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Kidney stone disease is a common and painful condition that often requires timely and 

accurate diagnosis for effective treatment. Traditional methods of stone detection using CT 

imaging depend heavily on radiologists' interpretive analysis: that can be difficult and 

vulnerable to human error. To address these limitations, this study presents a deep learning-

based hybrid framework that combines Convolutional Neural Networks (CNN) and Support 

Vector Machines (SVM) for the automated detection of kidney stones in medical images. The 

first step in the procedure is image preprocessing and segmentation to isolate kidney regions, 

followed by CNN-driven feature extraction to identify critical patterns related to the presence 

of stones. These extracted features are then classified using an SVM, which enhances the 

accuracy and robustness of the system by efficiently distinguishing between stone and non-

stone images. To improve model generalization and overcome data limitations, strategies like 

transfer learning and data augmentation are used, enabling the framework to perform 

effectively even with relatively small datasets. The performance of the proposed CNN-SVM 

model was evaluated using standard metrics, including accuracy, precision, recall, and F1 

score. As shown in the results, the proposed method achieved an accuracy of 97%, with a 

precision of 96%, recall of 97%, and an F1 score of 96%, outperforming other models such 

as CNN, CNN-RF, and CNN- NB. These results highlight the model's potential for clinical 

deployment, offering a fast, reliable, and scalable solution for kidney stone detection that can 

support medical professionals in improving diagnosis accuracy and patient outcomes. 
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1. INTRODUCTION 

Kidney stones, also known as nephroliths or renal calculi, are hard deposits formed from 
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minerals and salts within the kidneys or urinary tract. These stones can vary in size and 

composition and, when lodged in the ureter, can lead to significant complications, including 

urinary tract infections, hematuria, and severe pain. In more severe cases, symptoms may 

include high fever, nausea, vomiting, and painful urination. The global lifetime prevalence of 

kidney stones ranges between 10% and 25%, with annual incidence rates estimated at 

approximately 0.5%.Multiple factors contribute to the development of kidney stones, including 

genetic predisposition, obesity, certain medications or dietary habits, and insufficient fluid 

intake. Diagnosis typically involves a combination of symptom assessment, urinalysis, blood 

tests, and medical imaging techniques such as X-rays and computed tomography (CT) scans 

[21-22]. CT imaging, in particular, plays a crucial role in localizing and characterizing kidney 

stones with high precision, offering three-dimensional views of the urinary tract (figure 1). 
 

 

 

Figure 1. Kidney image (left) showing the anatomical structure, with the detected kidney stone 

highlighted in the corresponding stone image (right). 

 

Historically, the detection and diagnosis of kidney and urethral stones have heavily relied on 

manual interpretation of medical imaging, particularly through X-rays, ultrasound, and non- 

contrast CT scans. Radiologists played a central role in identifying stones, estimating their size 

and location, and recommending treatment strategies [23]. These traditional methods, although 

effective, were time-consuming, subjective, and prone to variability based on the expertise of 

the clinician. Early attempts at automation focused on basic image processing techniques, 

which lacked the sophistication to distinguish between stones and similar-density structures 

like bone, leading to limited accuracy and high false-positive rates. 

 

Accurate and timely detection of kidney stones is vital for effective clinical management and 

prevention of complications related to renal stone disease. Traditional diagnostic techniques, 

which often involve manual volumetric assessment of kidney stones using non-contrast 

computed tomography (CT), can be labour-intensive, time-consuming, and subject to inter- 

observer variability. To address these limitations, we propose a deep learning-based 

framework for the automated detection of kidney stones from medical images. This study 

presents a deep learning-based framework for automated classification of kidney stones using 

computed tomography (CT) images. The proposed approach leverages convolutional neural 
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networks (CNNs) [24] to accurately identify and classify different types of kidney stones, 

which is critical for guiding appropriate clinical treatment 

2. MACHINE LEARNING AND DEEP LEARNING APPROACHES 

 

In the field of kidney stone classification using medical imaging particularly CT scans various 

machine learning and deep learning techniques have been employed to enhance diagnostic 

precision, efficiency, and generalizability. This section elaborates on the key models 

commonly used in research and clinical studies. 

2.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) have demonstrated remarkable efficacy in tasks 

involving the recognition of visual patterns making them ideal for analyzing CT images in 

kidney stone detection. CNNs automatically learn hierarchical features from raw images, such 

as texture, shape, and density variations, which are crucial for distinguishing kidney stones 

from surrounding tissues. 

