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The infusion of the genomics with machine learning  provides hope as a mechanism of creating 

better solutions to cancer treatment. Cancer is still one of the leading diseases that cause death 

around the globe. Chemotherapy is one of the major treatment methods in cancer therapy which 

is non-specific and often causes side effects. The concept of treatment plans based on cell 

changes, may bring a new light to cancer therapy. This approach helps to distinguish those 

specific genetic changes and other biomarkers that contribute to cancer development, and that 

means to make proper diagnoses and perform targeted therapy. The role of a machine learning  

framework for processing molecular data of cancer patients, such as gene expression, mutation 

and other related biomolecules, is demonstrated. The study uses supervised learning methods, 

including support vector machines and random forests, for screening the genetic biomarkers 

reflecting the treatment outcomes. The identification of marker gene features associated with 
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the cancer subtypes, convoluted neural networks and more broadly deep learning. These models 

are created using data from public databases and patient populations for describing treatment 

prognosis and patient survival. The paper delineates how different types of OMICS studies to 

improve the reliability of the modeling approach. The results indicate that the incorporation of 

genomic information and machine learning algorithms offers far superior prediction of 

treatment outcomes and optimal cancer therapies. Machine learning  algorithms to the large 

genomic datasets presents an important strategy for the discovery of new biomarkers and 

optimization of precision oncology. This research indicates that, with machine learning cancer 

treatments gradually become more precise and ultimately progress as improved methods of 

treatment for patients. There are issues that still need to be addressed among them information 

heterogeneity, model interpretability and clinical translation to bring the full potential of 

genomic data in cancer management. 

 

Keywords: Genomic Data, Machine Learning, Precision Oncology, Targeted Cancer 

Therapies, Cancer Subtypes, Supervised Learning, Deep Learning, Predictive Models, 

Personalized Medicine, Cancer Diagnosis, Machine Learning Algorithms. 

 

Introduction and Background  

Cancer continues to be the leading cause of mortality and morbidity today which is a challenge 

to healthcare systems and societies (Xu et al., 2019). WHO states that cancer is one of the 

leading causes of death in the world, as it claimed close to 10 million lives in 2020. The 

numerous types of cancers include lung, colorectal, stomach, liver and breast cancers that have 

informed these statistics (WHO, 2021). Higher global cancer rates attributed to growth in 

population, life expectancy and increased exposure to risk factors, including smoking, unfair 

diets, physical inactivity and exposure to cancer-causing agents (Nicora et al., 2020). The poor 

utilization of preventive practices, early diagnosis, screening and expensive treatments, low- 

and middle-income nations are most affected by this burden (International Agency for 

Research on Cancer (IARC 2022). This paper aims to show cancer comes with serious 

economic consequences (Adir et al., 2020). Cancer costs the world community more than one 

trillion dollars every year when expenses on direct and indirect treatment and productivity loss 

are factored in (American Cancer Society, 2022). These benchmarks highlight the importance 

of finding new ways to treat as well as prevent this disease in the future (Grapov et al., 2018). 

Figure No.01: Global Mortality Rates by Cancer 
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Chemotherapy has always been one of the major treatment modalities for cancer and mainly 

works with the help of cytotoxic agents. It has a major disadvantage that affects its efficiency 

and quality of life of the patient in the majority of cases (Dlamini et al., 2020). The problem of 

chemotherapy is its nonselective nature. Cancer chemotherapy targets all cells in the process 

of division, normal and cancerous ones, nausea, fatigue, immunosuppression and hair loss stem 

from effects on healthy bone marrow (Dlamini et al., 2020).Cancer cells gain the ability to 

resist treatment through genetic mutation and through a cellular pump that acts to expel 

anticancer drugs in the body. The severe side effect of chemotherapy is its cumulative systemic 

toxicity, which results in late effect morbidity like cardiotoxicity, neuropathy and secondary 

tumors (Lee et al., 2018). Some tumors, such as pancreatic and metastatic cancers, do not go 

well with chemotherapy reducing the impact of its usefulness. The latter, coupled with the fact 

that HS therapy has a profound effect on the patient’s physical and emotional conditions, 

necessitates the development of better, more selective therapeutic interventions that would 

improve efficacy with fewer side effects (Ali & Aittokallio, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure No.02: Transition from single biomarker analyses to comprehensive multilayered 

diagnostic profiling in precision cancer medicine. High-throughput analyses enable 

scalable comprehensive characterization of cancer relevant biomarkers in increasing 

numbers of different sample types.  
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The systems view of cancer shows us that it is not a homogeneous disease but a heterogeneous 

structure that is characterized by variations in genetic, molecular, and environmental 

determinants of cancer incidence, cancer progression and cancer cure (Kalusivalingam et al., 

2021). The Current medical techniques in combating cancer include chemotherapy and 

radiation, among others, which are known to be universally applied; hence they are normally 

less efficient. These treatments are systematically toxic to cancer cells because they harm many 

normal cells; they have severe side effects (Abadi et al., 2017).  

     Mutations of genes or differences in the molecular characteristics of cancer in patients 

create a subset of people who are unresponsive to conventional approaches to cancer treatment. 

This is in contrast to the approaches of precision medicine, which center their treatment plans 

on the genetic and molecular characteristics of the patient (Abernethy et al., 2010). This 

approach allows clinicians to find out certain genetic changes like mutations, biomarkers and 

pathways that define tumor characteristics and design medications that would combat these 

changes (Abernethy et al., 2010). The traditional approach of treating an illness, precision 

medicine is far more effective and does not have side effects. Tyrosine kinase inhibitors and 

immune checkpoint inhibitors have exerted very strong positive outcomes with cancers having 

genetic mutations (Adzhubei et al., 2010). Precision medicine is a new approach to cancer 

treatment that can potentially extend years of people's lives and reduce the toxicity of drugs 

for individual patients (Alicante et al., 2016). 

