
Nanotechnology Perceptions  
ISSN 1660-6795 

www.nano-ntp.com  

 

Nanotechnology Perceptions 20 No. S14 (2024) 4583-4604 

Hybrid Machine Learning Framework For 

Energy-Efficient Resource Optimization In 

Cloud Computing Environments 
 

 

Santosh Maheswari 
 

Ph.D Scholar, Department of Computer Engineering, Gokul Global University 

Santoshmaheswari.ce@gmail.com 

 
With the increase of cloud computing, energy consumption in data centres has become one of 

the most important problems, which urges for intelligent resource management strategies. In 

particular, this study addresses energy efficient resource utilization in cloud computing systems 

by proposing a machine learning based framework; For this, first a synthetic dataset based on 

various statistics about CPU usage, RAM utilisation, bandwidth, etc. was generated to simulate 

realistic cloud configurations. As the next step, multiple machine learning algorithms (Linear 

Regression, Decision Tree, Random Forest, XGBoost) and the proposed hybrid ML algorithm 

(LR + RF Hybrid) was trained and tested on this synthetic dataset. The hybrid model developed 

was expected to benefit from linear trends as well as nonlinear relationships. In the first stage, 

for power consumption prediction, all the models performed average, except the hybrid model 

which showed a perfect R² score of 1.000, RMSE of 0.220, MAE of 0.187. Since this hybrid 

model was able to predict the power with highest accuracy, in the second stage the hybrid 

algorithm was used to predict the most optimal configuration, With the configuration hybrid 

algorithm suggested, the power consumption is expected to be 3.31 kWh, VM migrations to be 

6.08, and system efficiency to be 73.97%, which outperforms predictions from other algorithms. 

This research lays the groundwork for the integration of predictive intelligence in the cloud 

orchestration (i.e., cloud management) system to enhance the proactive and data driven 

infrastructure management. 

Keywords: Cloud Computing, Energy Efficiency, Virtual Machine Migration, Machine 

Learning, Resource Optimization, Hybrid Model, Random Forest, Linear Regression, Power 

Consumption Forecasting, Data Centre Optimization. 

I. INTRODUCTION 

 

1.1 Overview of the Domain 

Over the last decade, cloud computing has been rapidly expanding with the introduction of 

cloud computing. This has greatly transformed the way computationally resources are 

provisioned, managed and consumed. The storage, processing power and network 

infrastructure available on the cloud platforms are scalable, on demand and reduce the capital 

expenditure and increase the agility of the businesses. And cloud data centres have a huge 

problem: energy consumption. Several recent global reports indicate that data centres now 

consume 1–2 per cent of the world’s total electricity use, with more and more people adopting 
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cloud computing, this percentage is likely to increase. 

In Cloud environments, there are numerous virtualization technologies, which rely heavily on 

virtualization, and physical machines (PMs) host multiple virtual machines (VMs) to fully 

utilize the hardware. The resource allocation, load balancing, and energy efficiency problems 

posed by this setup are much more complex than the original one, while they improve 

utilization at the cost of utilization. VM migrations, i.e., continuous VMs shifting, can help 

avoiding overloads and underutilization but can also increase energy consumption, latency, 

degrade the overall system efficiency, as long as they are not well handled. 

Typically, traditional rule based or threshold triggered resource management techniques do not 

perform well in cases of changing workloads. The static systems are unable to explore 

complicated patterns, or to predict the future states of the cloud infrastructure. With cloud 

platforms increasingly scaling in size, complexity, intelligent data driven decision making 

mechanisms are increasingly needed. As one of the promising approaches of Machine Learning 

(ML), it enables predictive analytics and prescriptive optimization in cloud environment(s). 

More specifically, hybrid and ensemble learning models can improve decision making by 

integrating the merits of two and more algorithms, so they can discover linear trend and 

complex non-linear pattern at the same time. 

Conceptually, this research works at the conjunction of machine learning and cloud 

infrastructure optimization with a particular focus on resource utilization that is energy 

efficient. The study attempts to predict such key operational metrics as power consumption and 

VM migrations, and leverage those predictions to suggest optimized configuration that reduces 

power usage without compromising system performance. 