Generally, the framework consists of fully connected layers for classification, pooling layers 

for dimensionality reduction, and convolutional layers for acquiring features. Their ability to 

generalize across varying imaging conditions and anatomical variations has made CNNs a 

cornerstone in automated kidney stone classification systems [4] [13]. 

2.2 Random Forests (RF) 

An ensemble learning technique called Random Forest (RF) blends several decision trees to 

produce more accurate and stable forecasts. In kidney stone classification, RF models are often 

used together with CNN-extracted features to enhance the performance of the classification 

process. By aggregating decisions from multiple trees, RF reduces the risk of over fitting and 

improves robustness, especially when dealing with heterogeneous data. It is particularly useful 

in clinical applications where high sensitivity and specificity are required [6-8]. 

2.3 Naïve Bayes (NB) 

Naïve Bayes (NB) is a simple yet efficient probabilistic classifier based on Bayes' theorem, 

assuming self-reliance among attributes. While it is computationally lightweight, its 

performance in kidney stone classification improves significantly when used with high-quality 

features derived from CNNs or image preprocessing. NB models can serve as fast preliminary 

classifiers or as components in ensemble models. However, their simplifying assumptions may 

limit their effectiveness in capturing complex feature interactions, which are common in 

medical imaging [15-16]. 

2.4 Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are powerful classifiers that separate data points using 

optimal hyper planes. In kidney stone classification, SVMs are often applied to deep features 

extracted from CNNs to distinguish between stone and non-stone tissues. With the use of 

kernel functions such as radial basis or polynomial kernels, SVMs can effectively handle non- 

linear patterns in CT images. Their high accuracy and robustness, especially in high- 
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dimensional feature spaces, make SVMs a preferred choice for refining model performance in 

clinical diagnosis [17-18]. 

2.5 Neural Network Fusion (NF) 

 

Neural Network Fusion (NF) involves the integration of multiple deep learning architectures 

to leverage complementary strengths. For kidney stone classification, NF strategies combine 

different neural network layers or models—such as CNNs with attention mechanisms or 

recurrent layers to capture a wider range of image features. This approach enhances the model’s 

sensitivity to subtle textural and morphological cues associated with stone formations. NF 

models have demonstrated improved accuracy and resilience against false positives in complex 

datasets [19-20]. 

3. REVIEW OF LITERATURE 

A review of recent literature highlights the growing effectiveness of deep learning techniques 

in medical image analysis, particularly for kidney stone detection. Numerous investigations 

have shown the advantages of convolutional neural networks (CNNs) in accurately identifying 

and classifying kidney stones from CT and ultrasound images [8][9]. Advanced preprocessing 

and segmentation methods have been shown to improve feature extraction, resulting 

in elevated classification accuracy and better clinical relevance [10]. Additionally, the 

integration of gradient-based edge detection and morphological operations enhances the 

localization of stone regions, aiding in precise diagnosis [11]. Performance metrics such as 

accuracy, precision, recall, and AUC-ROC are generally used to evaluate these models, with 

many achieving results comparable to expert radiologists [12]. The literature confirms that deep 

learning-based approaches offer a promising, non-invasive solution for early and reliable kidney 

stone detection (table 1). 

Table 1. Review of literature for deep learning-based kidney stone detection 
 

Ref. No Methodology / 

Model Used 

Dataset Key Findings Limitations 

[1] [26] Cascade R-CNN 

+ Feature Pyramid 

Network (FPN) 

DeepLesion CT 

dataset 

Achieved 

98.8% 

accuracy in 

detecting 

small lesions 

(1–5 mm); 

effective for 
Localization. 

Limited 

generalizability 

beyond 

DeepLesion 

dataset. 
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[2] CNN-based 

classification 

system 

3D CT scans from 

local hospitals 

Demonstrated 

high 

sensitivity for 

detecting 

kidney stones; 

proposed 

multi- slice 

input. 

Requires large 

memory and 

computational 

power for 3D 

processing. 

[3][25] U-Net 

segmentation 

model 

Private CT scan 

dataset 

Accurately 

segmented and 

measured stone 

volume; 

improved 

reproducibility. 

High 

annotation 

effort required 

for training. 

[4] CheXNet 

(DenseNet-121- 

based) for transfer 

learning 

NIH Chest X- ray 

dataset (extended 

for stone 

detection) 

Showed that 

transfer 

learning 

from chest 

X-rays to 

kidney CT is 

feasible. 