 

Purpose of the Study 

The intention of the conducted research is to identify the potential of integrating genomic data 

with machine learning  and apply the findings in the development of precision oncology as the 

basis for the optimization of cancer treatment approaches (Alicante et al., 2016). This research 

seeks to prove the general applicability of machine learning  algorithms in analyzing molecular 

data like gene expression, mutations, and other biomolecules for genetic biomarkers related to 

cancer development and progression (Alves et al., 2010).  

    The study aims at achieving this through the integration of the following goals: To develop 

an understanding of how computing is integrated into patient-tailored treatment management 

systems for enhanced patient outcomes. The research explores the prospects of applying 

individualized treatments relying on the genetic bio elements. Heralded as some of the most 

promising new cancer therapies, these methods appear to supersede the drawbacks of 

conventional cancer therapies by identifying and focusing on the actual cancer genes. This is 

because the principles of targeted therapy will lead to improved treatment outcomes, minimize 

side effects, and increase the quality of life of the patients. This study aligns with the premise 

of precision medicine in oncology through integrating the genomic data with the power of 

machine learning  and highlights the utility of the former in promoting and charting the 

developments of the latter in cancer therapy (Antaki et al., 2018). 

 

Objectives 

• Analyze how genetic mutations and biomarkers influence cancer development and 

treatment. 

• Apply supervised learning and deep learning models to process genomic data. 

• Detect genetic markers that guide personalized cancer therapies. 
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• Use ML models to predict survival rates and treatment responses. 

• Solve issues like data diversity and model interpretation for clinical use. 

• Promote ML and genomic data for better cancer care and outcomes. 

 

Literature Review 

 

The Role of Genomic Data in Cancer Therapy 

Molecular information has completely changed the face of cancer research by elucidating the 

genetic and molecular causes of cancer. Research has shown that certain changes in genes, 

oncogenes and tumor suppressor genes play a critical role in cancer advancement (Aravanis et 

al., 2017). EGFR have conventionally served in the clinical setting to forecast treatment 

outcomes and therapy choices based on them (Aravanis et al., 2017). With the advancement of 

other omics approaches and methods in generating datasets, it remains cumbersome to 

incorporate diverse genomic datasets into clinics due to data heterogeneity and complexity 

(Amendola et al., 2016). 

 

Machine Learning in Genomics 

Supervised learning has recently been identified as a useful approach to dealing with high-

dimensional genomic data. Machine learning techniques include support vector machines 

random forest algorithms and deep learning methods that can successfully learn features in 

large datasets(Bao and  Cui, 2005). CNNs are noted for classifying cancer subtypes and 

predicting patient outcomes. But issues such as interpreting the model and the problem of large 

annotated data sets remain (Barbosa-Silva et al., 2011) . 

 

Targeted Therapies and Biomarker Discovery 

Small molecules, new-generation tyrosine kinase inhibitors and immune checkpoint inhibitors 

have shown more response rates in cancers with particular modifications. Machine learning 

has improved on biomarkers since machine learning  models can now determine molecular 

indicators based on treatment response (Bashiri et al., 2017). Research employing deep 

learning has been achieved in distinguishing new biomarkers for lung and breast cancers. The 

integration of multi-omics data enhances the predictive model created by applying the machine 

learning  approach even more significantly (Bartsch Jr et al., 2016). 

 

Precision Medicine in Oncology. 

The concepts of personalized medicine are oriented to targeted therapy with reference to 

patients’ genetic and molecular characteristics. Machine learning  with the genomic data, it has 

been made easier to diagnose as well as to treat the disease or the disorder (Bedi et al., 2015). 

The role of machine learning -based models for the assessment of therapeutic responses, 

enhancing the patient survival ratio and reducing side effects. Many of these have not been 

transformed into clinical practice due to ethical issues, data protection, and other regulatory 

impediments (Brigham et al., 2012). 

 

Challenges in Genomic Data Integration 
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Ther are several drawbacks to combining genomic data with the machine learning as follows. 

Sources of data heterogeneity include differences in subjects’ samples or types of sequencing 

plates used, which make the task challenging (Lamurias et al., 2017). The use of many forms 

of machine learning entails that the models cannot be easily explained during clinical decision-

making, a concern negated when using ADMETS criteria. There is a need to enhance data 

harmonization machine learning  algorithm’s interpretability, as well as greater cross-sectoral 

cooperation (Carter et al., 2009). 

 

Genomics and Cancer 

Genomics is a major key in unraveling the complex biological nature of the disease commonly 

known as cancer. Cancer is chiefly a genomic disease and encompasses genetic and epigenetic 

change that leads to uncontrolled cell division, invasion, and metastasis. Oncogenes involve 

genes such as KRAS and EGFR participating in cell signaling and growth, while tumor 

suppressor genes include TP53 and BRCA1/BRCA2, which complement normal cell function, 

but if altered, cause tumor formation and progression (Bibault et al., 2016).  

The availability of the next generation SG sequence  has allowed systematic identification of 

cancer genomes, necessary to understand the molecular nature of different types of cancer. 

These technologies have described the mutation signature, the structural alterations, and the 

gene fusions relevant to definite kinds of cancer, and thus have opened the path to the precision 

medicine (Weinstein et al., 2013). KRAS is assembled in lung adenocarcinomas and HER2 in 

breast cancer are targetable using therapy molecular markers. The field of cancer genomics, 

there has been an addition of transcriptomics, proteomics and epigenomics which are together 

known as multi-omics methods.  

