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Kidney stone disease is a common and painful condition that often requires timely and
accurate diagnosis for effective treatment. Traditional methods of stone detection using CT
imaging depend heavily on radiologists' interpretive analysis: that can be difficult and
vulnerable to human error. To address these limitations, this study presents a deep learning-
based hybrid framework that combines Convolutional Neural Networks (CNN) and Support
Vector Machines (SVM) for the automated detection of kidney stones in medical images. The
first step in the procedure is image preprocessing and segmentation to isolate kidney regions,
followed by CNN-driven feature extraction to identify critical patterns related to the presence
of stones. These extracted features are then classified using an SVM, which enhances the
accuracy and robustness of the system by efficiently distinguishing between stone and non-
stone images. To improve model generalization and overcome data limitations, strategies like
transfer learning and data augmentation are used, enabling the framework to perform
effectively even with relatively small datasets. The performance of the proposed CNN-SVM
model was evaluated using standard metrics, including accuracy, precision, recall, and F1
score. As shown in the results, the proposed method achieved an accuracy of 97%, with a
precision of 96%, recall of 97%, and an F1 score of 96%, outperforming other models such
as CNN, CNN-RF, and CNN- NB. These results highlight the model's potential for clinical
deployment, offering a fast, reliable, and scalable solution for kidney stone detection that can
support medical professionals in improving diagnosis accuracy and patient outcomes.
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1. INTRODUCTION

Kidney stones, also known as nephroliths or renal calculi, are hard deposits formed from
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minerals and salts within the kidneys or urinary tract. These stones can vary in size and
composition and, when lodged in the ureter, can lead to significant complications, including
urinary tract infections, hematuria, and severe pain. In more severe cases, symptoms may
include high fever, nausea, vomiting, and painful urination. The global lifetime prevalence of
kidney stones ranges between 10% and 25%, with annual incidence rates estimated at
approximately 0.5%.Multiple factors contribute to the development of kidney stones, including
genetic predisposition, obesity, certain medications or dietary habits, and insufficient fluid
intake. Diagnosis typically involves a combination of symptom assessment, urinalysis, blood
tests, and medical imaging techniques such as X-rays and computed tomography (CT) scans
[21-22]. CT imaging, in particular, plays a crucial role in localizing and characterizing kidney

stones with high precision, offering three-dimensional views of the urinary tract (figure 1).

Figure 1. Kidney image (left) showing the anatomical structure, with the detected kidney stone
highlighted in the corresponding stone image (right).

Historically, the detection and diagnosis of kidney and urethral stones have heavily relied on
manual interpretation of medical imaging, particularly through X-rays, ultrasound, and non-
contrast CT scans. Radiologists played a central role in identifying stones, estimating their size
and location, and recommending treatment strategies [23]. These traditional methods, although
effective, were time-consuming, subjective, and prone to variability based on the expertise of
the clinician. Early attempts at automation focused on basic image processing techniques,
which lacked the sophistication to distinguish between stones and similar-density structures
like bone, leading to limited accuracy and high false-positive rates.

Accurate and timely detection of kidney stones is vital for effective clinical management and
prevention of complications related to renal stone disease. Traditional diagnostic techniques,
which often involve manual volumetric assessment of kidney stones using non-contrast
computed tomography (CT), can be labour-intensive, time-consuming, and subject to inter-
observer variability. To address these limitations, we propose a deep learning-based
framework for the automated detection of kidney stones from medical images. This study
presents a deep learning-based framework for automated classification of kidney stones using
computed tomography (CT) images. The proposed approach leverages convolutional neural
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networks (CNNSs) [24] to accurately identify and classify different types of kidney stones,
which is critical for guiding appropriate clinical treatment

2. MACHINE LEARNING AND DEEP LEARNING APPROACHES

In the field of kidney stone classification using medical imaging particularly CT scans various
machine learning and deep learning techniques have been employed to enhance diagnostic
precision, efficiency, and generalizability. This section elaborates on the key models
commonly used in research and clinical studies.

2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have demonstrated remarkable efficacy in tasks
involving the recognition of visual patterns making them ideal for analyzing CT images in
kidney stone detection. CNNs automatically learn hierarchical features from raw images, such
as texture, shape, and density variations, which are crucial for distinguishing kidney stones
from surrounding tissues.

