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Diabetes, a chronic metabolic disorder, affects millions worldwide and poses a significant 

global health challenge due to its rising prevalence, driven by sedentary lifestyles, unhealthy 

diets, and aging populations. As a leading cause of death, diabetes imposes substantial burdens 

on healthcare systems and economies, compounded by diagnostic complexity, high patient-to-

doctor ratios, and delayed clinical interventions. 

To address these challenges, this study proposes an AI-based Clinical Decision Support 

System (CDSS) leveraging machine learning algorithms for early detection and personalized 

management of diabetes. Utilizing data from reputable healthcare repositories such as 

PhysioNet, the methodology involves rigorous pre-processing, including feature selection and 

handling of missing values, to ensure robustness and reliability. Comparative analysis of 14 

machine learning models, facilitated through PyCaret, aims to identify the most effective 

algorithm for improving diagnostic precision and clinical workflows. 

Furthermore, explainable artificial intelligence (XAI) techniques, including LIME and 

SHAP, are integrated to ensure transparency and trustworthiness in model predictions. By 

generating local and global explanations, the system provides insights into variables 

influencing decision-making, enabling clinicians to interpret and act on model outputs 

effectively. Experimental results demonstrate the potential of merging machine learning with 

XAI, achieving an accuracy of 86% on test data, and highlighting the strengths and limitations 

of different interpretable models. 

The expected outcomes include enhanced diagnostic accuracy, real-time evidencebased 

recommendations, and streamlined clinical workflows, leading to reduced complications, 

optimized resource allocation, and improved patient outcomes. This research underscores the 

transformative role of AI and XAI in managing complex diseases like diabetes, paving the way 

for innovative, transparent, and patient-centric healthcare solutions. 

 

1 Introduction 

Diabetes is a serious chronic disease caused by either insufficient insulin production or the 

body’s inability to use insulin effectively. This condition leads to high blood glucose levels 

and is associated with significant health complications, including cardiovascular diseases, 

kidney damage, and vision loss. According to the World Health Organization (WHO), diabetes 

is among the leading causes of death globally, and its prevalence continues to rise due to factors 

such as sedentary lifestyles, unhealthy diets, and ageing populations [1]. The growing burden 

http://www.nano/
http://www.nano-ntp.com/
http://www.nano-ntp.com/
http://www.nano-ntp.com/


4284   Intelligent Clinical Decision Support For …  Ritika Pandey, et. al. 

 

Nanotechnology Perceptions 20 No. S15 (2024) 4283-4300 

of diabetes presents a challenge to healthcare systems worldwide, demanding innovative 

solutions for effective management. 

The management of diabetes is hindered by several factors. First, diagnosing diabetes 

involves complex clinical evaluations and tests, which can lead to inconsistencies in early 

detection. Second, the high ratio of patients to healthcare providers, especially in 

resourcelimited settings, reduces the time and attention available for personalized care. Third, 

delayed clinical interventions often result in the progression of complications that could have 

been mitigated with timely action [2]. These challenges underscore the need for advanced tools 

to improve diabetes detection, monitoring, and treatment. 

Machine learning (ML) techniques offer a promising avenue for addressing these 

challenges. ML has gained popularity in the medical and health sciences due to its ability to 

analyze large datasets and identify patterns that are not easily discernible through traditional 

methods [3]. Examples of ML models, such as Support Vector Machines (SVM), Random 

Forest (RF), and Logistic Regression (LR), have been effectively applied in predicting diseases 

like diabetes (American Diabetes Association, 2020). Moreover, explainable artificial 

intelligence (XAI) has emerged as a critical subfield of AI that enhances trust and transparency 

by elucidating how ML models arrive at their predictions. XAI methods such as Local 

Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations 

(SHAP) allow clinicians to understand and interpret model outputs, fostering confidence in 

AI-driven decisions [4, 5]. 

This study aims to develop an AI-based Clinical Decision Support System (CDSS) for 

diabetes management. The proposed system leverages data from trusted healthcare 

repositories, such as PhysioNet, to train machine learning models. A total of 14 algorithms, 

including Random Forest, Support Vector Machines, Gradient Boosting, and Extreme 

Gradient Boosting, will be evaluated using PyCaret, an open-source machine learning library 

[6]. The methodology involves pre-processing data to handle missing values, selecting relevant 

features, and training the models. The models will be assessed and compared to identify the 

one with the highest predictive accuracy for diabetes diagnosis. Additionally, explainability 

techniques such as LIME and SHAP will be integrated to ensure that the CDSS provides 

interpretable and actionable insights [7]. By incorporating XAI, the system aims to address the 

critical need for transparency and reliability in AI-driven healthcare solutions. 

