by repair provisioning. Finally,
the shop floor is automatically cleaned and ready for production. As the requested showcase,
a series of new automated processes for adding water in a hydrant is designed by DTs. Pipe
lifts are systematically integrated with robotic arms and flexible conveyors for consecutive
parts retrieval and water transfer.

5.3. Continuous Improvement Strategies

Continuous improvement is a structured approach that is applied systematically over long
periods of time. The premise is that any activity that an organization engages in can be
analyzed, redesigned, and/or improved. Expected benefits from continuously improving
operations include increased productivity, enhanced quality and customer satisfaction,
improved safety, and reduced costs. The case for continuous improvement requires ongoing
attention, commitment, and education because of the risks associated with the implementation
of a new way of doing business. Continuous improvement makes good sense intuitively.

Continuous improvement is the incremental improvement of the efficiency and effectiveness
of products, processes, and services over time, which is of special importance in manufacturing
companies. The need of modern manufacturing companies is to improve products and
processes more quickly and effectively and to deliver improved services. Also, they have to
invest more money in more capable technologies, which in turn is needed to develop increased
value.

The goal of work presented was to help manufacturers to improve shop floor operations by a
systematic process with help of TOC and CI techniques. It is common in manufacturing
factories that once new machines or processes that will increase throughput are implemented,
those machines or changes are not analyzed further and are considered to be just maintained.
On the contrary, improvements should be assessed and measured periodically against KPIs.
The SHOP analysis tool was built and is intended to help Agile, Lean, and Mistake-proofing
teams to analyze improvements in many dimensions. The application together with
methodology is considered to be an asset that can widen the range of means for measurements
and analyses by CI practitioners and researchers. For this work in manufacturing practice, the
introduction of new technologies and machines focuses on obstacles that are inherent in
production improvement projects.

Equ 3: KPI-Driven Feedback Loop for the Digital Twin
Where:

s { are parameters of the simulation model

B =0 +ax - VJJL(Qt) ¢ L is aloss function between simulated and real
6.

Conclusion
This paper proposes Al-enabled intelligent frameworks to optimize Workflow Automation
regarding digital twins of shop floor processes. Automation workflows continuously receive
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input data and produce output data. To automate with Al, the ability to understand the output
data, gain predictive insights and maintain the output-dependent workflow are required. The
output data of shop floor processes require object-specific understanding. For shop floor
automation, the approaches based on a conventional data-centric method fail to grasp the
required specific understanding. They lack the ability to “understand” the output data object-
specifically. This paper proposes to use an object-centric representation for automated
understanding, predicting insights, explaining insights, maintaining the automation pipelines,
and safeguarding the production process.

The object-centric understanding enables an indication-aware and system-agnostic predictive
analysis and explanation to mitigate the sophistication, prevent model errors for varied
instances, and customize user requirements. Furthermore, by virtue of the model reuse,
monitoring automation can be developed and sustained efficiently. For optimal parameter
tuning on complex systems while ensuring system constraint satisfaction, a model-free
optimization method is proposed. It ensures convergence to optimal settings regardless of the
initial condition and enables the propagation of dynamic constraints during the operation based
on the control approach. Other model-free process plans are realized regarding conservation
and production line design. They can work for other tools beyond shop floor automation.

7 . ’ ’ — . —
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Fig : Digital Twin Based Optimization of a Manufacturing Execution System to Handle
High Degrees of Customer Specifications

6.1. Future Trends

In recent years, the rapid integration of Al into various facets of society has spurred the need
to clarify how best to develop, deploy, and govern Al systems. However, as Al reveals its
potential to augment and change how work is organised and performed, there is a pressing
need to revisit shop floor workflow automation. This data-driven Al-enabled Framework for
Optimizing Shop Floor Workflow Automation provides a new foundation for analysing,
designing, and optimising shop floor workflow automation across industries. This research
makes advances in extending a full stack framework, methodologies, tools, and workflows for
building both assessable and controllable implementations of smart workflow automation.
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These newly introduced capabilities are validated using industrial-grade case studies involving
the application of legacy industrial bots and current, state-of-the-art digital twins. Future
research will explore integrating emerging Al technigues to provide an ever-richer toolbox for
analysing, designing, and optimising complex smart workflow automation. Additionally, the
applied domains will be expanded to include other aspects of smart workflow automation at
different scales, and real implementations proposals will be developed in collaboration with
responsible industrial partners. The digital twin models and technologies are well suited to
examine and improve these complicated production processes where material handling
robotics systems are already used to automate these complicated processes. In this regard, for
an interface between the digital twins and the web-based environment, they have designed the
architecture of a digital twin web-based comparative learning simulation platform with both
localised and cloud computing embedded, which can create the authorable digital twin based
on highly parametric digital twin model.
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