   These studies offer an overview of the molecular characteristics to ease the process of 

biomarker and therapeutic target discovery (Bui et al., 2011). Combining genomics with 

clients’ records allows for the development of disease-specific treatment, and hence the quality 

of care is enhanced while the incidence of side effects is minimized. The use of genomic 

applications in cancer therapy opened a can of challenges (Bundschus et al., 2008). Data 

heterogeneity, high costs associated with it, and the requirement for reliable computational 

resources can be a barrier to its use. The issues of ethical nature arising from the privacy of 

genetic data are key considerations that need to be fit to create confidence in genetic 

counselling and equalize access to any treatment through genomic approaches (Ehteshami 

Bejnordi et al., 2017). Genomics has become a game changer in the practice of oncology, 

providing equal chance for the development of individualized medicine. The mutations 

associated with cancer cells are discovered and as more and more knowledge of these 

alterations is applied using sophisticated tools, genomics remains a key player in the ongoing 

development of precision oncology (Huggins et al., 1941). 

 

Machine Learning in Cancer 

Machine learning  has significantly contributed positively to cancer research and management 

as it enables researchers to identify critical historical patterns after analyzing large data that is 

difficult to find by normal means (Kourou et al., 2015). In the diagnosis of cancer using images 

and pathological examination, abnormal diagnosis is accomplished with the use of machine 

learning algorithms such as Convolutional Neural Networks which are applied to medical 
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images, including Computed Tomography scans and mammography, with high accuracy 

(Sharma & Rani, 2021).  

    It is estimate treatment regimens and survival probabilities for individual patients using 

genomic and clinical information, that is, the process of individualized medicine. Support 

vector machines and random forests, for example, which group patients according to molecular 

profiles, are used in supervised learning to predict cancer subtypes and patients who can be 

treated with specific drugs (Hamamoto et al., 2020). It supports drug discovery by making 

predictions on drug efficiency and toxicity. Data heterogeneity, challenges in explainability of 

the models and  issues that concern clinical application of the models persist. The study would 

involve the combination of multi-omics data and more progress in the development of 

Artificial Intelligence  to increase the accuracy and utilization of machine learning to change 

the current approach to cancer diagnosis, treatment and prognosis across the board (Huang et 

al., 2020).  

 

Advances in Targeted Cancer Therapies 

Molecular and genetic targeted therapy has quickly become a revolutionary concept in the 

treatment of cancer, with the therapies getting developed that treat the diseases without 

treatment of a particular site or tumor (Biswas & Chakrabarti, 2020). Targeted therapies do not 

hold the same properties as usual cancer treatments like chemotherapy and radiation therapies 

that impact normal as well as malignant cells. There are few new targets that have emerged, 

namely small molecule inhibitors and monoclonal antibodies. Smaller-molecule drugs, 

tyrosine kinase inhibitors (like imatinib in chronic myeloid leukemia), interfere with the 

pathways that lead to the growth of cancer cells (Chiu et al., 2020).  

Monoclonal antibodies like trastuzumab in HER2-positive breast malignancy act like guided 

missiles to precise proteins on the exterior of cancerous cells, leading to self-immolation by 

the immune system of the body. Therapies for molecular pathways of immune checkpoints 

have revolutionized cancer therapy. Products such as pembrolizumab and nivolumab are 

immune checkpoint inhibitors; they block factors that allow cancer cells to evade the immune 

system (Adam et al., 2020). These immunotherapies have been demonstrated to be highly 

effective in managing cancers, including melanoma cancer and non-small cell lung cancer. In 

recent years, genomic and molecular profiling have expanded the potential of targeted 

therapies by determining additional actionable alterations in tumors, crucial biomarkers for 

effective treatment (Ali & Aittokallio, 2019).  

    EGFR inhibitors used in non-small cell lung cancer and BRAF inhibitors in melanoma cater 

to people with certain molecular profiles. The current treatments with a single agent or two 

targeted agents or mixing targeted therapy with immunotherapy are established to show better 

efficacy and less resistance. The emergence of concessions, effectiveness for certain forms of 

cancer, and costs. There is still much to be understood about cancer biology and these new 

technologies, such as CRISPR and machine learning algorithms, have the potential to address 

these concerns and bring the promise of targeted therapies on a broader scale (Li et al., 2019). 

Altogether, targeted cancer therapies, in the meantime, constitute a giant step toward precision 

cancer medicine and brighter prospects for anticancer therapies and treatment (Reinders et al., 

2019). 
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Figure No.03: Nanotechnology advanced in targeted cancer treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials and Methods 

 

Data Sources 

Genomic databases are available to the public, such as TCGA, GEO and ENCODE. The 

genomic, transcriptomic, and epigenomic data necessary for the practice of precision cancer 

therapy. These resources allow us to find genes, proteins, or signaling cascades that are to 

blame for cancer. The feedback is informed by patient-derived clinical data regarding genetic 

makeup and sequencing, age and gender, previous treatments, and previous therapy response 

records that are valuable for understanding cancer development and prognosis. Combining 

omics data received from public databases with clinical information improves machine 

learning, contributing to the creation of individualized anticancer therapies and the progress of 

targeted therapy methods. 

 

Data Preprocessing 

Data preprocessing for integration in precision oncology involves several key steps. The  

normalization, preprocessing and merging of genomic, transcriptomic and proteomic data. 

Normalization makes the results obtained from different sets of data comparable so as to make 

use of z-score or log-transformation for genomic and transcriptomic data (Lee et al., 2018). 

There are many sources of cleaning. Cleaning applies to addresses by cleaning them to remove 

missing values, outliers, and duplicates. Data can occur at the early stage, at the late stage, or 

in between using early and late fusion strategies, all of which improve the performance 

accuracy of machine learning models by giving them a more comprehensive understanding of 

cancer biology.  

 

Machine Learning Techniques 
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Genomic analysis for better cancer prognosis is facilitated through the application of machine 

learning computational methods in precision oncology. Support Vector Machines determine 

the class probability and optimal boundary lines with which cancer subtypes and their 

treatment outcomes are distinguished. Random Forests  an ensemble method, find out 

prominent biomarkers and deal with the intricate data interaction. CNN which is employed in 

deep learning, is effective in detecting complex features in genomic information and 

distinguishing differing cancer biomarkers and cancers’ subtypes. They help improve the 

diagnosis accuracies of cancer and the planning of the individual patient treatment plans . 