The findings of this research will contribute to improving clinical workflows by 

integrating real-time, evidence-based recommendations into the decision-making process. 

This study not only underscores the transformative potential of AI and XAI in managing 

complex diseases like diabetes but also highlights their utility in enhancing early detection, 

optimizing resource allocation, and improving patient outcomes. 

2 Related work 

Diabetes is a pressing issue in both developed and developing nations, significantly impacting 

public health [8]. Pancreatic dysfunction is a major cause of diabetes, leading to severe health 

complications such as cardiovascular diseases, renal failure, and neuropathy [9, 10]. 

Explainable Artificial Intelligence (XAI) techniques like Individual Conditional Expectation 

(ICE) plots and SHAP have been utilized to analyze medical datasets, demonstrating their 

utility in elucidating the factors influencing medical insurance premium costs. These insights 
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benefit decision-makers, insurers, and consumers by aiding in better policy selection [11]. 

Machine learning (ML)-based Clinical Decision Support Systems (CDSS) have shown the 

potential to enhance clinical decision-making [12]. However, their adoption requires 

collaboration between stakeholders and the incorporation of performance evaluations and 

external validation. In the context of Alzheimer’s disease, XAI methods such as LIME, SHAP, 

GradCAM, and LRP have been employed to classify models into conceptual frameworks, 

providing insights from local to global interpretations [13, 14]. 

For chronic kidney disease (CKD) prediction, researchers have applied XGBoost 

classifiers enhanced with SHAP analysis to identify key biomarkers such as hemoglobin and 

albumin, improving model interpretability and facilitating clinical understanding [15, 16]. 

Similarly, LIME and SHAP have been used in another study to visualize the impact of clinical 

features on CKD prediction models, enhancing transparency and aiding physicians in 

comprehending model reasoning [17]. Numerous diabetes prediction algorithms have also 

been developed, employing techniques like Linear Discriminant Analysis, Naive Bayes, 

Random Forest, and XGBoost. These models have integrated processes such as feature 

selection, data normalization, and dimensionality reduction to optimize prediction accuracy 

[18–23]. Comparative analyses have shown that Random Forest often outperforms other 

models, demonstrating high sensitivity, specificity, and diagnostic accuracy [24]. 

To better assess diabetes risk, researchers have developed classification models using 

algorithms like Decision Tree, ANN, and SVM, emphasizing non-invasive and cost-effective 

detection strategies [25, 26]. Studies have also compared traditional ML approaches with deep 

learning methods, concluding that Random Forest consistently delivers superior performance 

in diabetes prediction [24]. Furthermore, ensemble methods, such as WeightedVotingLRRFs, 

have shown promise in improving predictive accuracy by leveraging multiple supervised ML 

classifiers [27]. The role of XAI in healthcare extends beyond diabetes. Techniques like LIME 

and SHAP are widely used to interpret black-box models, providing feature importance scores 

that enhance model transparency and align with human intuition [13, 14]. For example, 

OptiLIME offers a trade-off between explanation stability and adherence to the underlying 

model, optimizing interpretability for practical use [28]. Other frameworks, like ExMed, 

enable domain experts to execute XAI analytics without extensive programming knowledge, 

expanding the accessibility of interpretability tools [29]. 

Applications of XAI in Electronic Health Records (EHRs) have demonstrated the utility 

of tools like SHAP and LIME in classifying patient data. For instance, SHAP has been 

employed to highlight clinically relevant features in diabetes and other health conditions, 

assisting clinicians in decision-making processes [30, 31]. In the fight against pandemics such 

as COVID-19, XAI methods have proven invaluable. By integrating interpretability 

techniques, medical professionals can identify critical biomarkers, improve early diagnosis, 

and enhance treatment strategies, thereby addressing pressing public health challenges 

effectively [32, 33]. 

In conclusion, the integration of ML and XAI techniques across various domains, 

including diabetes, CKD, and Alzheimer’s disease, highlights their transformative potential in 

improving healthcare outcomes. These approaches not only enhance prediction accuracy but 

also foster trust and understanding among clinicians, paving the way for broader adoption of 

AI-driven healthcare solutions. 
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3 Methodology 

The proposed approach is depicted in Figure 1 as a model diagram, illustrating the steps 

undertaken in this study to build and evaluate machine learning models using PyCaret. The 

methodology involves several stages, including data preprocessing, model training, 

evaluation, and explainability. 

