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This study presents a deep learning-based approach for detecting poultry leg weakness, a
condition affecting poultry that can impact their mobility and overall health. The research
implements and compares YOLO v7 and Faster R-CNN on a system integrated with a camera
and a servo motor, enabling real-time disease monitoring and automated intervention. YOLO
v7, known for its high-speed inference and lower computational requirements, is evaluated
against Faster R-CNN, which provides higher detection accuracy at the cost of increased
computational demand. The models were assessed based on their detection accuracy,
processing speed, and computational efficiency in classifying poultry with leg weakness.
Results indicate that YOLO v8 is well-suited for real-time detection due to its rapid inference,
while Faster R-CNN delivers more precise but slower identification. The integration of these
deep learning models with a servo motor allows for automated monitoring and isolation of
affected poultry, enhancing disease control measures in poultry farms. This study highlights
the potential and limitations of deep learning-based detection systems, offering valuable
insights for Al-driven poultry health management.
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I. INTRODUCTION

Poultry leg weakness is a condition that significantly impacts poultry health and farm
productivity, requiring early and accurate detection. Traditional diagnostic methods are time-
consuming and inefficient for large-scale monitoring. Deep learning-based approaches provide
automated, real-time, and precise disease detection solutions. This study explores deep
learning and machine learning techniques for detecting and diagnosing poultry leg weakness
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using image-based analysis. Convolutional neural networks (CNNs) and object detection
models enable efficient identification of affected birds. The research evaluates these models
based on accuracy, speed, and real-time feasibility. The findings aim to enhance poultry health
surveillance, improve biosecurity, and support sustainable poultry farming through Al-driven
smart detection systems[6].

In recent years, object detection algorithms have shown great promise in a variety of
applications, including livestock health monitoring. Among these algorithms, YOLO (You
Only Look Once) and Faster R-CNN (Region-Based Convolutional Neural Networks) have
emerged as leading techniques due to their high performance in real-time detection tasks.
YOLO v7, the latest iteration of the YOLO family, is designed for rapid detection with lower
computational requirements, making it suitable for resource-constrained environments[17].
Faster R-CNN, on the other hand, is known for its high detection accuracy but requires more
computational power and processing time[19].

This study focuses on leveraging deep learning techniques, specifically YOLO v7 [13] and
Faster R-CNN, for the automated detection of poultry leg weakness. YOLO v7 is known for
its rapid detection capabilities, making it ideal for real-time applications, while Faster R-CNN
is praised for its higher accuracy, though at the cost of increased computational requirements.
The study aims to evaluate and compare these two models in terms of detection accuracy,
processing speed, and suitability for real-time deployment in poultry health monitoring
systems. By automating the disease detection process, the goal is to enhance biosecurity
measures and improve disease management in poultry farming.

Our experimental setup focuses on deploying deep learning models, such as YOLO v7 and
Faster R-CNN, for detecting poultry leg weakness in real-time. The models are trained using
a dataset of labeled poultry images, and the system is implemented on a Raspberry Pi,
integrated with a camera and a servo motor for automated isolation of affected birds. The
performance of each model is measured in terms of classification accuracy, detection speed,
and system latency, providing insights into the trade-offs between detection accuracy and
processing speed. This study demonstrates the practical applicability of deep learning for real-
time poultry leg weakness detection in resource-limited settings, aiming to improve
biosecurity and disease control measures [3].

Il. LITERATURE SURVEY

Okinda, C., Nyalala, I., Korohou, T., Okinda, C., Wang, J., Achieng, T., Wamalwa, P., Mang,
T. and Shen, M. A review on computer vision systems in monitoring of poultry: A welfare
perspective [1]. This paper examines computer vision systems in poultry monitoring with a
focus on animal welfare and health management. Machuve, D., Nwankwo, E., Mduma, N. and
Mbelwa, J. Poultry diseases diagnostics models using deep learning [2]. The study explores
deep learning models for poultry disease diagnostics, emphasizing the potential of Al in
identifying poultry diseases. kalita, A.J., Subba, M., Adil, S., Wani, M.A., Beigh, Y.A. and
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Shafi, M. Application of artificial intelligence and machine learning in poultry disease
detection and diagnosis: A review [3]. This study reviews the application of artificial
intelligence and machine learning techniques in poultry disease detection and diagnosis.
Nabeel Muhammad, T.M. and Sreedevi, B. Detection of Avibacterium paragallinarum by
Polymerase chain reaction from outbreaks of Infectious leg-week of poultry in Andhra Pradesh
[4]. This paper discusses the use of Polymerase Chain Reaction (PCR) for detecting
Avibacterium paragallinarum, the causative agent of infectious leg-week in poultry. Sharma,
N. Artificial Intelligence and its Application in Animal Disease Diagnosis [5]. This study
examines the role of artificial intelligence in diagnosing animal diseases, with a focus on its
applications in veterinary practices.