Not originally 

designed for 

stone detection; 

needs domain 

tuning. 

[5] DeepLab for 

semantic 

segmentation 

CT images from 

multiple hospitals 

Effective in 

separating 

stones from 

surrounding 

tissue using 

deep 
segmentation. 

Performance 

depends on 

precise labeling 

and 

preprocessing. 

[6] Faster R-CNN 

with Region 

Proposal 

Networks 

Public medical 

image database 

Robust 
detection of 
small and 
large stones; 
reduced false 
positives. 

Slight drop in 

performance 

on low-

contrast 

images. 

[7] Hybrid CNN + 

Morphological 

operations 

CT scans from 

government 

hospital 

Enhanced 

detection of 

ureteral stones 

with hybrid 

approach. 

Requires 

manual 

morphological 

tuning; not 

end- 

to-end. 
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4. RESEARCH METHODOLOGY 

The proposed methodology for kidney stone detection is illustrated in figure 2 as a structured 

block diagram. This framework leverages back propagation-based deep learning techniques 

integrated with machine learning image processing methods to enhance detection accuracy and 

reduce manual diagnostic effort. The input to the system consists of kidney MRI images, which 

are first subjected to a preprocessing stage to improve image quality and eliminate noise. In this 

stage, Discrete Wavelet Transform (DWT) is used for multi-resolution image decomposition, 

and Gray Level Co-occurrence Matrix (GLCM) is applied for texture-based feature extraction. 

The attributes that have been retrieved are crucial for improving the effectiveness of 

subsequent segmentation and classification tasks. 
 

 

 

 

Figure 2. Proposed research methodology 

 

4.1 CT Scan Data Collection and Input 

The study uses a curated dataset of annotated abdominal CT scans and/or ultrasound images 

from publicly available sources or partnered medical institutions. All images are acquired 

under standardized imaging protocols to ensure consistency. The dataset includes both kidney 

stone-positive and stone-negative cases, verified by expert radiologists. Figure 3 illustrates the 

system's input, which comprises a sequence of Computed Tomography (CT) scan slices. Each 

CT scan generates a three-dimensional grayscale image of the patient, which serves as the 

foundation for diagnostic analysis. This volumetric image is constructed by assigning intensity 

values to each pixel in a 3D space, where the coordinates (i, j, k) represent the spatial position 

of a voxel, and the grayscale intensity I(i, j,k) corresponds to the density of the material at that 

point. 
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Figure 3. Input 3D grayscale CT scan used for kidney stone detection, showing voxel 

intensity based on tissue density 

4.2 Preprocessing Using Discrete Wavelet Transform (DWT) 

Prior to model training, the images undergo a series of preprocessing steps: 

 Normalization: Pixel intensity values are normalized to improve contrast and 

enhance feature visibility. 

 Noise Reduction: Filters such as Gaussian or median filters are applied to reduce 

speckle or scanner noise. 

 Resizing: All images are resized to a uniform resolution to fit the input dimension 

requirements of the deep learning model. 

The Discrete Wavelet Transform (DWT) is employed as a preliminary preprocessing step on 

the input test image. This process enhances image quality by reducing noise and improving 

contrast and brightness. DWT works by decomposing the image into a set of wavelet 

coefficients, providing a more compact and efficient representation compared to raw pixel data 

(figure 4). 



Nanotechnology Perceptions 20 No. 8 (2024) 124-141 

 
 
131 Sandeep Lather, Dr. Sandeep, Deep Learning Based Framework For.... 

 

 

 

 

Figure 4. DWT-based preprocessing showing image decomposition into LL, LH, HL, and 

HH sub-bands. 

 

By applying high-pass and low-pass filters, DWT separates the image into different frequency 

components, effectively segmenting it into four sub-bands: LL, LH, HL, and HH. The LL sub- 

band retains most of the image’s essential information, while the LH, HL, and HH sub-bands 

capture high-frequency details such as edges in horizontal, vertical, and diagonal orientations. 

This decomposition aids in feature extraction and improves the accuracy of subsequent 

segmentation and classification stages. 