1.2 Problem Statement 

Despite extensive research in cloud resource scheduling and energy-aware computing, most 

current solutions lack adaptability, are based on static thresholds, or do not scale well with 

dynamic workloads. There is a need for a flexible, intelligent model that can predict cloud 

infrastructure behaviour and recommend optimal configurations to simultaneously minimize 

power consumption and VM migration overhead. 

1.3 Research Objective 

The primary objectives of this research are as follows: 

 

• To build and compare multiple machine learning models for predicting power 

consumption and number of VM migrations in a cloud environment. 

• To develop a hybrid model that integrates linear and ensemble learning techniques for 

improved prediction accuracy and generalization. 

• To use the best-performing model to recommend optimized infrastructure configurations 

that improve energy efficiency and system stability. 

1.4 Structure of the Paper 
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The literature review section reviews the past research in the area of energy efficient cloud 

computing and in the area of machine learning with emphasis on hybrid modeling. The next 

section, which is the methodology section, gives an explanation of the process of creating 

dataset, preprocessing, model selection, training and optimization. In the Results section, we 

offer exploratory data analysis, model performance comparison and optimization output. Using 

these findings, the discussion and conclusion sections illustrate their interpretation, points out 

limitations, and offers future research directions. 

II. LITERATURE REVIEW 

 

2.1 : A comprehensive Literature Review 

In [1], a dynamic speed scaling algorithm along with Edge and IoT technologies is proposed 

to reduce the energy at the processor level, which resulted in promising computation time and 

energy reduction. Similarly, [2] proposed an ADRL framework for task scheduling task that 

dynamically adapts the learning behaviour according to workload changes to enhance the CPU 

utilization and reduce task response time. 

Machine learning techniques for green cloud communication were discussed in [3] by 

proposing the application for power savings and supporting green data centre operation. In [4], 

the authors also used reinforcement learning to propose a floating temperature setpoint 

mechanism for tropical data centres to reduce energy usage by optimizing cooling strategies 

with the fan speed as the key savings factor. 

In paper [5], route selection and traffic prediction in network level was addressed using a 

combination of LSTM and DRL, which was able to efficiently minimize the network level 

power consumption. The role of reinforcement learning in VM consolidation was examined in 

[6], which reported a 25% energy savings and significant SLA violation reduction by applying 

Q-learning and SARSA algorithms under real workload conditions. [7] proposed a deep 

reinforcement learning model based on QoS-aware denoising autoencoders for VM 

scheduling, achieving a balance between energy efficiency and SLA compliance through 

noise-robust feature learning and multi-power machine collaboration. 

Paper [8] presented a comprehensive review of deep reinforcement learning (DRL)-based 

energy-efficient task scheduling techniques, highlighting their potential to reduce energy 

consumption in data centres and identifying gaps for future research. In [9], the authors 

conducted a systematic survey on fault tolerance in green cloud computing, concluding that 

higher fault tolerance often leads to increased energy use, and suggesting ML and DL as 

promising fault-handling strategies. 

The review in [10] explored the use of ML across multiple cloud resource management tasks 

such as workload prediction, VM placement, and energy optimization, pointing out current 

limitations and recommending future research directions. A hybrid ML approach for joint task 

scheduling, resource allocation, and security in cloud environments was proposed in [11], 

demonstrating improved resource utilization and energy savings through multi-level 

optimization techniques. 

Another research [12] focused on adaptive computational methods for energy efficiency using 
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VM consolidation, presenting various machine learning and statistical approaches, and offering 

a taxonomy for consolidation strategies. In [13], an adaptive DRL framework was introduced 

for dynamic VM consolidation, using influence-based VM selection and predictive DRL 

placement to reduce both energy use and SLA violations. 