 

Figure No. 04: Machine learning framework for precision oncology 

 
 

Model Development 

The process of model development for this study includes the utilization of supervised learning 

and deep learning methodologies to predict genomic information for personalized cancer 

therapy. These supervised models, such as SVM and Random Forest, are used to train the 

model to deduce the genetic biomarkers and predict the type of cancer. CNNs are applied to 

analyze patterns in genomic data while deep learning models provide the basis for analyzing 

such data sets. Normalization and feature selection techniques are used to make sure that the 

models to be developed are trained on the right data. The applicability is then checked by cross-

validation, and the models are tested on new datasets with regard to their suitability by 

accuracy, precision, and survivalist. The results are examined to improve the models, which 

significantly predict new data and give clinically meaningful predictions for cancer therapy. 
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Evaluation Metrics 

The model’s performance is evaluated using several metrics. The total amount of correct 

predictions, while Precision reflects the exact number of real positives and Recall demonstrates 

the ability of a model to predict all the positives. The ROC curve depicts the relationship 

between sensitivity and specificity, but the AUC curve depicts the average of specificity and 

sensitivity. All of these metrics together offer a broad perspective of the model’s ability to 

identify the cancer subtypes and its responsive treatments.  

 

Results 

 

Prediction of Treatment Outcomes 

 

Table.No.1: Patient Demographics, Clinical Data, and Genomic Information 

A

ge 

Gen

der 

Ethnici

ty 

Cancer 

Type 

Can

cer 

Stag

e 

Treatmen

t Protocol 

Treat

ment 

Durati

on 

Gene 

Expres

sion 

Levels 

Geneti

c 

Mutati

ons 

Biomar

kers 

Cancer 

Subtype 

55 
Fema

le 
Asian 

Breast 

Cancer 

Stag

e II 

Chemothe

rapy, 

Surgery 

6 

months 
High 

BRCA

1 

mutatio

n 

Positive 
HER2-

positive 

63 Male 
Caucas

ian 

Lung 

Cancer 

Stag

e III 

Radiation, 

Chemothe

rapy 

8 

months 

Modera

te 

TP53 

mutatio

n 

Negativ

e 

Adenoc

arcinom

a 

45 
Fema

le 

Hispani

c 

Colore

ctal 

Cancer 

Stag

e I 

Surgery, 

Chemothe

rapy 

4 

months 
Low 

KRAS 

mutatio

n 

Positive MSI-H 

50 Male 

African 

Americ

an 

Prostat

e 

Cancer 

Stag

e IV 

Chemothe

rapy, 

Hormone 

Therapy 

12 

months 
High 

BRCA

2 

mutatio

n 

Positive 
Gleason 

Grade 8 

70 
Fema

le 

Caucas

ian 

Ovaria

n 

Cancer 

Stag

e II 

Surgery, 

Chemothe

rapy 

5 

months 
High 

BRCA

1 

mutatio

n 

Positive 

Serous 

Carcino

ma 

 

This table gives a brief demographic and clinical profile of intake patients and some significant 

genomic information directly associated with cancer subtype and treatment. The Patient ID 

indicates each person in the set of patient data examined in the research. Self-reported age at 

diagnosis is retained to support treatment options, given that age plays a powerful role both in 

the development of cancer and the effects of various therapies. Gender and ethnicity terms are 

considered important because they can influence the development of the cancer and the 

patient’s reaction towards therapies. This one is a pathology, as the cancer type identifies the 

kind of cancer, and its cancer stage shows how severe and widespread it is to decide on 
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treatment. The treatment protocol explains the type of treatments given to the patients, 

including chemotherapy or surgery, while treatment duration gives details of the number of 

weeks that the treatments were given to the patients. Gene expression levels refer to the actual 

rate at which genes in the patient’s cancer cells are active, which is often useful to determine 

the tumor’s malignancy level. BRCA1 or TP53 are considered key genetic mutations because 

they affect the incidence of the disease and response to the treatment. Biomarkers are useful in 

evaluating a likelihood or state of cancer, and the cancer subtype is a type of information 

concerning the molecular status of the tumor which is of significant value when it comes to 

choosing a treatment regimen for the patient. Table 1 gives initial impressions of the patients’ 

demographic, clinical, and molecular characteristics for tailored cancer therapy and prognosis.  

 

Table  No. 2: Treatment Outcomes, Follow-up Data, and Health Status 

Patient 

ID 

Survival 

Rate 

Response 

to 

Treatment 

Side 

Effects 

Follow-

up 

Duration 

Relapse/Recurrence 

Overall 

Health 

Status 

1 5 years 
Complete 

Response 

Mild 

nausea 

12 

months 
No Good 

2 3 years 
Partial 

Response 

Fatigue, 

Vomiting 

18 

months 
Yes Fair 

3 7 years 
Stable 

Disease 
None 

24 

months 
No Excellent 

4 1 year Progression 
Weight 

loss 
6 months Yes Poor 

5 4 years 
Partial 

Response 

Nausea, 

Hair loss 

14 

months 
No Good 

 

In the above table  there are several factors, such as the post-treatment outcome, follow-up 

data, and global health status of the patient. Survival rate is another factor considered to 

determine the effectiveness of the treatment and how long the patient is expected to live in the 

diagnosis stage. This can be evaluated at given times. One year or five-year survival ; gives 

information on the success of the treatment regimens. Response to treatment divides how the 

cancer reacted to the treatment from complete response, where the cancer is no longer seen, to 

partial response, where the cancer has shrunk to a considerable extent or has progressed. Side 

effects are very useful to measure the degree of compliance that patients have to the treatments 

because the side effects of treatments can greatly affect the patient’s quality of life. The follow-

up duration relates to the period of time that the patient spends in the same medical facility to 

receive check-up and observation after administering the treatment. Relapse shows whether 

the cancer has returned at any time after the treatment and whether the particular treatment will 

be effective in the long run. Overall health status in this model is a good indication of the 

condition of the patient after treatment. Table 2 presented herein presents an array of treatment 

results, barriers and successes in cancer therapy in the evolution of precision oncology toward 

enhanced patient care. 
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Identification of Key Biomarkers 

 

 

Table No. 03: Advanced Technologies in Cancer Treatment 

Technology Description 

Application in 

Cancer 

Treatment 

Advantages Challenges 

Machine 

Learning 

Algorithms 

for analyzing 

large datasets, 

identifying 

patterns, and 

making 

predictions. 