4.3 Data Augmentation 

 

The neural network has far more parameters than the amount of available training data, 

especially for kidney stones, which are typically limited to a single instance per patient scan, 

while non-stone regions are abundant. This imbalance can lead to a biased model that classifies 

all inputs as non-stones, achieving high accuracy superficially but failing to detect actual 

stones. To address this issue, data augmentation techniques were applied to artificially increase 

the number of stone samples. These included rotating, translating, and flipping the images, as 

well as shifting pixel centers to account for neighboring voxels. For each original stone image, 

up to 1300 augmented copies were generated through systematic rotations and transformations, 

significantly enriching the dataset and improving the model’s ability to generalize. Since non-

stone regions are already well-represented in each scan, augmentation was focused solely on 

stone instances (figure 5). 

Figure 5. Data augmentation applied to kidney stone images to address class imbalance, 

generating multiple transformed samples per instance to improve model performance and 

generalization. 

4.4 Segmentation 

A crucial step in the methodology is the segmentation of kidney regions and suspected stone 
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areas. The segmentation process isolates the regions of interest (ROIs) to enhance the 

performance of the subsequent classification task (figure 6). The segmentation workflow 

includes: 
 

(a) Original Image (b) Dilated Gradient Image 

  

(c) Superimposed image (d) Gradient Magnitude 
Image 

 

Figure 6. Image processing steps for kidney stone detection: (a) Original CT image, (b) 

Dilated gradient image, (c) Superimposed image, and (d) Gradient magnitude image 

highlighting edge features for segmentation. 

 

As shown in Figure 6, the image processing pipeline begins with (a) the original CT image, 

which displays the kidney anatomy along with potential stone formations. In (b), the dilated 

gradient image enhances the edges of anatomical structures by applying morphological 

dilation to the gradient output, making the boundaries more prominent for further analysis. 

Subfigure (c) presents the superimposed image, where the highlighted gradient features are 

overlaid on the original image, allowing for visual verification of edge enhancement and 

improved contrast of stone regions. Finally, (d) illustrates the gradient magnitude image, 

which captures the intensity of edges based on pixel value differences, further aiding in the 

segmentation and detection of kidney stones by emphasizing regions with high spatial 

variation. 

 

5. PROPOSED KIDNEY STONE CLASSIFICATION FRAMEWORK 

 

The core of the proposed kidney stone detection system is built around a Convolutional Neural 

Network (CNN) and Support Vector Machine (SVM), which functions as the primary 

classification subsystem. CNNs are perfect for image analysis tasks because of their 

capacity to automatically extract spatial and hierarchical features from input images. 
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However, the high computational complexity and memory demands of CNNs must be 

managed effectively, especially when processing high-resolution medical images like CT 

scans. In this framework, entails providing the CNN with labelled, and learn critical features 

from segmented regions of interest in CT scan slices specifically, areas likely to contain kidney 

or urethral stones. The learning process involves presenting the network with labeled 

examples, allowing it to adjust its internal parameters to minimize classification errors. Unlike 

traditional fully connected neural networks, the neurons in a CNN layer are connected only to 

a small, localized region of the previous layer. This local connectivity enables the model to 

focus on fine-grained spatial features while keeping the number of trainable parameters 

manageable. 

 

Convolutional layers for obtaining features, pooling layers for minimizing dimensionality, and 

completely connected layers for final classification are the several layers that make up the 

CNN framework used in this work. At the end of the network, a Softmax classifier is used to 

assign a probability distribution over the classes (stone vs. non-stone), facilitating a confident 

decision output. Training is guided by a loss function (illustrated in figure 7) It calculates how 

much the actual labels differ from the expected ones. The optimizer uses this feedback to 

update the network's weights iteratively, improving accuracy with each training cycle. This 

CNN-based framework enables automated detection and classification of kidney stones with 

minimal human intervention, aiming to enhance diagnostic efficiency, accuracy, and 

scalability in clinical environments. 
 

 

 

 

Figure7. Proposed CNN-SVM based framework for automated detection and 

classification 

 

In the pooling layer, non-linear subsampling is performed to condense the most relevant 

information from the feature maps into a smaller, more manageable number of variables. This 
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process enhances the network's efficiency while preserving important spatial features. Each 

pooling operation is applied independently to the output of each convolutional filter, meaning 

the pooled values from different filters are not interdependent. 