A broader overview of ML solutions for green cloud communications was provided in [14], 

detailing energy-saving strategies and discussing trends like DeepMind-based AI in data 

centres. Finally, [15] offered an effectiveness review of ML algorithms for task scheduling in 

cloud environments, emphasizing how different scheduling methods affect energy usage, CPU 

utilization, and workload distribution. 

Combined, these studies make the point that machine learning—particularly reinforcement and 

deep learning—are increasingly seen as a way to represent and understand resource allocation 

and energy consumption in cloud computing. But few resorts to singular modeling and many 

models are limited to a single application. This forms the motivation of the current research 

that proposes a hybrid machine learning framework that incorporates predictive modeling with 

prescriptive configuration optimization for energy aware cloud operations. 

2.2  Research Gap 

The main caveat of the current work is the decoupling between prediction-oriented models and 

optimization inspired one. For example, studies like [2, 7, 8, 13] have shown strong capabilities 

of DRL based algorithms in reducing energy consumption or SLA violations in isolation. 

However, such models usually work under restrictive assumptions or the static policies and do 

not incorporate dynamic forecast of operational metrics, e.g., power consumption and VM 

migrations. However, DRL based methods do suffer from high sample complexity, delays in 

convergence, and lack of interpretability which makes it challenging to deploy in cloud 

environments which exist in latency sensitive or cost constrained environments [4, 5, 13]. 

The second limitation is that there is no comparison modeling across heterogeneous ML 

algorithms. Most often existing works take a single pipe of algorithm to perform its task, e.g. 

Random Forest, DNN, or Q-learning, without benchmarking them on a uniform set of features 

or operational conditions [6, 10, 15]. Moreover, there is minimal emphasis on hybrid learning 

architectures that blend linear generalization and non-linear adaptability, despite evidence 

suggesting their superiority in high-dimensional, multi-variate cloud data patterns. 

Compounding this, most frameworks do not explicitly consider system-wide objectives such 

as migration minimization, efficiency scoring, or resource balance trade-offs during 

optimization. 

Our proposed hybrid ML framework addresses these gaps by integrating ensemble and 

regression-based models for high-fidelity prediction, followed by a model-specific 

configuration optimization module. This enables the system to not only forecast outcomes with 

high precision but also generate prescriptive, interpretable recommendations for energy- 

efficient, migration-aware infrastructure reconfiguration. 

III. METHODOLOGY 

 

3.1 : Dataset Generation 
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Due to the absence of publicly available datasets that comprehensively represent energy 

consumption and VM migration behaviour in cloud computing environments, a synthetic 

dataset was developed for this study. Although artificial, the dataset was carefully constructed 

using domain knowledge to reflect real-world infrastructure patterns and workload dynamics. 

The dataset incorporated the following logic-driven rules and design choices to ensure realism 

and machine learning readiness: 

• Infrastructure logic: The number of virtual machines was modelled as a multiple of 

physical machines to mimic real-world virtualization practices. CPU usage was positively 

correlated with RAM utilization and power consumption, while migration latency was 

inversely related to network bandwidth availability. 

• Controlled variability: Slight randomness (noise) was introduced in key resource attributes 

like memory, storage, and bandwidth to simulate operational fluctuations and avoid 

overfitting in ML models. 

• Machine learning compatibility: Feature ranges were kept interpretable (e.g., CPU usage 

in %, memory in MB), redundant features were avoided, and target distributions were 

balanced to ensure robust model training and generalization. 

This thoughtful data generation process ensured that the synthetic dataset was not only 

representative of real cloud behaviour, but also optimized for training predictive models to 

support energy-aware and migration-efficient resource management strategies. 

The final dataset generated is as below in table 3.1. 

 

Feature Name Description 

num_physical_machines Number of physical machines available in the 

cloud 

infrastructure. 

num_virtual_machines Number of  virtual  machines  deployed  across  

the 

infrastructure. 

num_cores Total number of CPU cores allocated for 

processing 

tasks. 

num_migrations Number of virtual machine migrations during 

the 

observation period. 

migration_latency_ms Time delay (in milliseconds) caused by VM 

migrations. 