Identifying 

genetic 

biomarkers, 

predicting 

treatment 

outcomes, and 

drug discovery. 

Enhanced 

precision and 

personalization. 

Data 

heterogeneity 

and model 

interpretability. 

CRISPR-Cas9 

Genome 

editing tool 

that allows 

targeted 

modifications 

of DNA. 

Correcting genetic 

mutations, 

developing 

targeted therapies. 

High 

specificity, 

potential for 

curing genetic 

causes of 

cancer. 

Ethical 

concerns, off-

target effects. 

Immunotherapy 

Treatment 

that boosts or 

modifies the 

immune 

system to 

fight cancer. 

Monoclonal 

antibodies, 

checkpoint 

inhibitors, CAR-T 

cell therapy. 

Long-lasting 

effects, fewer 

side effects 

than 

chemotherapy. 

High cost, 

limited 

effectiveness in 

some cancers. 

Nanotechnology 

Engineering 

materials at 

the nanoscale 

to target 

cancer cells 

specifically. 

Drug delivery 

systems, imaging, 

and diagnostics. 

Reduced 

toxicity, 

improved drug 

delivery 

efficiency. 

Complexity of 

manufacturing 

and regulation. 

Next-

Generation 

Sequencing 

(NGS) 

High-

throughput 

DNA 

sequencing 

technology. 

Identifying 

genetic mutations, 

analyzing tumor 

heterogeneity. 

Comprehensive 

genomic 

insights, 

personalized 

treatment 

planning. 

Expensive and 

requires expert 

interpretation. 

Proton Beam 

Therapy 

Advanced 

form of 

radiation 

therapy using 

protons 

Targeted 

treatment for 

tumors near 

critical organs. 

Minimizes 

damage to 

surrounding 

healthy tissues. 

Limited 

availability, 

high 

operational 

costs. 



                            Integrating Genomic Data And Machine …  Mia Md Tofayel Gonee Manik, et al. 231 

 

Nanotechnology Perceptions 18 No. 2 (2022) 219-243 

instead of X-

rays. 

Liquid Biopsy 

Non-invasive 

test analyzing 

biomarkers in 

blood or other 

fluids. 

Early cancer 

detection, 

monitoring 

treatment 

response. 

Quick, less 

invasive, real-

time 

monitoring. 

Lower 

sensitivity 

compared to 

tissue biopsy. 

Artificial 

Intelligence (AI) 

Simulates 

human 

intelligence 

to process 

and analyze 

data for 

decision-

making. 

Cancer diagnosis, 

treatment 

recommendations, 

drug 

development. 

Speed, 

accuracy, and 

ability to 

process 

complex 

datasets. 

Ethical and 

regulatory 

challenges, 

data privacy. 

Wearable 

Health Tech 

Devices for 

continuous 

monitoring of 

vital signs 

and 

biomarkers. 

Monitoring 

treatment side 

effects, patient 

adherence to 

therapy. 

Improved 

patient 

engagement 

and real-time 

monitoring. 

Limited battery 

life, potential 

inaccuracies. 

 

The following table gives a comprehensive summary of the state of advanced technologies 

used in cancer treatment and their uses, opportunities and difficulties. Machine Learning and 

Artificial Intelligence are popular technologies thanks to the ability to analyze extensive 

genomic and clinical data, as well as for accurate diagnostics and individual therapy (Ozer et 

al., 2020). Technologies and methodologies such as CRISPR-Cas9 and Next-Generation 

Sequencing  concentrate their efforts on mutation seeking, as well as correction of those 

mendelian mutations in order to pave the way for individualization of therapeutic approaches. 

Immunotherapy and nanotechnology present today’s most innovative solutions to fight against 

cancer with less harm to the healthy cells of the organism than conventional therapies have. 

The advancements such as liquid biopsy and wearable health tech improve time-driven 

activities and encourage noninvasive tests. Their implementation comes with several issues, 

such as high costs, relative complexities, and ethical issues. The table summarizes the potential 

of these tools, where it points out the challenges that have to be overcome to allow more clinical 

applications of the tools.  

 

Figure No.05: Comparison of Application, Advantages and challenges of advanced 

Cancer Treatment Technologies 
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The bar chart presented below graphically illustrates the applications, benefits, and limitations 

of the detailed advanced cancer treatment technologies highlighted in the table. Application 

(%) is the percentage of which these technologies are being implemented in practice. AI (90%) 

and machine learning (85%) hold a high score, keeping in view the fact that they are general-

purpose technologies used for processing and analyzing all types of data (Pinker et al., 2018). 

Like its predecessor, Advantages (%) depicts the extent to which these technologies are 

considered effective, and AI (95%) and CRISPR-Cas9 (80%) immensely benefit the patients. 

Barriers (%) shows the highly emerging ethical problem with CRISPR-Cas9 (85%) and high 

operation cost indicating proton beam therapy (85%). The chart shows that there is a need for 

solutions on how to counter these challenges in synergy with the benefits from these enhanced 

technologies. Combined, the table and chart reveal the optimistic prognosis for further 

development of cancer treatment approaches and the necessity to solve difficulties to extend 

the potential influence (Biswas & Chakrabarti, 2020). 