 

Typically, the pooled value is either the maximum or the mean of values within a defined 

region of the convolutional output, which can be either overlapping or non-overlapping (as 

shown in figure 8). These regions, or blocks of data, are of uniform size, denoted by the hyper 

parameter F₂ (filter or region size). Another hyper parameter, S₂ (stride), control the pooling 

window's step size as it traverses the input feature map. When there is no overlap, the region 

size and stride are equal. In cases with overlapping regions, the stride is smaller than the region 

size, allowing more detailed sampling. 

 

 

 

Figure 8. Kidney stone classification model showing the detected region and predicted class 

label with confidence score. 

Figure 8 illustrates the final output of the kidney stone classification model. The detected 
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region, likely indicating the presence of a kidney stone, is clearly highlighted to assist in visual 

interpretation. The model assigns a predicted class label (stone or no stone) along with a 

confidence score, reflecting the certainty of the classification. This output aids in quick and 

reliable decision-making for clinical diagnosis. 

 
 

Figure 9. Prediction of Kidney Stone with Label indication 

Figure 9 shows the prediction result of the kidney stone classification model. The detected 

region is marked, and a label is assigned to indicate the presence or absence of a kidney stone. 

This visual output provides a clear and interpretable result, supporting accurate diagnostic 

decisions. 

6. PERFORMANCEEVALUATION METRICS 

The performance evaluation of the proposed CNN-SVM hybrid model is a critical step to 

validate its reliability and effectiveness in kidney stone detection. Several standard metrics are 

employed to comprehensively assess the model’s classification capabilities, ensuring its 

robustness and suitability for real-world applications. 

 Accuracy: Accuracy calculates the percentage of correctly categorized occurrences 
(kidney stone and non-kidney stone) out of all samples, indicating the model's overall 
reliability. 

Although it gives a broad idea of how well the model is performing, it might not be enough 

in cases when the distribution of classes is unbalanced. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑡𝑝 + 𝑡𝑛) / (𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓n) 

 Precision: Precision is how well the model can detect positive cases (kidney stones) out 

of all cases that were anticipated to be positive. It emphasizes how well the model 

prevents false positives, which is essential for medical 

diagnosis in order to reduce needless therapies. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝 / (𝑡𝑝 + 𝑓n) 

 Recall (Sensitivity): Based of all real positive occurrences, recall quantifies the 

percentage of true positive instances that the algorithms accurately detects. It is essential 

in kidney stone detection to ensure that the model effectively identifies all affected cases, 

reducing the risk of missing critical diagnoses. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝 / (𝑡𝑝 + 𝑓n) 

 F1-Score: The F1-score is a balanced assessment metric that is calculated as the harmonic 

mean of precision and recall. Because it takes into account both false positives and false 

negatives, it is especially helpful when the dataset is unbalanced. 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) 

 

7. RESULTAND DISCUSSION 

The training process involves the use of training data (train X) and corresponding target data 

(train y), alongside a validation dataset, to train the network model using the fit () function. 

During training, cross-validation is employed to divide the dataset into test sets (X test and y 

test) for validation. The model undergoes iterative learning over a predetermined number of 

epochs, where it adjusts parameters to minimize errors. For the proposed model, 30 epochs 

were utilized, enabling the network to gradually refine its performance. The fit () function 

orchestrates the training process by executing multiple epochs, during which the model learns 

patterns from the training data. This iterative process continues until performance 

improvements plateau, signifying a point of diminishing returns and the conclusion of training. 

A detailed model summary, as illustrated in Figure 2, outlines the network architecture, 

including layer types, output shapes, and the total parameters required for both training and 

testing. 

 

Model evaluation plays a pivotal role in selecting the optimal network configuration for the 

given dataset. The procedure guarantees the prevention of excessive fitting and enhances the 

model's capacity to generalize to new data by evaluating prediction accuracy on the test set. 

This evaluation is essential for accurate forecasting and reliable performance on future 

datasets. 

The outcomes part goes into great detail about the experimental findings from the trained 

model, offering information on the system's efficacy and performance metrics (Figure 10). 

 

Figure 10: System model implementation 

The confusion matrix provides a comprehensive evaluation of the classification performance 

for the given dataset, specifically in the context of kidney stone detection. It encapsulates the 

true positives (kidney stone cases correctly identified), true negatives (non-kidney stone cases 

correctly identified), false positives (non-kidney stone cases incorrectly classified as kidney 

stone), and false negatives (kidney stone cases missed by the model) (Figure 11). For the 
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proposed CNN-SVM model, the confusion matrix demonstrates its superior performance, 

with high true positives and true negatives, indicating robust classification capabilities. 