RAM_utilization_in_CPU_% Percentage of RAM utilized relative to CPU 

operations. 
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overload_indicator Binary flag indicating if the system is overloaded (1) 

or 

not (0). 

CPU_usage_% Percentage of CPU currently in use. 

memory_consumption_MB Total memory consumed in megabytes. 

 

 

 

 

Table 3.1: Dataset Description 

 

3.2: Phase-wise Methodology 

 

network_bandwidth_usage_Mb

ps 

Network bandwidth used in megabits per second. 

storage_usage_GB Storage space used in gigabytes. 

Idle_time_% Percentage of time the system remains idle. 

underload_indicator Binary flag indicating if the system is 

underloaded (1) 

or not (0). 

Power_consumption_kWh Amount of power consumed, measured in 

kilowatt- 

hours. 

System_efficiency_score Calculated efficiency score representing overall 

system 

performance. 
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Fig 3.1: Methodology Flow 

 

Phase 1: Exploratory Data Analysis (EDA) 

 

The first step involved a comprehensive exploratory analysis of the generated dataset to 

understand the data distribution, feature relationships, and variable importance. Visual 

techniques such as correlation heatmaps and histograms were employed to detect patterns and 

anomalies in the data. Correlation analysis highlighted strong linear relationships—most 

notably, CPU usage and RAM utilization were highly correlated with power consumption. 

Pairplots helped establish multivariate relationships among selected features. Scatter plots and 

line plots further confirmed the trends between CPU usage and power consumption. This stage 

provided a solid understanding of the variable dependencies necessary for informed feature 

selection and model construction. 

Phase 2: Model Training and Evaluation 

 

In the second stage, multiple machine learning models were trained to predict two key targets 

independently: 
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• Power_consumption_kWh 

 

• num_migrations 

 

The dataset was pre-processed by handling missing values (via median imputation), removing 

outliers, and scaling features. The input features (X) excluded both target variables, and the 

data was split into training and testing subsets with an 80-20 split. 

The following regression models were trained: 

 

• Linear Regression (Ridge Regression with L2 regularization) 

 

• Decision Tree Regressor (with depth control) 

 

• Random Forest Regressor 

 

• XGBoost Regressor (with tuned hyperparameters) 

 

• Hybrid Model combining Random Forest and Linear Regression via weighted 

averaging (70% RF + 30% LR) 

For each model, separate training and evaluation were done for both power consumption and 

migration prediction. The evaluation metrics used included: 

• Mean Absolute Error (MAE) – to measure average prediction error 

 

• Root Mean Squared Error (RMSE) – to penalize larger errors 

 

• R² Score – to assess variance explained by the model 

 

Phase 3: Optimal Configuration Prediction Using Best Model 

In the final stage, the best-performing model was used to simulate the most energy and 

migration-efficient configuration for a cloud data centre. Using the best performer model now 

trained on the dataset, a set of optimal resource configurations was derived. These dataset was 

passed through the trained Hybrid Model to predict the expected power consumption and 

number of migrations for the given configuration. 

3.2 : Model Selection 

To ensure robust evaluation and practical deployment, the following five models were selected 

based on their unique strengths in addressing regression problems related to power 

consumption and VM migrations: 

1. Linear Regression (LR): 

 

• Chosen for its simplicity, transparency, and ability to model linear relationships. 
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• Serves as a baseline for evaluating the performance improvements of more complex 

models. 

2. Decision Tree Regressor: 

 

• Selected for its capability to model non-linear feature interactions and hierarchical 

relationships. 

• Performs well with imbalanced data and requires minimal preprocessing. 

 

3. Random Forest: 

 

• An ensemble-based extension of decision trees that reduces overfitting and enhances 

generalization. 

• Ideal for capturing complex non-linear dependencies in cloud performance data. 

 

4. XGBoost: 

 

• A powerful gradient boosting algorithm known for high accuracy and speed on structured 

datasets. 

• Included to benchmark against advanced boosting techniques under sparse or noisy 

conditions. 

 

5. Hybrid Model (Random Forest + Linear Regression): 

 

• Designed to merge LR’s interpretability with Random Forest’s non-linear adaptability. 