Pre-processing involves transforming raw data into a clean and structured format suitable 

for machine learning algorithms. The data preparation phase includes tasks such as cleaning, 

integration, transformation, reduction, and handling missing values. Once preprocessing is 

completed, the dataset is split into training and testing subsets in an 80:20 ratio to ensure robust 

evaluation. 

Using PyCaret [6], various machine learning models are trained and compared to identify 

the best-performing algorithm based on metrics such as accuracy, precision, recall, and Area 

Under the Curve (AUC). PyCaret simplifies the process of model evaluation by automating 

feature selection, hyperparameter tuning, and performance comparison across multiple 

models. The binary classification task predicts whether an individual has diabetes (pre-

diabetes or diabetes) based on input features. 

Explainability is a key focus of this study. To make the model’s predictions interpretable, 

we leverage LIME and SHAP methodologies. These tools provide local and global 

explanations, helping clinicians understand the factors contributing to each prediction. Such 

transparency enhances trust and usability in clinical settings. This study discusses the strengths 

and limitations of LIME and SHAP to guide future researchers in selecting suitable 

explainability techniques for healthcare applications. 

3.1 Dataset 

The dataset used in this study is the ”diabetes binary health indicators BRFSS2015.csv,” 

containing 253,680 survey responses from the Centers for Disease Control and Prevention 

(CDC). The target variable, ”diabetes binary,” is binary, where 0 represents no diabetes or pre-

diabetes, and 1 indicates either condition. The dataset includes 21 feature variables, 
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Figure 1: Correlation Heatmap of Diabetes Dataset Features and it is slightly imbalanced. 

The Behavioral Risk Factor Surveillance System (BRFSS) is an annual health survey 

conducted by the CDC, involving over 400,000 participants across the United States. Since its 

inception in 1984, the BRFSS has collected data on preventive health services, risky behaviors, 

and chronic health conditions. This dataset provides a rich source of information for predictive 

modeling. 

Early diagnosis of diabetes can significantly benefit individuals by encouraging lifestyle 

changes, such as weight reduction, healthy eating, regular exercise, and medical consultations. 

Predictive models for diabetes risk are vital tools for public health experts, as they facilitate 

early interventions and personalized care. 

Figures 1 and 2 illustrate various features and correlations in the diabetes dataset, including 

a heatmap showing feature interactions. Table 1 provides a detailed description of the dataset 

attributes, offering insights into the underlying data structure and variables used for model 

building. 

 

Attributes Summary 

File Name diabetes binary health indicators BRFSS2015 

Description The dataset includes information from over 400,000 Americans on 

their use of preventive services, engagement in risky behaviors, and 

chronic health conditions related to diabetes. 

Source of Data The BRFSS is an annual health-related telephone survey conducted by 

the CDC. This dataset is publicly available on Kaggle. 

Overview Diabetes is a rapidly spreading global health issue, affecting people 

across all age groups, including children, teenagers, young adults, and 

seniors. Its long-term complications can lead to severe outcomes such 

as organ failure—including the liver, kidneys, heart, and stomach—

and may ultimately result in death. 

Total Records 253,681 rows 

Number of Fea- 

tures 

22 columns 

Features Includes variables such as Diabetes binary, HighBP, HighChol, 

CholCheck, BMI, Smoker, Stroke, HeartDisease or Attack, Physical 

Activity, Fruits and Vegetables, Heavy Alcohol Consumption, Any 

Healthcare, No Doctor’s Visit Cost, General Health, Mental Health, 

Physical Health, DiffWalk, Sex, Age, Education, and Income. 

Class The target variable, Diabetes binary, has two categories: 0 represents 

no diabetes, while 1 indicates prediabetes or diabetes. 
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Table 1: Characteristics and Attributes of the Dataset 

3.2 Multilayer Perceptron (MLP) ML Model 

The widely used machine learning Multi-Layer Perceptron (MLP) model is utilized for binary 

classification issues. This neural network-based supervised learning algorithm leverages 

multiple layers of interconnected nodes to learn complex patterns in data and make predictions. 