Generally, the framework consists of fully connected layers for classification, pooling layers
for dimensionality reduction, and convolutional layers for acquiring features. Their ability to
generalize across varying imaging conditions and anatomical variations has made CNNs a
cornerstone in automated kidney stone classification systems [4] [13].

2.2 Random Forests (RF)

An ensemble learning technique called Random Forest (RF) blends several decision trees to
produce more accurate and stable forecasts. In kidney stone classification, RF models are often
used together with CNN-extracted features to enhance the performance of the classification
process. By aggregating decisions from multiple trees, RF reduces the risk of over fitting and
improves robustness, especially when dealing with heterogeneous data. It is particularly useful
in clinical applications where high sensitivity and specificity are required [6-8].

2.3 Naive Bayes (NB)

Naive Bayes (NB) is a simple yet efficient probabilistic classifier based on Bayes' theorem,
assuming self-reliance among attributes. While it is computationally lightweight, its
performance in kidney stone classification improves significantly when used with high-quality
features derived from CNNSs or image preprocessing. NB models can serve as fast preliminary
classifiers or as components in ensemble models. However, their simplifying assumptions may
limit their effectiveness in capturing complex feature interactions, which are common in
medical imaging [15-16].

2.4 Support Vector Machines (SVM)

Support Vector Machines (SVMs) are powerful classifiers that separate data points using
optimal hyper planes. In kidney stone classification, SVMs are often applied to deep features
extracted from CNNs to distinguish between stone and non-stone tissues. With the use of
kernel functions such as radial basis or polynomial kernels, SVMs can effectively handle non-
linear patterns in CT images. Their high accuracy and robustness, especially in high-
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dimensional feature spaces, make SVMs a preferred choice for refining model performance in
clinical diagnosis [17-18].

2.5 Neural Network Fusion (NF)

Neural Network Fusion (NF) involves the integration of multiple deep learning architectures
to leverage complementary strengths. For kidney stone classification, NF strategies combine
different neural network layers or models—such as CNNs with attention mechanisms or
recurrent layers to capture a wider range of image features. This approach enhances the model’s
sensitivity to subtle textural and morphological cues associated with stone formations. NF
models have demonstrated improved accuracy and resilience against false positives in complex
datasets [19-20].

3. REVIEW OF LITERATURE

A review of recent literature highlights the growing effectiveness of deep learning techniques
in medical image analysis, particularly for kidney stone detection. Numerous investigations
have shown the advantages of convolutional neural networks (CNNSs) in accurately identifying
and classifying kidney stones from CT and ultrasound images [8][9]. Advanced preprocessing
and segmentation methods have been shown to improve feature extraction, resulting
in elevated classification accuracy and better clinical relevance [10]. Additionally, the
integration of gradient-based edge detection and morphological operations enhances the
localization of stone regions, aiding in precise diagnosis [11]. Performance metrics such as
accuracy, precision, recall, and AUC-ROC are generally used to evaluate these models, with
many achieving results comparable to expert radiologists [12]. The literature confirms that deep
learning-based approaches offer a promising, non-invasive solution for early and reliable kidney
stone detection (table 1).

Table 1. Review of literature for deep learning-based kidney stone detection

Ref. No Methodology / Dataset Key Findings | Limitations
Model Used
[1] [26] Cascade R-CNN DeepLesion CT Achieved Limited
+ Feature Pyramid | dataset 98.8% generalizability
Network (FPN) accuracy in beyond
detecting DeepLesion
small lesions | dataset.
(1-5 mm);
effective for
Localization.

Nanotechnology Perceptions 20 No. 8 (2024) 124-141



Deep Learning Based Framework For.... Sandeep Lather, Dr. Sandeep, 128

[2] CNN-based 3D CT scans from | Demonstrated | Requires large
classification local hospitals high memory and
system sensitivity for | computational

detecting power for 3D
kidney stones; | processing.
proposed

multi- slice

input.

[3][25] U-Net Private CT scan Accurately High
segmentation dataset segmented and| annotation
model measured stone| effort required

volume; for training.
improved
reproducibility.

[4] CheXNet NIH Chest X-ray | Showed that | Not originally
(DenseNet-121- dataset (extended | transfer designed for
based) for transfer | for stone learning stone detection;
learning detection) from chest needs domain

X-rays to tuning.
kidney CT is
feasible.