• Offers a balanced trade-off between accuracy and explain ability, while maintaining 

computational efficiency. 

• Chosen over other combinations to avoid the complexity of deep models like XGBoost, 

ensuring fast convergence and more actionable insights for energy-efficient cloud 

optimization. 

Why Random Forest and Linear Regression were picked: These two algorithms were chosen 

specifically because they complement each other well: Random Forest does really good 

capturing of complex nonlinear patterns in high dimensional data, whereas Linear Regression 

is really good on global linear trends and interpretability. The hybrid model solves the issue in 

combining these two so that it can utilize both the robust pattern recognition and smooth 

generalization simultaneously, which is to say variance and bias are fulfilled simultaneously. 

Such synergy permits the model to have high predictive accuracy at the same time as keeping 

interpretability and computational efficiency, which makes it a good candidate for optimizing 

cloud resource configurations where precision and explain ability are fundamental. 
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Applicability of this hybrid specifically to this dataset: The Hybrid Model, in the context of this 

dataset (specifically, features such as CPU usage, RAM utilization, number of virtual machines, 

etc, and targets such as power consumption (kWh) and number of migrations) takes best of 

both Random Forest and Linear Regression and combines to bring better predictive accuracy. 

Random Forest does exceedingly well in modeling nonlinear interactions between variables. 

For instance, it’s not easy to represent with linear models how much high CPU usage and low 

idle time spike power consumption if along with that the associated RAM utilization is also 

high. As an ensemble of decision trees, Random Forest can split the feature space into regions 

where each region represents some localized patterns and some complex behaviour on real 

world cloud environments. 

Linear Regression, on the other hand, captures global linear trends—such as the directly 

proportional relationship between CPU usage and power consumption, or memory 

consumption and migrations. For such linear correlations with strong and consistent linear 

correlations across the dataset, LR is a very stable stabilizer to help mitigate the overfitting or 

variance in the Random Forest prediction. 

IV. RESULTS 

 

This section presents a detailed interpretation of the outcomes obtained from the three major 

stages of this study: Exploratory Data Analysis (EDA), Machine Learning Model Evaluation, 

and Configuration Optimization. Each stage was critical in building a predictive and 

prescriptive framework capable of minimizing energy consumption and virtual machine (VM) 

migrations in a cloud data centre. 

4.1 : Dataset Statistical Analysis 

Fig 4.1(a) Statistical Analysis (Code Snippet) 
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Fig 4.1(b): Fig 4.1(a) Dataset Statistical Analysis (Code Snippet) 

 

 

 

Fig 4.1(c): Fig 4.1(a) Dataset Statistical Analysis (Code Snippet) 

 

Statistical Analysis was conducted as the initial phase to understand the underlying patterns, 

feature distributions, and inter-feature relationships within the dataset. The dataset comprised 

1,000 records, each describing a unique cloud configuration instance with 15 attributes, 

including input features such as CPU usage, RAM utilization, bandwidth, and target variables 

like power consumption and number of migrations. 

All features were found to be complete, with no missing values across any column. Descriptive 

statistics revealed expected ranges and variability—CPU usage spanned from 5.5% to 85%, 
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and power consumption from 2.08 kWh to 13.71 kWh. These ranges suggested realistic cloud 

system loads. The presence of both high-load and idle systems was confirmed by the values for 

overload_indicator, underload_indicator, and Idle time_%, which had wide distributions across 

the dataset. 

 

4.2 : Exploratory Data Analysis 

 

4.2.1 : Correlation Heatmap 

 

Fig 4.2: Correlation Heatmap 

 

A correlation heatmap was generated to examine the relationships between numerical variables. 

Notably, a strong positive correlation was observed between CPU usage_% and 

Power_consumption_kWh, confirming that power consumption scales with compute workload. 

Similarly, RAM_utilization_in_CPU_% also showed moderate correlation with power usage, 

indicating that memory activity contributes significantly to energy draw. The inverse 

relationship between Idle_time_% and both power consumption and system efficiency 

suggested that idle or underutilized systems tend to operate inefficiently, consuming energy 

without productive output. 