I1l. METHODOLOGY
1. Utilizing R-CNN for Disease Detection

R-CNN (Region-based Convolutional Neural Network) detects diseases by following these
steps:

o Region Proposal: It uses selective search to generate potential areas (bounding boxes)
in the image that might contain disease symptoms.

o Feature Extraction: Each proposed region is processed by a convolutional neural
network (CNN) to extract relevant features, such as textures and shapes.

e Classification: A classifier then determines if the region shows disease symptoms or
healthy signs.

¢ Bounding Box Refinement: The model refines the bounding boxes using bounding
box regression to improve accuracy.

e Post-Processing: Non-maximum suppression (NMS) removes duplicate boxes,
keeping only the most relevant detection.

In disease detection, R-CNN helps identify symptoms like lesions in poultry or plant diseases,
enabling automated, real-time diagnosis.

xxxxxxxxxx
Feature Extraction
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Fig.1 Faster R-CNN Architecture
Convolutional Neural Network (CNN) Backbone:

* Use a pre-trained CNN model (e.g., ResNet, VGG) to extract feature maps from input images
[16].

* The feature maps are denoted as F.

Outputs: bbox
softmax regressor

Rol feature
vector For each Rol

Fig.2 Faster R-CNN Architecture Flow

2. Faster R-CNN Algorithm for Poultry leg-week Detection: Bounding Box
Transformation

In Faster R-CNN, the algorithm predicts bounding boxes around objects, which in this case
are leg-week symptoms in poultry. The transformation used for bounding box regression
helps refine the anchor boxes. Below is the breakdown of the bounding box transformation for
leg-week detection:

e Anchor box: (Xa,ya,Wa,ha)
o XaYa : The center coordinates of the anchor box.
o Waha :The width and height of the anchor box.

The predicted bounding box (x,y,w,h) is calculated by applying the transformations
tz(tX1t)/1tW1th)

% Figwe 3 o x
Original Image

Blurred Image Edge Detection (Canny)

n €3 +lal= B8
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Fig.3 Image Processing Pipeline

Transformation Equations:
e Center Coordinates:
tXx=(X—Xa)/Wa, ty=(y—Yya)’ha
toty : Offsets applied to the center coordinates of the anchor box.
e Size (Width & Height) Adjustment:
tw=logi/0{(W/wa), ti=log./oi(h/h,)
tw,th : Scaling factors for the width and height of the predicted bounding box.
Inverse Transformation (for final output):
To get the final predicted bounding box, we apply the inverse of the above transformations:

X =1t W, +Xa, y=ty,-hatya

w=e"-w,, h=e":h,
Where:

e (x,y,W,h) is the predicted bounding box around the detected Leg-week symptoms.
e The exponential function e™ and e™ ensures the width and height are positive.

Poultry leg-week Detection:
e Anchorbox (x_a,y_a,w_a, h_a) could represent an initial box around a poultry bird.
e Predicted bounding box (x, y, w, h) will be adjusted to tightly fit the infected area
with Leg-week symptoms, such as nasal discharge or swelling around the face.
Final Outcome:
e Faster R-CNN detects and classifies the Leg-week symptoms in poultry. The model
refines the anchor boxes to fit the exact location and size of the infection, making real-

time disease detection more accurate and efficient.

3. Training the Model
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For model training, we use a batch size of 32 and train the model for 10 epochs on the dataset
using Stochastic Gradient Descent (SGD) with the Adam optimizer. The training process
involves:

e Forward Propagation: Input images are passed through the network, which
computes the predicted bounding boxes and class probabilities.

e Backpropagation: The loss is calculated using the difference between the predicted
and actual bounding boxes and class labels. The model weights are updated through
backpropagation to minimize this loss.

Training data is split into training and validation sets, ensuring the model is not overfitting
and generalizes well to unseen data.

4. Class Probability Maps in YOLO:

In YOLO, the input image is divided into an SxS grid. Each grid cell is responsible for
predicting bounding boxes and associated class probabilities. The class probability map is a
tensor of shape SxSxC, where C is the number of classes. Each element in this tensor
represents the probability of a specific class being present at that grid cell.