[5] DeepLab for CT images from | Effectivein Performance
semantic multiple hospitals | separating depends on
segmentation stones from precise labeling

surrounding and

tissue using preprocessing.
deep

segmentation.

[6] Faster R-CNN Public medical Robust Slight drop in
with Region image database detection of performance
Proposal small and on low-
Networks large stones; contrast

reduced false | images.
positives.

[7] Hybrid CNN + CT scans from Enhanced Requires
Morphological government detection of manual
operations hospital ureteral stones | morphological

with hybrid tuning; not
approach. end-
to-end.
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4. RESEARCH METHODOLOGY

The proposed methodology for kidney stone detection is illustrated in figure 2 as a structured
block diagram. This framework leverages back propagation-based deep learning techniques
integrated with machine learning image processing methods to enhance detection accuracy and
reduce manual diagnostic effort. The input to the system consists of kidney MRI images, which
are first subjected to a preprocessing stage to improve image quality and eliminate noise. In this
stage, Discrete Wavelet Transform (DWT) is used for multi-resolution image decomposition,
and Gray Level Co-occurrence Matrix (GLCM) is applied for texture-based feature extraction.
The attributes that have been retrieved are crucial for improving the effectiveness of

subsequent segmentation and classification tasks.
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(thresholding) components
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Figure 2. Proposed research methodology

4.1 CT Scan Data Collection and Input

The study uses a curated dataset of annotated abdominal CT scans and/or ultrasound images
from publicly available sources or partnered medical institutions. All images are acquired
under standardized imaging protocols to ensure consistency. The dataset includes both kidney
stone-positive and stone-negative cases, verified by expert radiologists. Figure 3 illustrates the
system's input, which comprises a sequence of Computed Tomography (CT) scan slices. Each
CT scan generates a three-dimensional grayscale image of the patient, which serves as the
foundation for diagnostic analysis. This volumetric image is constructed by assigning intensity
values to each pixel in a 3D space, where the coordinates (i, j, k) represent the spatial position
of a voxel, and the grayscale intensity I(i, j,k) corresponds to the density of the material at that
point.
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Figure 3. Input 3D grayscale CT scan used for kidney stone detection, showing voxel
intensity based on tissue density

4.2 Preprocessing Using Discrete Wavelet Transform (DWT)

Prior to model training, the images undergo a series of preprocessing steps:
e Normalization: Pixel intensity values are normalized to improve contrast and
enhance feature visibility.
o Noise Reduction: Filters such as Gaussian or median filters are applied to reduce
speckle or scanner noise.
o Resizing: All images are resized to a uniform resolution to fit the input dimension
requirements of the deep learning model.

The Discrete Wavelet Transform (DWT) is employed as a preliminary preprocessing step on
the input test image. This process enhances image quality by reducing noise and improving
contrast and brightness. DWT works by decomposing the image into a set of wavelet
coefficients, providing a more compact and efficient representation compared to raw pixel data
(figure 4).
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Figure 4. DWT-based preprocessing showing image decompositioninto LL, LH, HL, and
HH sub-bands.

By applying high-pass and low-pass filters, DWT separates the image into different frequency
components, effectively segmenting it into four sub-bands: LL, LH, HL, and HH. The LL sub-
band retains most of the image’s essential information, while the LH, HL, and HH sub-bands
capture high-frequency details such as edges in horizontal, vertical, and diagonal orientations.
This decomposition aids in feature extraction and improves the accuracy of subsequent
segmentation and classification stages.

4.3 Data Augmentation

The neural network has far more parameters than the amount of available training data,
especially for kidney stones, which are typically limited to a single instance per patient scan,
while non-stone regions are abundant. This imbalance can lead to a biased model that classifies
all inputs as non-stones, achieving high accuracy superficially but failing to detect actual
stones. To address this issue, data augmentation techniques were applied to artificially increase
the number of stone samples. These included rotating, translating, and flipping the images, as
well as shifting pixel centers to account for neighboring voxels. For each original stone image,
up to 1300 augmented copies were generated through systematic rotations and transformations,
significantly enriching the dataset and improving the model’s ability to generalize. Since non-
stone regions are already well-represented in each scan, augmentation was focused solely on
stone instances (figure 5).

Figure 5. Data augmentation applied to kidney stone images to address class imbalance,
generating multiple transformed samples per instance to improve model performance and
generalization.