These findings helped identify the most influential variables that contribute to energy 

consumption, thus informing feature selection for model development. 

 

4.2.2 : Histograms for Feature Distributions 
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Fig 4.2: Histograms For feature distribution 

 

Histograms for all continuous features were plotted to assess their individual distributions. 

CPU_usage_% and RAM_utilization_in_CPU_% showed near-normal distributions, centered 

around the mean values of approximately 45% and 49%, respectively. The histogram for 

Power_consumption_kWh also revealed a moderately normal distribution with slight right- 

skewness, indicating that while most configurations fell within average consumption ranges, 

there were notable cases of high-power draw. 
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4.2.3 : Scatter Plot: CPU Usage vs. Power Consumption 

 

 

 

Fig 4.3: Scatter plot of Power consumption vs CPU usage % 

 

A focused scatter plot between CPU_usage_% and Power_consumption_kWh was plotted to 

observe their direct relationship. The resulting distribution displayed a dense, upward-trending 

cluster, confirming a nearly linear increase in power consumption with CPU usage. However, 

at higher CPU levels, the curve slightly steepened, hinting at nonlinear behaviour due to 

thermal throttling or load-balancing inefficiencies in cloud hardware. 

This observation justified the inclusion of both linear and ensemble models in subsequent 

stages, as some nonlinearity was present in key operational ranges. 

4.3 : Results at Initial Phase: Comparing algorithms’ performance to predict power 

consumption 
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Fig 4.4(a): Final Comparison (code snippet) 

 

 

Fig 4.4: Comparison of Algorithms 

 

The first phase of model evaluation aimed to identify the most accurate algorithm for predicting 

power consumption in a cloud data centre environment. Five algorithms were trained and tested 

using the same set of infrastructure features. The goal was not just to measure performance but 

to determine which model would serve as the most reliable engine for guiding optimization in 

the next phase. 

The performance metrics (MAE, RMSE, R²) for each model are summarized below: 

Model MAE RMSE R² Score 

Linear Regression 0.616 0.645 0.927 

Decision Tree 0.662 0.805 0.886 
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Table 4.1: Algorithms’ Performance Metrics 

 

Key takeaways that guided the next stage: 

 

• Linear models like Linear Regression captured general trends but lacked precision 

under non-linear load conditions. 

• Tree-based models (especially Random Forest) showed better generalization and 

reduced errors. 

• XGBoost underperformed, likely due to its sensitivity to parameter tuning and potential 

overfitting. 

The Hybrid Model achieved the best results with perfect R² and lowest error—making it the 

most trustworthy model for predicting the impact of infrastructure changes on power 

consumption. 

Why this matters for the next phase: 

 

• The optimization engine in Phase 2 relies on accurate predictions to simulate how changes 

to parameters (e.g., CPU usage, number of VMs) affect power use. 

• A high-performing model ensures realistic and reliable recommendations that cloud 

administrators can apply with confidence. 

• Using the Hybrid Model minimizes the risk of false assumptions during configuration 

tuning, ensuring that energy savings and efficiency gains are based on data-driven, 

validated predictions. 

As such, the Random Forest + Linear Regression Hybrid Model was selected as the core 

predictive engine for configuration optimization in the next phase of this research. 

4.4 : Results at Final Phase: Optimization and Configuration Prediction 

In the final phase of the study, the selected machine learning models were utilized not only for 

prediction but for generating optimized cloud infrastructure configurations aimed at 

minimizing both power consumption and virtual machine (VM) migrations. This phase 

represents a critical transition from predictive analytics to actionable intelligence—enabling 

model-driven resource planning in cloud environments. 

Random Forest 0.274 0.358 0.978 

XGBoost 0.936 1.169 0.761 

Hybrid (RF + LR) 0.187 0.220 1.000 
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Using the models trained in earlier phases—Linear Regression, Random Forest, and the Hybrid 

Model (Random Forest + Linear Regression)—an optimization engine was applied. This 

engine adjusted key operational parameters such as CPU usage, RAM utilization, number of 

physical and virtual machines, and network bandwidth, and evaluated the impact of those 

changes on predicted energy and migration outcomes. 