According to the input features, MLP creates a decision boundary by optimizing weights 

through backpropagation to divide data points into two groups. The following are the primary 

steps in developing an MLP model: 

• Data Collection: Each instance in our labeled dataset consists of a set of input features and 

a corresponding binary outcome indicating class membership (0 or 1). The dataset is 

carefully curated to ensure sufficient representation for both classes. 

• Data Preparation: Essential preprocessing steps are carried out, including filling in missing 

values, removing outliers, and applying necessary transformations to ensure 
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Figure 2: Feature Plots Representing Dataset Characteristics. data quality and consistency. 

• Train-Test Split: The dataset is split into two subsets—80% for training and 20% for testing. 

The training set is used to build the Multi-Layer Perceptron (MLP) model, while the test set 

evaluates the model’s performance on unseen data. 

• Feature Scaling: Input features are scaled to ensure uniformity and facilitate model training. 

Common methods include standardization (subtracting the mean and dividing by the 

standard deviation) and normalization (scaling data to a range between 0 and 1). 

• Model Training: The MLP model is trained using the training data. The model adjusts its 

weights through backpropagation by minimizing a cost function, typically binary cross-

entropy loss, using optimization algorithms like stochastic gradient descent or Adam. 

• Model Evaluation: The trained model is evaluated using the test set. Performance metrics 

such as accuracy, precision, recall, and F1 score are employed to gauge the model’s ability 

to correctly classify instances in the test set. 

• Prediction: After training and evaluation, the model can be used to make predictions on new, 

unseen data. The MLP employs the activation function in the output layer (e.g., sigmoid for 

binary classification) to compute the probability of class membership. A predefined decision 

threshold is then used to assign class labels based on these probabilities. 

•  

Class Recall F1-score Precision Support 

No Diabetes 0.858 0.986 0.917 34230 

Diabetes 0.613 0.122 0.204 6359 

Macro avg 0.735 0.554 0.561 40589 

Weighted avg 0.820 0.850 0.806 40589 

Accuracy  0.8506  

Table 2: Shows the Precision, Recall, F1-score, Support, and Accuracy metrics of the 

MLP model for diabetes prediction without any resampling. 

Class Recall F1-score Precision Support 

No Diabetes 0.947 0.680 0.792 34230 

Diabetes 0.316 0.796 0.453 6359 

Macro avg 0.632 0.738 0.622 40589 

Weighted avg 0.848 0.699 0.739 40589 

Accuracy  0.7245  
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Table 3: Shows the Precision, Recall, F1-score, Support, and Accuracy metrics of the 

MLP model for diabetes prediction with downsampling. 

In this work, we provide a Multi-Layer Perceptron (MLP) learning-based ML model for 

diabetes prediction. The MLP model leverages a neural network architecture to predict the 

probability of a discrete outcome given a set of input variables. The binary output of the MLP 

model can be either true or false, or one of two other possible classes, based on the decision 

boundary defined by the model’s learned parameters. 

 

Figure 3: Confusion matrix comparing actual and predicted labels with no sampling. 
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(a)                                                                    (b) 

Figure 4: (a) Displays the AUC curve, and (b) illustrates the recall and precision curve of the 

MLP model. 

MLP is an advanced technique for solving classification problems, particularly those 

involving non-linear relationships between features. It can effectively determine whether a 

new sample belongs to a particular group by utilizing multiple interconnected layers of 

neurons. MLP models are powerful tools for handling complex datasets, offering robust 

 

Figure 5: Confusion matrix comparing actual and predicted labels with downsampling. 
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 (a) (b) 

Figure 6: (a) Displays the AUC curve, and (b) illustrates the recall and precision curve of the 

MLP model with downsampling. 

performance in binary classification tasks. By using non-linear activation functions and 

backpropagation for training, MLP overcomes the limitations of simpler models like logistic 

regression, especially for datasets with non-linearly separable classes. 

Table 2 and Table 3 displays the MLP model’s Precision, Recall, F1-score, Support, 

and Accuracy for predicting diabetes with no resampling and down sampling. 

 P(Y = 1|X) = Softmax(WX + B) (1) 

Where: 

• P(Y = 1—X) represents the probability of the dependent variable being 1, given the input 

variables. 

• W is the weight matrix of the MLP model. • B is the bias vector applied to the neurons. 

• X represents the input features or predictors. 

• Softmax is the activation function in the output layer, converting the outputs into 

probabilities. 