4.4 Segmentation
A crucial step in the methodology is the segmentation of kidney regions and suspected stone
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areas. The segmentation process isolates the regions of interest (ROIs) to enhance the
performance of the subsequent classification task (figure 6). The segmentation workflow
includes:

(c) Superimposed image (d) Gradient Magnitude
Image

Figure 6. Image processing steps for kidney stone detection: (a) Original CT image, (b)
Dilated gradient image, (¢) Superimposed image, and (d) Gradient magnitude image
highlighting edge features for segmentation.

As shown in Figure 6, the image processing pipeline begins with (a) the original CT image,
which displays the kidney anatomy along with potential stone formations. In (b), the dilated
gradient image enhances the edges of anatomical structures by applying morphological
dilation to the gradient output, making the boundaries more prominent for further analysis.
Subfigure (c) presents the superimposed image, where the highlighted gradient features are
overlaid on the original image, allowing for visual verification of edge enhancement and
improved contrast of stone regions. Finally, (d) illustrates the gradient magnitude image,
which captures the intensity of edges based on pixel value differences, further aiding in the
segmentation and detection of kidney stones by emphasizing regions with high spatial
variation.

5. PROPOSED KIDNEY STONE CLASSIFICATION FRAMEWORK

The core of the proposed kidney stone detection system is built around a Convolutional Neural
Network (CNN) and Support Vector Machine (SVM), which functions as the primary
classification subsystem. CNNs are perfect for image analysis tasks because of their
capacity to automatically extract spatial and hierarchical features from input images.
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However, the high computational complexity and memory demands of CNNs must be
managed effectively, especially when processing high-resolution medical images like CT
scans. In this framework, entails providing the CNN with labelled, and learn critical features
from segmented regions of interestin CT scan slices specifically, areas likely to contain kidney
or urethral stones. The learning process involves presenting the network with labeled
examples, allowing it to adjust its internal parameters to minimize classification errors. Unlike
traditional fully connected neural networks, the neurons in a CNN layer are connected only to
a small, localized region of the previous layer. This local connectivity enables the model to
focus on fine-grained spatial features while keeping the number of trainable parameters
manageable.

Convolutional layers for obtaining features, pooling layers for minimizing dimensionality, and
completely connected layers for final classification are the several layers that make up the
CNN framework used in this work. At the end of the network, a Softmax classifier is used to
assign a probability distribution over the classes (stone vs. non-stone), facilitating a confident
decision output. Training is guided by a loss function (illustrated in figure 7) It calculates how
much the actual labels differ from the expected ones. The optimizer uses this feedback to
update the network's weights iteratively, improving accuracy with each training cycle. This
CNN-based framework enables automated detection and classification of kidney stones with
minimal human intervention, aiming to enhance diagnostic efficiency, accuracy, and
scalability in clinical environments.

Fully Connected Layer

Oupe
Hidrooeptross

Tumoe

Cyst

Stone

Heakhy

Figure?. Proposed CNN-SVM based framework for automated detection and
classification

In the pooling layer, non-linear subsampling is performed to condense the most relevant
information from the feature maps into a smaller, more manageable number of variables. This
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process enhances the network's efficiency while preserving important spatial features. Each
pooling operation is applied independently to the output of each convolutional filter, meaning
the pooled values from different filters are not interdependent.

Typically, the pooled value is either the maximum or the mean of values within a defined
region of the convolutional output, which can be either overlapping or non-overlapping (as
shown in figure 8). These regions, or blocks of data, are of uniform size, denoted by the hyper
parameter F: (filter or region size). Another hyper parameter, S: (stride), control the pooling
window's step size as it traverses the input feature map. When there is no overlap, the region
size and stride are equal. In cases with overlapping regions, the stride is smaller than the region
size, allowing more detailed sampling.

Finered image

Bounding Box

Input image

Kidney stone alane stone(Fibrosis) Outline Datected stone

Filtered image Bounding Box

Kidney stone alone swne(Fixasis) Outine Deected stone

Figure 8. Kidney stone classification model showing the detected region and predicted class
label with confidence score.

Figure 8 illustrates the final output of the kidney stone classification model. The detected
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region, likely indicating the presence of a kidney stone, is clearly highlighted to assist in visual
interpretation. The model assigns a predicted class label (stone or no stone) along with a
confidence score, reflecting the certainty of the classification. This output aids in quick and
reliable decision-making for clinical diagnosis.