Each model was used independently to generate an "optimized" configuration. The results are 

summarized in the table below: 

 

Model 

Used 

CPU 

Usage 

(%) 

RAM 

Utilizatio

n (%) 

Physical 

Machines 

Virtual 

Machines 

Bandwidt

h (Mbps) 

System 

Efficienc

y 

Power 

(kWh) 

Migratio

ns 

Linear 

Regression 

41.59 49.37 30 189 950.51 73.23 5.15 8.60 

Random 

Forest 

37.07 44.43 30 187 920.68 73.67 4.91 8.79 

Hybrid 

Model 

33.90 40.98 31 185 899.81 73.97 3.31 6.08 

Table 4.2: Model-Driven Optimized Configurations for Energy and Migration Efficiency 

 

 

Fig 4.5: Comparison of Models in Configuration Prediction 
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These results clearly demonstrate that the Hybrid Model outperformed all other models in 

guiding energy-efficient and migration-optimized decisions: 

• It produced the lowest predicted power consumption (3.31 kWh), a 35.7% reduction from 

the configuration generated by Linear Regression. 

• It also minimized the number of migrations to 6.08, significantly improving system 

stability compared to the baseline values. 

• The System Efficiency Score reached 73.97, the highest among all models, indicating a 

balanced use of computing and network resources. 

The inference drawn from this outcome is that the Hybrid Model not only excels in prediction 

accuracy but also proves to be the most reliable for prescriptive recommendations. Its ability 

to simultaneously reduce power usage and migration count—without compromising on 

efficiency—makes it well-suited for integration into real-world data centre orchestration 

systems. 

The configurations predicted by Linear Regression and Random Forest models also showed 

energy reductions, though less pronounced. Linear Regression suggested moderate CPU and 

RAM reductions, achieving acceptable efficiency, while Random Forest went slightly further 

in optimizing usage. However, only the Hybrid Model succeeded in identifying an operational 

"sweet spot" where minimal energy and migration costs coincide with high system efficiency. 

These findings affirm the broader goal of this study: that machine learning models can not only 

predict but optimize cloud infrastructure, providing intelligent recommendations that align 

with both operational and sustainability objectives. 

V. DISCUSSION 

 

5.1 Key Findings and Implications 

 

1. The Hybrid Model demonstrated superior prediction performance across all evaluation 

metrics. 

Among all algorithms tested, the Hybrid Model—built by combining Random Forest and 

Linear Regression—achieved the most accurate results for predicting power consumption in 

cloud data centres. With an RMSE of 0.220, MAE of 0.187, and an R² score of 1.000, it 

significantly outperformed standalone models like Linear Regression and XGBoost. This 

perfect R² score indicates that the Hybrid Model was able to fully explain the variance in the 

target variable on unseen test data, a rare and valuable outcome in predictive modeling. Its 

ability to balance trend-following behaviour (from Linear Regression) with non-linear feature 

learning (from Random Forest) made it both accurate and stable, which is especially important 

in the variable and high-load environments typical of cloud infrastructure. 

2. Model-driven optimization delivered measurable reductions in energy consumption and 

VM migrations. 
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In the final phase, the models were used not just for predictions, but to actively recommend 

optimized cloud configurations. The Hybrid Model suggested reducing CPU usage to 33.9%, 

RAM utilization to 40.98%, and balancing VM distribution to reduce overhead. These changes 

led to a predicted power consumption of only 3.31 kWh and 6.08 migrations, the lowest among 

all tested configurations. These results represent a 36% improvement in energy efficiency and 

29% reduction in migrations compared to the baseline configuration generated by the Linear 

Regression model. Such improvements are not merely statistical—they reflect real-world 

potential for lower energy bills, less hardware wear, and improved resource availability. 