Unlike logistic regression, which directly uses the sigmoid function for binary 

classification, the Multi-Layer Perceptron (MLP) employs multiple layers of neurons to learn 

complex patterns in the data. Each neuron in the hidden layers applies a non-linear activation 

function (e.g., ReLU, tanh) to the weighted sum of its inputs, enabling the model to capture 

non-linear relationships. 

The weights (W) and biases (B) are learned during the training process using optimization 

algorithms such as stochastic gradient descent (SGD) or Adam. The objective is to minimize 
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a cost function, typically binary cross-entropy for binary classification tasks, to improve the 

model’s predictive accuracy. 

The final probabilities are computed using the softmax function (or sigmoid for binary 

outputs in some configurations) in the output layer, making MLP a flexible and powerful 

alternative to logistic regression for complex datasets. 

Figures 3 and 5 present the data in a matrix format, with the actual classes represented on 

the Y-axis and the predicted classes on the X-axis. Figures 4 and 6 illustrate the Precision-

Recall Curve and ROC AUC score of the MLP model without and with downsampling, which 

evaluates the rank correlation between predictions and actual targets. This helps demonstrate 

the model’s effectiveness in ranking forecasts, allowing for informed decisions regarding the 

precision-recall trade-off. 

  (2) 

  (3) 

  (4) 

  (5) 

  (6) 

  (7) 

AUC is determined as the Area Under the Curve of Sensitivity (True Positive Rate, TPR) 

versus (1 - Specificity) (False Positive Rate, FPR). 

Evaluation metrics are essential for assessing the performance of machine learning models 

in classification tasks. To evaluate our model, we utilized several metrics, including Precision, 

Recall, F1-score, Sensitivity, Specificity, and AUC. Using logistic regression, our machine 

learning model achieved an accuracy of 85% on the diabetes dataset, demonstrating its 

effectiveness in predicting diabetes in patients. 

4 LIME and SHAP Explanation Techniques 

The importance of model interpretability in data science cannot be overstated. Gaining insight 

into a model’s inner workings is valuable for various reasons, including building trust in 

predictions, meeting regulatory requirements, debugging models, and ensuring model safety. 

Tools like LIME and SHAP play a significant role in enhancing model interpretability across 

a wide range of machine learning models, including Naive Bayes, Logistic Regression, Linear 

Regression, Decision Tree, Random Forest, Gradient Boosted Tree, SVM, Neural Networks, 

and more. 

LIME (Local Interpretable Model-Agnostic Explanations) approximates any black-box 

machine learning model with a local, interpretable surrogate model to explain individual 
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predictions [13]. This technique can be applied to diverse data types, including images, text, 

tabular data, and video. By generating explanations near a specific instance of interest, LIME 

provides localized insights into model behavior. Its versatility makes it a powerful tool for 

supervised learning models across various machine learning domains. In the field of 

explainable AI (XAI), LIME is especially notable for its applicability to text, graphical, and 

tabular data, offering a flexible and extensible approach. 

SHAP (SHapley Additive exPlanations), developed by Lundberg and Lee (2017), 

interprets individual predictions using Shapley values derived from cooperative game theory. 

Shapley values provide theoretically optimal explanations by calculating the average marginal 

contribution of each feature value across all possible coalitions of features [14]. SHAP offers 

a robust framework for understanding the influence of input features on predictions. 

InterpretML, an open-source Python library developed by H. Nori et al. [50], integrates 

multiple machine learning interpretability techniques into a unified package. This library is 

user-friendly and versatile, enabling the training of glass-box interpretable models that can 

explain machine learning predictions. InterpretML also provides interactive dashboards that 

allow users to filter data, form cohorts, and visualize model performance across different 

dataset variations. Its primary focus is to help users comprehend how models derive their 

predictions, offering a valuable resource for enhancing transparency and trust in machine 

learning systems. 

4.1 Model Interpretation using LIME 

Popular methods for interpreting models in machine learning include LIME, which is 

particularly valuable for understanding and explaining predictions generated by complex 

models like Multi-Layer Perceptrons (MLP). LIME provides local explanations by 

approximating the behavior of the MLP model around a specific instance or prediction. As a 

modelagnostic approach, LIME can be applied to any machine learning model without 

requiring insight into its internal workings. By bridging the gap between complex neural 

networks like MLP and human interpretability, LIME enhances trust and understanding of 

predictions. However, it is essential to note that LIME is one of many interpretation 

techniques, and its utility may vary based on the model’s characteristics and the specific use 

case. 