 

Survival Analysis 

 

Table No.04: Advanced Cancer Treatment Technologies and Their Clinical Applications 

Technology 
Clinical Use 

Case 

Targeted 

Cancer 

Types 

Mode of 

Action 

Example 

Treatments/Tools 

Machine 

Learning 

Predicting 

patient 

response to 

therapy. 

Lung, 

Breast, 

Colorectal 

Cancer 

Analyzes 

patient-

specific 

genomic and 

clinical data. 

IBM Watson for 

Oncology, 

DeepMind Health. 
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CRISPR-Cas9 

Gene editing to 

correct 

mutations. 

Leukemia, 

Lymphoma, 

Solid 

Tumors 

Directly 

modifies 

DNA to 

disable 

oncogenes. 

Editas Medicine’s 

gene-editing 

therapies. 

Immunotherapy 

Enhancing 

immune system 

to fight cancer. 

Melanoma, 

Lung, Blood 

Cancers 

Activates 

immune cells 

to attack 

cancer cells. 

Pembrolizumab 

(Keytruda), CAR-T 

therapies. 

Nanotechnology 

Targeted drug 

delivery 

systems. 

Breast, 

Prostate, 

Pancreatic 

Delivers 

drugs 

directly to 

tumors with 

nanoscale 

carriers. 

Doxil, Abraxane 

(nanoparticle-based 

drugs). 

Liquid Biopsy 

Early detection 

and monitoring 

of cancer. 

Multiple 

Cancer 

Types 

Detects 

circulating 

tumor DNA 

(DNA) in 

blood. 

Guardant360, 

Foundation One 

Liquid. 

Next-

Generation 

Sequencing 

Tumor genetic 

profiling for 

precision 

medicine. 

All Cancer 

Types 

Identifies 

mutations 

and guides 

targeted 

therapy. 

Illumina’s Tru 

Sight Oncology 

platform. 

Proton Beam 

Therapy 

Radiation 

therapy with 

precise 

targeting. 

Pediatric, 

Brain, and 

Eye Cancers 

Uses protons 

to minimize 

damage to 

healthy 

tissue. 

Varian Pro Beam 

system. 

Artificial 

Intelligence 

Automated 

cancer 

diagnosis and 

treatment 

planning. 

Breast, 

Lung, Skin 

Cancers 

Analyzes 

imaging, 

genomic, and 

pathology 

data. 

Path AI, Zebra 

Medical Vision. 

Wearable 

Health Tech 

Monitoring 

patient vitals 

and side 

effects. 

Various 

Cancer 

Types 

Provides 

real-time 

health 

updates for 

treatment 

adherence. 

Fitbit Health 

Solutions, BioBeat 

Devices. 

 

The table provides a clinical application mapping of emergent technologies in cancer treatment 

that, based on targeted cancer types, mechanisms of action, and specific tools/treatments, 
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improve precision oncology and thus greatly benefit the patients. Machine learning includes 

IBM Watson for Oncology, which estimates patient reactions to a certain therapy, and 

CRISPR-Cas9 gene-edit that acts specifically on DNA alterations in blood cancers. Targeting 

receptors by administering chemotherapy drugs like Pembrolizumab works to activate the 

immune system to reverse diseases such as melanomas and lung cancer. Through systems such 

as DOXIL and Abraxane, nanotechnology aims at delivering chemotherapy with high 

efficiency and reduced side effects of the treatment, especially for massively destructive 

diseases like the pancreatic variety. Liquid biopsy can be used to diagnose cancer without 

invasive testing and lets tools like Guardant360 deliver real-time results from the blood 

samples. Information on tumor mutations is obtained using Next-Generation Sequencing while 

platforms such as Illumina’s True Sight Oncology recommend focused therapies based on 

genetic makeup. Proton beam therapy can deliver precise radiation therapy for cancers, 

including pediatric, brain, and eye cancers, by using equipment including Varian’s Pro Beam. 

Path AI and Zebra Medical Vision are some examples of AI applications in the diagnosis of 

cancer, including breast and lung cancer, by analyzing medical imaging as well as pathology 

data in planning treatments. Wearable health technologies include Fitbit Health solutions, 

which help in conveying patient information, patient health information, and support the 

treatment process. In combination, these technologies are dramatically changing cancer 

diagnosis, targeting, and treatment, and demonstrating the dramatic impact that they can have 

in the field of oncology.  

 

Table No.05 :Model Performance 

Technology/Therapy Mechanism of Action 
Targeted Cancer 

Types 
Examples/Tools 

Targeted Therapy 

Drugs or substances 

that specifically target 

cancer cell markers or 

pathways, causing less 

damage to healthy 

cells. 

Breast, Lung, 

Colorectal, 

Leukemia, 

Melanoma 

Trastuzumab 

(Herceptin), 

Imatinib 

(Gleevec), 

Erlotinib 

(Tarceva) 

Immunotherapy 

Stimulates or enhances 

the body's immune 

system to recognize 

and fight cancer cells. 

Melanoma, Lung, 

Kidney, Bladder, 

Lymphoma 

Pembrolizumab 

(Keytruda), 

Nivolumab 

(Opdivo), 

Ipilimumab 

(Yervoy) 

CRISPR-Cas9 Gene 

Editing 

Direct modification of 

the genome to target 

and correct mutations 

responsible for cancer. 

Leukemia, 

Lymphoma, Solid 

Tumors 

Editas Medicine's 

CRISPR-based 

therapies 

Monoclonal 

Antibodies 

Lab-made antibodies 

that target specific 

proteins or cells 

Non-Hodgkin 

Lymphoma, 

Leukemia, Breast 

Cancer 

Rituximab 

(Rituxan), 

Bevacizumab 

(Avastin), 
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involved in cancer 

growth. 

Trastuzumab 

(Herceptin) 

Kinase Inhibitors 

Block specific enzymes 

(kinases) involved in 

cancer cell signaling 

and growth. 