3. The model’s recommendations maintained high system efficiency while reducing 

resource consumption. 

Crucially, while reducing power and migration metrics, the Hybrid Model also maintained a 

high system efficiency score of 73.97, which was the highest among all tested models. This 

shows that efficiency was not compromised in the pursuit of low power use—a common 

challenge in cloud optimization. This balanced outcome proves that the model is not only 

effective in minimizing operational costs but also in maintaining performance standards, 

making it suitable for practical deployment in real-world cloud orchestration systems. It sets a 

strong precedent for machine learning models to serve as intelligent advisors in the ongoing 

pursuit of sustainable and high-performing cloud infrastructure. 

5.2 Limitations of the Study 

 

While the results are promising, the study is not without limitations: 

 

• Synthetic Dataset Assumption: Although the dataset was generated using domain- 

informed rules to emulate realistic behaviour, it is still synthetic. Real-world workloads may 

introduce noise, anomalies, and dynamic events that are difficult to replicate synthetically. 

• Model Generalization in Production Environments: The models were validated using 

holdout testing, but deployment in actual cloud environments with live traffic was not part 

of this study. Real-time data drift and user-induced variability could affect model stability 

and reliability over time. 

• Limited Feature Scope: The dataset included a strong set of features such as CPU usage, 

RAM, and bandwidth, but excluded others such as I/O latency, disk throughput, and 

temperature, which might influence power and efficiency significantly in real systems. 

• Optimization Assumptions: The optimization logic assumes that predicted values will 

directly translate into operational gains. However, changes in configurations like reducing 

VMs or CPU load may not be instantly feasible in real deployment due to system 

constraints or service-level agreements (SLAs). 

5.3 Future Scope and Research Directions 

 

Building upon the findings and limitations, the following directions are recommended for 

future work: 
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• Validation on Real Cloud Workloads: The current model should be retrained and tested 

using live data from production cloud environments, such as public cloud logs or 

monitored Kubernetes clusters, to validate its predictive and optimization reliability in non-

simulated conditions [16-18]. 

• Incorporating More Resource Metrics: Expanding the feature set to include I/O metrics, 

thermal data, virtualization overhead, and SLA compliance metrics could enhance the 

depth and granularity of prediction and optimization models [19-21]. 

• Reinforcement Learning for Dynamic Optimization: Future work can explore 

reinforcement learning to perform continuous configuration tuning in real time, allowing 

the model to adapt to shifting workload patterns and performance feedback loops. 

• Multi-Objective Optimization Models: Beyond just minimizing power and migrations, 

future models can also incorporate cost, latency, and fault tolerance into a multi- objective 

optimization framework, allowing a broader range of trade-offs to be explored and 

recommended [22]. 

 

• Integration with Cloud Orchestration Tools: For practical deployment, integrating the 

hybrid model with tools like Terraform, Kubernetes Autoscaler, or OpenStack Heat can 

enable seamless automation and dynamic decision-making within cloud infrastructure 

layers. 

VI. CONCLUSION 

This research addressed a critical challenge in cloud computing: how to optimize resource 

utilization in a way that minimizes both power consumption and VM migration overhead. 

Through a structured methodology involving data synthesis, exploratory analysis, model 

training, and optimization, the study successfully demonstrated the potential of machine 

learning—particularly hybrid models—in solving this problem. 

Among the algorithms tested, the Random Forest + Linear Regression Hybrid Model emerged 

as the most accurate and generalizable solution, outperforming standalone models in predicting 

power usage with the highest precision. Its ability to simultaneously reduce energy 

consumption and migration frequency, while maintaining high system efficiency, highlights its 

practical value for real-world cloud operations. 

By integrating prediction and prescription within a single framework, this study contributes to 

the growing body of work on green computing and intelligent cloud management. The findings 

support the deployment of ML-based decision systems in cloud infrastructure to automate 

energy-aware configurations and proactively balance system loads. Future work can focus on 

extending the framework with live workload data, incorporating additional system metrics, and 

integrating reinforcement learning for real-time adaptive optimization. 
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