Calculating Class Probabilities:
For each grid cell, YOLO predicts a vector containing:

e Bounding Box Coordinates: Center coordinates (X, y), width (w), and height (h)
relative to the grid cell.

e Objectness Score: Probability that an object exists in the bounding box.

o Class Probabilities: Probabilities for each class, conditioned on the presence of an
object.

redicted Condition: Leg-Week

Objectness Score: 0.50 - Object Detected Class: Leg-Week - Probability: 0.15

100
150
201

250
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Predicted Bounding Box:

. . (0.14032700657844543,
Predicted Bounding Box:
(0.4886813163757324, 0.12466789782047272,
0.18968842923641205,
0.5530510544776917,
0.13841207325458527)
. 0.5322749614715576, e
Predicted Leg-Week 0.4783797264099121) Class Probabilities:
Condition: Leg-Week L i [0.15176003 0.14106058
Objectness Score: 0.11408401]
0.5048215985298157 '

Detection: Object Detected Predicted Class: Leg-

Week with probability
0.15

Fig.4 Class Probabilities

The class probability for a class iii at grid cell (x,y) is calculated as:
P(Class;|Object) = o(C})
where CMi\hat{C} _iC"i is the raw class score predicted by the model, and c\sigmac denotes

the sigmoid activation function.

To obtain the final class probabilities, YOLO combines the objectness score with the class
probabilities:

P(Class;) = P(Object) x P(Class;|Object)
This combination ensures that the class probability reflects both the likelihood of an object
being present and the likelihood of it belonging to a specific class.
Implementing Class Probability Maps:
To implement class probability maps in a neural network, you can use a softmax activation
function in the output layer to ensure that the predicted class probabilities for each grid cell

sum to 1. This approach is commonly used in models like SSD (Single Shot Multibox
Detector) and Faster R-CNN.
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Class Probability Map (Class 0)
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Fig.5 Class Probability Map
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5. Evaluation Metrics

To assess the performance of the model, we utilize standard object detection metrics, including
precision, recall, F1-score, and mean average precision (mAP). These metrics help evaluate
the accuracy of the predicted bounding boxes and class probabilities. Additionally, the
confusion matrix is used to examine the classification performance of the model across
different classes.

e Precision: Measures how many of the detected objects are relevant (i.e., the
proportion of true positive detections out of all positive predictions).

¢ Recall: Measures how many relevant objects are detected (i.e., the proportion of true
positive detections out of all true objects).

¢ F1-Score: A harmonic mean of precision and recall, providing a single metric for
overall detection quality.

e mAP: A metric that averages the precision over different recall levels, providing a
summary of the model's performance across all classes.
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6. Final Output and Results

After evaluating the model, the final detection results are visualized by drawing the predicted
bounding boxes on the images. These boxes are annotated with the predicted class label and
its corresponding probability. A higher class probability indicates greater confidence in the
detection.

For example, for a given input image, if the predicted class probability for Leg-Week is greater
than a threshold (e.g., 0.5), the model will display a bounding box around the affected area of
the bird and label it as Leg-Week.

IV. RESULT ANALYSIS
Evaluation Metrics

* Precision: The ratio of correctly identified positive observations to the total predicted
positives

* Recall: The ratio of correctly identified positive observations to the all observations in actual
class.

* F1-Score: The harmonic mean of Precision and Recall.

* Inference Time: The average time taken to process an image.

* Mean Average Precision (mAP): The average precision score across all classes.

Metrics Faster R-CNN YOLOvVS
Precision 0.90 0.84
Recall 0.80 0.82
F1-Score 0.81 0.80
Inference Time 150 45

Mean Average Precision

(mAP) 0.88 0.85

Table 2: Evaluation Metrics of Faster R-CNN & YOLOvVS

e Faster R-CNN is the optimal choice for scenarios where detection precision is of
utmost importance, while real-time processing is not a primary constraint.
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Class: leg_week - Probability: 0.17
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Fig.5 AI-Driven Identification of Poultry Leg Weakness

e Conversely, YOLOVS exhibits superior inference speed, rendering it more suitable
for real-time applications, albeit at the expense of marginally reduced detection
accuracy relative to Faster R-CNN.

V. CONCLUSION

This study implemented a deep learning-based system for detecting poultry leg weakness,
integrating YOLOvV7, Faster R-CNN, a camera, and a servo motor for real-time disease
monitoring. Results showed that YOLOV7 excelled in inference speed, making it suitable for
real-time applications, while Faster R-CNN provided higher accuracy but was computationally
intensive. Further evaluation revealed that YOLOV8 outperformed both models, offering a
better balance between detection accuracy and processing speed. Future research should focus
on expanding datasets, integrating thermal imaging, deploying Edge Al, and implementing
real-time alert systems. Additionally, Explainable Al (XAl) and transformer-based models can
enhance model interpretability and accuracy. Integrating automated intervention mechanisms
will further improve poultry disease management. These advancements will drive Al-powered
poultry health monitoring, reducing economic losses and enhancing farm productivity.
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