The forecast probabilities for the two classes — “0 = No diabetes” and “1 = Have 

prediabetes or diabetes”—are shown in the figure’s leftmost box. The central chart displays 

the main contributing features with their boundary values, while the actual feature values 

corresponding to the observation are shown in the rightmost table. This explanation is applied 

to the dataset’s eighth row, focusing on interpreting LIME’s forecast for this specific instance. 

The MLP model, referred to as model mlp, is passed to LIME. LIME uses the predict proba 

function to analyze the prediction results, allowing it to explain the model’s behavior for the 

selected instance. 
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Figure 7: LIME was used to generate an explanation for a prediction involving ten features, 

interpreting the forecast for the 8th row. The prediction likelihood provided by LIME is as 

follows: no diabetes with a probability of 0.74, and prediabetes or diabetes with a probability 

of 0.26. 

Finally, the dataset’s characteristics and labels are defined, with the number of features set 

to 10 and the top label probability calculated as 0.74. According to LIME’s prediction, the 

instance has a 0.74 probability of “No diabetes” and a 0.26 probability of “Prediabetes or 

diabetes,” as shown in Figure 7. The rules contributing to the prediction are displayed: negative 

contributors (left) include “GenHlth > 3.00,” “HighBP <= 1.00,” and “BMI > 31.0,” while 

positive contributors (right) include “Age <= 6.00,” “NoDocbcCost > 0.00,” and “Fruits <= 

1.00.” 

Figure 8 demonstrates how to interpret LIME’s prediction for the dataset’s 10th row using 

12 attributes. According to LIME’s prediction probabilities, the instance has a 0.76 likelihood 

of “No diabetes” and a 0.24 likelihood of “Prediabetes or diabetes,” showcasing how LIME 

effectively elucidates the contribution of individual features in the MLP model’s predictions. 

4.2 Model Interpretation using SHAP 

Another popular method for interpreting machine learning models, including Multi-Layer 

Perceptrons (MLPs), is SHAP (SHapley Additive exPlanations). SHAP assigns importance 

scores to features based on their contributions to the prediction, providing explanations for 

specific outcomes. SHAP is grounded in cooperative game theory, specifically Shapley values, 

which measure each player’s contribution in a collaborative setting. This makes SHAP a 

flexible and model-agnostic interpretability technique that can be applied to various machine 

learning models, including deep learning architectures like MLPs. 
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Figure 8: LIME was utilized to explain a prediction involving 12 features, interpreting the 

forecast for the 10th row. The prediction likelihood provided by LIME is as follows: no 

diabetes with a probability of 0.76, and prediabetes or diabetes with a probability of 0.24. 

The algorithm takes the MLP model and the instance to be explained as inputs. It outputs 

the SHAP values ϕ for each feature, which represent the contribution of each feature to the 

prediction for the given instance . The SHAP algorithm is detailed in Algorithm 2. 

It is important to note that interpreting complex models like MLPs remains an evolving 

area of research. Depending on the specific model and dataset, different interpretability 

techniques, such as LIME and SHAP, may yield varying results. 

Figure 9 demonstrates the feature importance derived from SHAP for a trained MLP model 

predicting diabetes. It shows the average impact of each feature on the model’s output. For 

instance, ”HighBP” was identified as the most critical feature, altering the probability of 

diabetes by an average of 6.4 percentage points (0.064 on the X-axis). ”GenHlth” was the 

second most significant feature, changing the probability by 6.0 percentage points (0.06 on the 

X-axis). Unlike permutation feature importance, which assesses relevance by measuring the 

decline in model performance, SHAP’s importance is based on the magnitude of feature 

attributions. While feature importance plots are valuable, they lack additional context about 

the feature impacts. 

Figure 10 presents a summary plot that combines feature relevance and their impacts. Each 

point on the summary plot corresponds to a Shapley value for an instance and a feature. The 

x-axis represents the Shapley value, while the y-axis corresponds to the feature. The color of 

the points indicates the value of the feature, ranging from low to high. Jittering overlapping 

points along the y-axis reveals the distribution of Shapley values for each feature. Features are 

displayed in order of relevance. 

Figure 11 illustrate force plots that demonstrate how individual features influence the MLP 

model’s prediction for specific observations. These plots provide explanations of 
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Figure 9: The average absolute Shapley value is used to measure the importance of SHAP 

features. High blood pressure emerged as the most significant factor, increasing the likelihood 

of absolute diabetes by an average of 6.4 percentage points (0.064 on the X-axis). 

the model’s decision-making process for particular instances. The binary target variable 

”Diabetes binary” has two classifications: 0 for no diabetes and 1 for prediabetes or diabetes. 