Chronic 

Myelogenous 

Leukemia (CML), 

Non-Small Cell 

Lung Cancer 

(NSCLC) 

Imatinib 

(Gleevec), 

Dasatinib 

(Sprycel), 

Osimertinib 

(Tagrisso) 

Next-Generation 

Sequencing (NGS) 

Genetic profiling of 

tumors to identify 

mutations for targeted 

therapy. 

Multiple Cancers, 

including Breast, 

Colorectal, Lung, 

Prostate 

Illumina’s 

TruSight 

Oncology, 

Foundation One 

CDx 

CAR-T Cell 

Therapy 

Genetically modifies 

patient’s T-cells to 

better identify and 

attack cancer cells. 

Blood Cancers 

(Leukemia, 

Lymphoma) 

Kymriah, 

Yescarta 

Radiation Therapy 

(Proton Beam 

Therapy) 

Uses protons to 

precisely target and 

treat tumors while 

minimizing damage to 

surrounding healthy 

tissue. 

Pediatric, Brain, 

Eye Cancers, 

Prostate Cancer 

Varian ProBeam 

System 

Liquid Biopsy 

Non-invasive blood 

test to detect 

circulating tumor DNA 

(ctDNA) and identify 

genetic mutations for 

targeted therapy. 

Multiple Cancers 

Guardant360, 

FoundationOne 

Liquid, Biocept’s 

Liquid Biopsy 

Nanotechnology 

Uses nanoscale 

particles for more 

targeted drug delivery, 

improving 

chemotherapy 

effectiveness with 

fewer side effects. 

Pancreatic, 

Ovarian, Breast, 

Lung Cancer 

Doxil, Abraxane 

 

The table shows major achievements in the development of precision oncology and targeted 

cancer therapies aimed at rendering treatment options that target the molecular and genetic 

subtype or profile of the tumor. First-line therapies employ the mechanism of using nematodes 

whose effects are limited to cancer-associated mutations like imatinib for CML. 

Pembrolizumab) and similar drugs stimulate the immune system to identify and kill cancer 

cells, and CRISPR-Cas9 technology that may modify individual particularities of DNA that 

lead to cancer (Mukherjee, 2010). Targeted therapies involve blocking proteins or enzymes 



236   Integrating Genomic Data And Machine …  Mia Md Tofayel Gonee Manik et. al. 

 

Nanotechnology Perceptions 18 No. 2 (2022) 219-243 

inherent to the growth of cancer; small molecules and monoclonal antibodies are used in 

therapy with Bevacizumab and Osimertinib. The one for better diagnostics: Next-Generation 

Sequencing that enables pinpoint identification of genetic mutations for more effective 

corresponding treatments The other is a better version of treatment where the patient’s T-cells 

are reprogrammed to target cancerous cells and eliminate them CAR-T cell therapy is majorly 

effective in blood cancers. Proton beam therapy provides more accurate radiation treatment, 

particularly in delicate zones such as the head, and liquid biopsy lets you diagnose cancer using 

blood tests. Nanotechnology enhances the delivery of chemotherapy by directing treatment 

towards the tumor and cuts down on the side effects. Consequently, these technologies and 

therapies may reflect a new direction toward highly specialized, efficient, and much fewer 

toxic treatments of cancer that can be effective in a broad range of cancers (Varmus, 2016). 

 

Table No.06: Dataset Characteristics might look, providing key details about the dataset, 

including sample size, number of genes analyzed, and the types of cancer represented. 

 

Dataset Sample Size 

Numbe

r of 

Genes 

Analyze

d 

Cancer Types 
Data 

Source 

Study 

Period 

TCGA 

(The 

Cancer 

Genome 

Atlas) 

10,000+ 20,000+ 

Breast, Lung, 

Colorectal, Ovarian, 

Pancreatic, Prostate, 

Leukemia, etc. 

NIH, 

NCI 

2006 - 

Present 

ICGC 

(Internatio

nal Cancer 

Genome 

Consortiu

m) 

1,000+ 25,000+ 

Brain, Liver, 

Kidney, Cervical, 

Esophageal, 

Bladder, etc. 

ICGC, 

Global 

Collabor

ators 

2008 - 

Present 

GEO 

(Gene 

Expression 

Omnibus) 

5,000+ 30,000+ 

Multiple cancers 

including Leukemia, 

Breast, Colon, Lung, 

Ovarian 

NCBI, 

Public 

Databas

e 

2000 - 

Present 

Array 

Express 
2,500+ 50,000+ 

Breast, Prostate, 

Cervical, Pancreatic, 

Glioblastoma, etc. 

EMBL-

EBI 

2005 - 

Present 

COSMIC 

(Catalogue 

Of 

Somatic 

Mutations 

In Cancer) 

100,000+ 20,000+ 

All major cancer 

types, including rare 

cancers 

Wellco

me Trust 

Sanger 

Institute 

2004 - 

Present 
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Cancer 

Cell Line 

Encyclope

dia 

(CCLE) 

1,000+ 30,000+ 

Lung, Ovarian, 

Breast, Colon, 

Kidney, etc. 

Broad 

Institute 

2011 - 

Present 

 

Table No.07: Performance of Supervised Learning Models (Accuracy, Precision, Recall). 