Figure 9. Prediction of Kidney Stone with Label indication

Figure 9 shows the prediction result of the kidney stone classification model. The detected
region is marked, and a label is assigned to indicate the presence or absence of a kidney stone.
This visual output provides a clear and interpretable result, supporting accurate diagnostic
decisions.

6. PERFORMANCEEVALUATION METRICS

The performance evaluation of the proposed CNN-SVM hybrid model is a critical step to

validate its reliability and effectiveness in kidney stone detection. Several standard metrics are

employed to comprehensively assess the model’s classification capabilities, ensuring its
robustness and suitability for real-world applications.

o Accuracy: Accuracy calculates the percentage of correctly categorized occurrences
(kidney stone and non-kidney stone) out of all samples, indicating the model's overall
reliability.

Although it gives a broad idea of how well the model is performing, it might not be enough
in cases when the distribution of classes is unbalanced.

Accuracy=(tp+tn)/(tp+tn+ fp+ fn)

e Precision: Precision is how well the model can detect positive cases (kidney stones) out
of all cases that were anticipated to be positive. It emphasizes how well the model
prevents false positives, which is essential for medical
diagnosis in order to reduce needless therapies.

Precision=tp/ (tp + fn)

o Recall (Sensitivity): Based of all real positive occurrences, recall quantifies the
percentage of true positive instances that the algorithms accurately detects. It is essential
in kidney stone detection to ensure that the model effectively identifies all affected cases,
reducing the risk of missing critical diagnoses.

Recall=tp/ (tp + fn)

e F1-Score: The F1-score is a balanced assessment metric that is calculated as the harmonic
mean of precision and recall. Because it takes into account both false positives and false
negatives, it is especially helpful when the dataset is unbalanced.
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F1 Score =2 (precisionxrecall) | (precision + recall)

7. RESULTAND DISCUSSION

The training process involves the use of training data (train X) and corresponding target data
(train y), alongside a validation dataset, to train the network model using the fit () function.
During training, cross-validation is employed to divide the dataset into test sets (X test and y
test) for validation. The model undergoes iterative learning over a predetermined number of
epochs, where it adjusts parameters to minimize errors. For the proposed model, 30 epochs
were utilized, enabling the network to gradually refine its performance. The fit () function
orchestrates the training process by executing multiple epochs, during which the model learns
patterns from the training data. This iterative process continues until performance
improvements plateau, signifying a point of diminishing returns and the conclusion of training.
A detailed model summary, as illustrated in Figure 2, outlines the network architecture,
including layer types, output shapes, and the total parameters required for both training and
testing.

Model evaluation plays a pivotal role in selecting the optimal network configuration for the
given dataset. The procedure guarantees the prevention of excessive fitting and enhances the
model's capacity to generalize to new data by evaluating prediction accuracy on the test set.
This evaluation is essential for accurate forecasting and reliable performance on future
datasets.

The outcomes part goes into great detail about the experimental findings from the trained
model, offering information on the system'’s efficacy and performance metrics (Figure 10).

Model: “seguential”

_;_-.e-‘ (type) Output Shape Param #
lstm (LSTM)  (Neme, None, 128) 72708
Istm_1 (LSTM) None, 64 9408
dense (Dense) None, B4 4160
dropout (Dropout None, B4 e
dense_1 (Dense) lone, 6) 3908
::::::::;::=::::==::::===:=:======:==::::::::::::::::::::::
Trainable params: 126,662

Non-trainable params: ©

Figure 10: System model implementation

The confusion matrix provides a comprehensive evaluation of the classification performance
for the given dataset, specifically in the context of kidney stone detection. It encapsulates the
true positives (kidney stone cases correctly identified), true negatives (non-kidney stone cases
correctly identified), false positives (non-kidney stone cases incorrectly classified as kidney
stone), and false negatives (kidney stone cases missed by the model) (Figure 11). For the
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proposed CNN-SVM model, the confusion matrix demonstrates its superior performance,
with high true positives and true negatives, indicating robust classification capabilities.