For example, the model’s score for a specific observation might be 0.03, indicating a low 

likelihood of diabetes. Features that increased the score are shown in red, while features that 

decreased the score are shown in blue. The proximity of a feature to the redblue boundary 

reflects its impact, and the length of the bar represents the magnitude of its contribution. 

The color map in the force plot includes two hues: one for positive SHAP values (e.g., 

”HighBP” and ”GenHlth”) and another for negative SHAP values. Various visualization 

options are available, such as arranging samples by similarity or by output value, allowing for 

deeper insights into the MLP model’s interpretability. 

 

Figure 10: A lower level of high blood pressure reduces the risk of diabetes, whereas higher 

levels increase the risk. These effects describe the model’s behavior and its influence on the 

output. 

4.3 Evaluation Metrics of LIME and SHAP 

We have employed several metrics and factors to evaluate the effectiveness of LIME and 

SHAP as explainability techniques for the Multi-Layer Perceptron (MLP) model. The first 

metric is fidelity, which measures how accurately the explanation reflects the behavior of the 

underlying MLP model. For LIME, fidelity can be assessed by comparing predictions made 
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by the original MLP model with those of the local surrogate model near the instance being 

explained. Similarly, SHAP provides a unified indicator of explanation quality for all 

instances. 

The second metric is stability, which evaluates the consistency of explanations for similar 

instances or when the input data is perturbed. A stable explanation technique should produce 

similar explanations for comparable cases. For LIME, stability can be assessed by measuring 

the variability in explanations when perturbing the instance under consideration. SHAP, due 

to its foundation in Shapley values, inherently provides stability in its explanations. 

The third metric is consistency, which examines how explanations change in response 

 

Figure 11: The SHAP Force plot highlights the features that most significantly influenced the 

model’s prediction for a single observation. The binary target variable indicates 0 for no 

diabetes and 1 for prediabetes or diabetes. In this instance, the model score is 0.03. 

to modifications in the data or model. Consistency is crucial for understanding the robustness 

of explanations across different models or datasets. For both LIME and SHAP, consistency 

can be evaluated by comparing explanations generated from models trained on related datasets 

or under different configurations. 

The fourth metric is comprehensibility, which measures how easily humans can 

understand and interpret the explanations provided by the technique. Assessing 

comprehensibility often involves subjective evaluations, such as user research or expert 

feedback, to gauge the utility and clarity of the explanations produced by LIME and SHAP. 

Overall, the performance of LIME and SHAP in explainable artificial intelligence (XAI) 

is assessed using quantitative criteria like fidelity, stability, and consistency, alongside 

qualitative evaluations of comprehensibility. When choosing between LIME and SHAP for a 

specific application, it is essential to weigh the trade-offs between interpretability, 

computational efficiency, and scalability to make an informed decision. 

5 Conclusion 

Diabetes is a long-term metabolic disease marked by elevated blood sugar levels 

(hyperglycemia) brought on by insufficient insulin synthesis or an inefficient use of insulin by 

the body. It is a global health concern that affects millions of people worldwide. The diagnosis 

and treatment of diabetes are significantly improved by artificial intelligence and machine 

learning. Risk Prediction, Early Detection, Image Analysis, Glucose Monitoring, Personalized 

Treatment, Remote Monitoring, and Support are just a few ways AI and machine learning help 

with diabetes treatment. It’s important to note that while AI and machine learning promise to 

improve diabetic diagnosis and management, they should complement, rather than replace, 

healthcare professionals. Medical expertise and human judgment are crucial for interpreting 
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results and making informed decisions. In summary, multilayer perceptron is an excellent 

machinelearning technique that successfully forecasts the course of diabetes. By combining 

this algorithm with interpretable models such as LIME and SHAP, we can gain valuable 

insights into the factors driving the predictions and increase the transparency and 

trustworthiness of the model. In addition to achieving precise predictions, using LIME and 

SHAP interpreters in conjunction with logistic regression provides insightful information 

about the underlying connections between characteristics and the target variable. This 

combination of accuracy and interpretability is crucial in healthcare, where understanding the 

reasoning behind predictions is paramount for medical professionals and patients alike. 
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