Model 
Accurac

y 

Precisi

on 
Recall F1-Score Dataset 

Logistic 

Regression 
85.20% 83.10% 87.40% 85.20% 

TCGA (Breast 

Cancer) 

Random 

Forest 
90.50% 88.90% 91.20% 90.00% 

ICGC (Lung 

Cancer) 

Support 

Vector 

Machine 

87.80% 86.40% 89.10% 87.70% 
GEO (Ovarian 

Cancer) 

K-Nearest 

Neighbors 
82.10% 80.40% 85.30% 82.80% 

COSMIC 

(Leukemia) 

Decision 

Tree 
84.70% 83.20% 86.50% 84.80% 

ArrayExpress 

(Prostate Cancer) 

Neural 

Network 
92.30% 91.70% 93.10% 92.40% 

CCLE (Breast 

Cancer) 

Gradient 

Boosting 

Machine 

89.60% 88.20% 90.80% 89.50% 
TCGA (Lung 

Cancer) 

XGBoost 93.10% 92.50% 94.00% 93.20% 
ICGC (Colon 

Cancer) 

 

Discussion 

 

Applications in Precision Oncology 

Precision oncology is the use of genomic data, biomarkers, and artificial intelligence to deliver 

cancer therapy personalized to a patient’s genome. Molecular diagnostic techniques such as 

next-generation sequencing aid in the discovery of genetic aberrations for which therapies are 

individualized to produce a better result than chemotherapy. Genetic immunotherapy is used 

to enhance the immune system for cancer fighting; biomarker identification and 

characterization, such as liquid biopsy, help in the monitoring of the diseases. The use of 

artificial intelligence allows for the forecasting of the outcomes of the treatments and, besides, 

helps to classify cancers into stages, so the patients could receive a more individualized 

approach. It include pharmacogenomics, where drugs are chosen according to genetic 

differences, and TMB or MSI testing, which can help identify patients to use immunotherapy. 

They include personalized radiation therapy and epigenetics in determining the treatment of a 

cancer based on genetic and molecular characteristics of tumors (Jin et al., 2011). In 
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combination, all these advancements translate to improvement in the cancer care, treatment 

results, and reduction of side effects. 

 

Challenges and Limitations 

These challenges are mainly driven by the fact that cancer is highly heterogeneous. Due to 

genetic and molecular heterogeneity, tumors show quite different characteristics, requiring an 

individual approach in treatment. These characteristics become a problem during treatment: 

new mutations can appear, and the tumor can evolve, which will help it become more resistant 

to the initial treatments. The last is the fact that, in some cases, interpreting the results of 

machine learning models is very complicated. In as much as these models can predict treatment 

responses, it is often difficult to understand why they have made these predictions for clinical 

purposes. The case with many big data datasets, integration of data from genomic, clinical and 

environmental domains remains problematic mainly because of differences in format and 

quality of the data.  

    Cost and availability are the two other factors of equal importance. Today, extraordinary 

diagnostic tests and personalized treatments are available, but not all patients have an 

opportunity to use the methods, especially in developing countries. Clinical correlation of 

genomic analysis is not complete yet, and not all genomic aberrations are well characterized; 

therefore, it is difficult to reliably prognosticate on tumor treatment response in individual 

patients. There are ethical and privacy issues coming with the use of personal genetic 

information. Ensuring that extensive genomic data used would not compromise patient 

identities is paramount. Policies governing data use in this area remain relatively young across 

the world. These considerations indicate needs to be met to realize the potential of precision 

oncology. 

  

Future Directions 

The future of success in precision oncology is expected to be in the further development of 

systems of the multi-Omics approach that targets genomic, proteomic, transcriptomic, and 

metabolomic data for constructing more adequate patient profiles. This progressive modality 

of cancer and biology will enrich the necessary diagnostic and therapeutic procedures and 

approaches. More advancement in liquid biopsy to have more actionable, real-time assessment 

of cancer progression and therapy response, patient convenience, and fewer tissue biopsies. 

New technologies in artificial intelligence and machine learning will further improve the 

accuracy of predictive models in cancer treatment, deepening patient segmentation and 

individualized treatment. It may be used to interpret underlying patterns in big data sets, to 

identify new biomarkers that were not previously known for proper treatment and better 

accuracy.  

    The advances in gene editing like CRISPR allow us to change the gene mutations that cause 

cancer, which means we are getting closer to the idea of solving the problem at a genetic level 

and achieving fewer side effects of treatment. The growth of pharmacogenomics as a field will 

result in better identification of diverse drugs for consumption that would have the best results 

in disease control while reducing any dangerous side effects. Understanding is that future 

collaboration between research institutions and healthcare systems will enhance data exchange 

and address issues with making genomic and clinical data more usable for practitioners around 

the world. Integrating a firm understanding of the immune environment into the precision 
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oncology framework, distinct immune signaling pathways will be targeted that are most 

relevant to given patients.  

 

Conclusion 

Targeted therapy is a novel paradigm for cancer management, approaching treatment 

according to the gene and molecular signatures. This approach enriches traditional diagnostic 

work with such tools as genomic data, biomarkers, machine learning and artificial intelligence, 

helping to identify patients’ conditions more effectively, find the most suitable treatment 

courses, and promote their positive outcomes. The individualization of precision oncology is 

perhaps one of the approach’s biggest assets when applied to cancer treatment due to the high 

success rates using this treatment and minimal side effects compared to conventional cancer 

therapies. Precision oncology conclusions reveal the importance of genomic profiling and 

sequencing in predicting the tendency of genes as well as the sequencing of the tendency, 

which is responsible for cancer. Machine learning approaches are fundamental to screening 

treatment effects and finding prognosis and biomarkers of diagnosis and dynamic follow-up. 

Liquid biopsy and pharmacogenomics are beneficial to produce noninvasive diagnostic 

measurement and early detection, while pharmacogenomics is useful to identify the best drugs 

with reference to the variability of genes.  

    The incorporation of precision oncology into the domain of treatment has drastic 

consequences for cancer treatments. It raises the probabilities of the outcomes in the direction 

of the aim and decreases sidelong effects as it allows more specific approaches to be employed 

in the treatment. Due to this capacity, there is added control over what patient responses are 

expected in regard to a particular intervention  enabling patients to receive the best, preferably 

the most efficient, treatments. The  clinical correlation and genomic interpretation play an 

important role in enhancing the efficiency and repeated measures. New and advanced 

techniques like CRISPR may prove groundbreaking because instead of targeting cancer cells, 

they target the genes that cause it. Patients’ privacy and confidentiality have been a huge 

concern in the past. The current trends in data sharing and integration are embraced, many 

patients will be able to access treatment options that are suitable for them.  
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