Figure 11. Confusion matrix

The results presented in Table 2 highlight the comparative performance of various
classification methods used for kidney stone detection, evaluated using standard metrics such
as accuracy, precision, recall, and F1 score. Among the tested models, the Proposed CNN-
SVM hybrid model demonstrated superior performance, achieving an accuracy of 97%,
precision of 96%, recall of 97%, and an F1 score of 96%. These values indicate not only a high
true positive rate but also a balanced trade-off between precision and recall, making it highly
reliable for clinical application. The high accuracy suggests that the model effectively
distinguishes between stone and non-stone cases, and its strong F1 score confirms its
consistency in handling both false positives and false negatives.

Table 2. Performance Comparison of different models for kidney stone classification

S. Methods Accuracy | Precision | Recall F1 Score
No. (%) (%) (%) (%)

1 CNN 85 86 86 87

2 CNN-RF 87 87 88 86

3 CNN-NF 62 81 85 81

4 Proposed 97 96 97 96

CNN-SVM
5 CNN-NB 89 84 85 84

In comparison, standalone CNN-SVM models and their variations showed comparatively
lower performance. The basic CNN model achieved 85% accuracy, while the CNN-RF
(Random Forest) combination slightly improved performance with 87% accuracy and
balanced precision and recall values. On the other hand, CNN-NF (No Feature selection)
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significantly underperformed, with the lowest accuracy of 62%, highlighting the importance
of relevant feature extraction. The CNN-NB (Naive Bayes) model showed moderate results,
with 89% accuracy but slightly lower precision and F1 scores. Overall, the proposed CNN-
SVM model outperformed all other methods, proving that integrating deep feature extraction
with a robust classifier like SVM can significantly enhance detection accuracy in cases with
class imbalance and limited stone samples (figure 12).

Performance evaluation kidney stone classification
120
100

O I

6
Accuracy (%) Precision (%) Recall (%) F1 Score (%)

o o

4
2

o O

ECNN =CNN-RF =CNN-NF Proposed CNN-SVM  ® CNN-NB

Figure 12. Performance comparison of kidney stone classification models based on
accuracy, precision, recall, and F1 score.
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Figure 13. Training and Test Model Loss

In figure 13, good model performance is shown by the steady decrease in both training and
test loss over time. As the model learns from the training data, the training loss reduces, while
the test loss also declines, indicating successful generalization to unseen data. The parallel
decrease in both losses suggests that the model is not over fitting or under fitting but is
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effectively learning patterns and generalizing well. This balance between memaorization and
generalization reflects a robust, well-performing model.

o Mode! accuracy

L)

Figure 14. Training and Test Model Accuracy

In Figure 14, good model performance is demonstrated by the simultaneous increase in both
training and test accuracy over time. As the model learns from the training data, the training
accuracy improves, showing its ability to make correct predictions on the seen data. Test
accuracy also rises, indicating effective generalization to unseen data. A well-performing
model exhibits high, closely aligned training and test accuracy, suggesting that it is neither
overfitting nor underfitting but successfully learning and generalizing across both datasets.

8. CONCLUSION

The research paper concludes that the proposed CNN-SVM hybrid model significantly
outperforms other machine learning techniques for the automated detection and classification
of kidney stones in medical images. The model achieved a remarkable accuracy of 97%, along
with a precision of 96%, recall of 97%, and an F1 score of 96%. These metrics demonstrate
the model's high reliability in correctly identifying kidney stones while minimizing both false
positives and false negatives, which is crucial for effective clinical diagnosis and treatment
planning. The study highlights the advantage of combining the feature extraction capabilities
of Convolutional Neural Networks (CNNs) with the robust classification power of Support
Vector Machines (SVMs). This hybrid approach proves particularly effective in handling the
challenges associated with medical image analysis, such as class imbalance and the need for
high sensitivity. The comparison with other models, including standalone CNN, CNN-RF,
CNN-NF, and CNN-NB, clearly establishes the superiority of the proposed CNN-SVM
framework in terms of overall performance. Furthermore, the paper analyzes the training and
testing phases of the model, demonstrating a consistent decrease in loss and a simultaneous
increase in accuracy over epochs. This indicates that the model learns effectively from the data
and generalizes well to unseen cases, suggesting its potential for real-world clinical

Nanotechnology Perceptions 20 No. 8 (2024) 124-141



Deep Learning Based Framework For.... Sandeep Lather, Dr. Sandeep, 140

application. The findings underscore the potential of Al-driven diagnostic tools to enhance the
efficiency, accuracy, and scalability of kidney stone detection, ultimately benefiting patient
care by enabling timely and appropriate interventions.
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