 

 

Figure 11. Confusion matrix 

The results presented in Table 2 highlight the comparative performance of various 

classification methods used for kidney stone detection, evaluated using standard metrics such 

as accuracy, precision, recall, and F1 score. Among the tested models, the Proposed CNN- 

SVM hybrid model demonstrated superior performance, achieving an accuracy of 97%, 

precision of 96%, recall of 97%, and an F1 score of 96%. These values indicate not only a high 

true positive rate but also a balanced trade-off between precision and recall, making it highly 

reliable for clinical application. The high accuracy suggests that the model effectively 

distinguishes between stone and non-stone cases, and its strong F1 score confirms its 

consistency in handling both false positives and false negatives. 

Table 2. Performance Comparison of different models for kidney stone classification 
 

S. 

No. 
Methods Accuracy 

(%) 
Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

1 CNN 85 86 86 87 

2 CNN-RF 87 87 88 86 

3 CNN-NF 62 81 85 81 

4 Proposed 

CNN-SVM 

97 96 97 96 

5 CNN-NB 89 84 85 84 

 

In comparison, standalone CNN-SVM models and their variations showed comparatively 

lower performance. The basic CNN model achieved 85% accuracy, while the CNN-RF 

(Random Forest) combination slightly improved performance with 87% accuracy and 

balanced precision and recall values. On the other hand, CNN-NF (No Feature selection) 
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significantly underperformed, with the lowest accuracy of 62%, highlighting the importance 

of relevant feature extraction. The CNN-NB (Naïve Bayes) model showed moderate results, 

with 89% accuracy but slightly lower precision and F1 scores. Overall, the proposed CNN- 

SVM model outperformed all other methods, proving that integrating deep feature extraction 

with a robust classifier like SVM can significantly enhance detection accuracy in cases with 

class imbalance and limited stone samples (figure 12). 

 

Figure 12. Performance comparison of kidney stone classification models based on 

accuracy, precision, recall, and F1 score. 
 

Figure 13. Training and Test Model Loss 

In figure 13, good model performance is shown by the steady decrease in both training and 

test loss over time. As the model learns from the training data, the training loss reduces, while 

the test loss also declines, indicating successful generalization to unseen data. The parallel 

decrease in both losses suggests that the model is not over fitting or under fitting but is 

Performance evaluation kidney stone classification 
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effectively learning patterns and generalizing well. This balance between memorization and 

generalization reflects a robust, well-performing model. 

 

 

Figure 14. Training and Test Model Accuracy 

In Figure 14, good model performance is demonstrated by the simultaneous increase in both 

training and test accuracy over time. As the model learns from the training data, the training 

accuracy improves, showing its ability to make correct predictions on the seen data. Test 

accuracy also rises, indicating effective generalization to unseen data. A well-performing 

model exhibits high, closely aligned training and test accuracy, suggesting that it is neither 

overfitting nor underfitting but successfully learning and generalizing across both datasets. 

8. CONCLUSION 

The research paper concludes that the proposed CNN-SVM hybrid model significantly 

outperforms other machine learning techniques for the automated detection and classification 

of kidney stones in medical images. The model achieved a remarkable accuracy of 97%, along 

with a precision of 96%, recall of 97%, and an F1 score of 96%. These metrics demonstrate 

the model's high reliability in correctly identifying kidney stones while minimizing both false 

positives and false negatives, which is crucial for effective clinical diagnosis and treatment 

planning. The study highlights the advantage of combining the feature extraction capabilities 

of Convolutional Neural Networks (CNNs) with the robust classification power of Support 

Vector Machines (SVMs). This hybrid approach proves particularly effective in handling the 

challenges associated with medical image analysis, such as class imbalance and the need for 

high sensitivity. The comparison with other models, including standalone CNN, CNN-RF, 

CNN-NF, and CNN-NB, clearly establishes the superiority of the proposed CNN-SVM 

framework in terms of overall performance. Furthermore, the paper analyzes the training and 

testing phases of the model, demonstrating a consistent decrease in loss and a simultaneous 

increase in accuracy over epochs. This indicates that the model learns effectively from the data 

and generalizes well to unseen cases, suggesting its potential for real-world clinical 
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application. The findings underscore the potential of AI-driven diagnostic tools to enhance the 

efficiency, accuracy, and scalability of kidney stone detection, ultimately benefiting patient 

care by enabling timely and appropriate interventions. 
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