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The main study of this paper is to find the effect in parabolic temperature behavior of orthotropic 

rectangular plate with thickness varies circular in one dimension. Rayleigh Ritz technique is 

used to solve the fundamental frequencies for the first two modes. For non-homogeneity of the 

plate material density vary linear in one dimension. Various parameters such as thermal 

gradient, taper constant, non-homogeneity and aspect ratio with clamped boundary condition 

have been taken. Numerical result is obtained with the help of the graphs and tables by using 

the MATLAB software. A comparison is also given to justify our paper study. 

Keywords: Parabolic temperature, circular thickness, clamped boundary condition, aspect 

ratio, taper constant, rectangular plate, thermal gradient, linear density and non-homogeneity. 

1. Introduction 

Plates are important for the structure of engineering design. Thus the study of vibration has 

huge impact on the variety of applications in engineering field. These plates are also useful in 

civil, marine structure, aeronautical and jet engines. Due to the increase in modern technology 

the effect of high temperature on plates is changing day by day. To deal with that kind of 

change the structure should have more intensity and controlled heat fluxes. Orthotropic 

rectangular plates are widely used in modern structures application. Thermal effect, taper 

constant and non-homogeneity play an important role in vibration problems. Also there are 

others factor which effect the vibration, such as shear deformation, variable thickness and the 

boundary condition. So to avoid the vibration we have to use the material which is better in 

strength, efficiency and good in flexibility. This type of new material is used in modern 

technology like space craft, earthquake resistance, telephone, jet engine, nuclear and power 

plants. Such materials are result of the applications which is used after the reduction of weight 

and size. This material is low in expanse and has a great strength which is effective in many 

applications. 
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A lot of work has done on orthotropic rectangular plate with various thicknesses. But a few 

work is done, non-homogeneity with thermal effect on orthotropic rectangular plates of 

parabolically varying thickness.  

Holzweissig [1] studied Vibration of Plates.(Nasa Sp‐160). Mizusawa, Kajita and Naruoka [2] 

have studied the analysis of skew plate problems with various constraints. Gupta, Johri, and 

Vats [3] have studied the thermal gradient effect on vibrations of a non-homogeneous 

orthotropic rectangular plate having bi-direction linearly thickness variations. Sharma and 

Sharma [4] have discussed the mechanical vibration of orthotropic rectangular plate with two-

dimensional linearly varying thickness and thermal effect. Gupta and Khanna [5] have 

discussed the vibration of visco-elastic rectangular plate with linearly thickness variations in 

both directions. Singh and Jain [6] have discussed the free asymmetric transverse vibration of 

polar orthotropic annular sector plate with thickness varying parabolically in radial direction. 

Khanna and Sharma [7] explained the thermally induced vibration of non-homogeneous visco-

elastic plate of variable thickness. Gupta and Johri [8] have discussed the thermal effect on 

vibration of non-homogeneous orthotropic rectangular plate having bi-directional 

parabolically varying thickness. Khanna and Kaur [9] have discussed effect of non-

homogeneity on free vibration of visco-elastic rectangular plate with varying structural 

parameters. Kumar Sharma and Sharma [10] have discussed the free vibration analysis of 

visco-elastic orthotropic rectangular plate with bi-parabolic thermal effect and bi-linear 

thickness variation. Wu and Lu [11] have discussed the free vibration analysis of rectangular 

plates with internal columns and uniform elastic edge supports by pb-2 Ritz method. Khanna 

and Kaur [12] have discussed the thermally induced vibrations of non-homogeneous tapered 

rectangular plate. Sharma and Sharma [13] have discussed the effect of bi-parabolic thermal 

and thickness variation on vibration of visco-elastic orthotropic rectangular plate. Khanna and 

Kaur [14] have discussed the effect of thermal gradient on vibration of non-uniform visco-

elastic rectangular plate. Wang and Zu [15] have discussed the vibration behaviors of 

functionally graded rectangular plates with porosities and moving in thermal environment. 

Sharma, Sharma, Raghav and Kumar [16] explained the vibrational study of square plate with 

thermal effect and circular variation in density. Khanna and Sharma [17] have discussed natural 

vibration of visco-elastic plate of varying thickness with thermal effect. Sharma and Sharma 

[18] have discussed the mathematical modeling of vibration on parallelogram plate with non 

homogeneity effect. Tomar and Gupta [19] have discussed the orthotropic rectangular plate 

whose thickness vary to a thermal gradient. Lal [20] studied the non-uniform orthotropic 

rectangular plate with two dimension thickness variation. Khanna and Sharma [21] have 

discussed the effect of thermal gradient on vibration of visco-elastic plate with thickness 

variation. Gupta, Kumar and Gupta [22] explained the vibration of visco-elastic orthotropic 

parallelogram plate with parabolically thickness variation. Çeribaşı and Altay [23] have 

discussed the free vibration of super elliptical plates with constant and variable thickness by 

Ritz method. Gupta and Kumar [24] have discussed the thermal effect on vibration of non-

homogenous visco-elastic rectangular plate of linearly varying thickness. Dokainish and 

Kumar [25] explained the vibrations of orthotropic parallelogramic plates with variable 

thickness. 

On this paper we studied orthotropic rectangular plate behavior with temperature effect 

parabolically and circular thickness in x-direction which also include the linear density. We 
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optimize mode values with temperature which varies parabolically and thickness circular in 

one dimension, so we can avoid the unwanted vibration in our structural design. 

 

The vibration of orthotropic rectangular plates with specific thickness and temperatures was 

examined by the researchers mentioned above. However, some work is done with linear 

temperature in both x and y dimensions, respectively and circular thickness in x-direction. Our 

current work’s primary goal is to investigate the linearly varying temperature influence on the 

x-direction vibration of an orthotropic rectangular plate with a circular thickness that has 

clamped boundary conditions on all ends. 

Ritz method is used to make use of a deflection function with frequency parameter is 

determined for the first two vibrational modes. Circular thickness is varying in one dimension; 

density varies linear with parabolic temperature. Thermal gradient is denoted by (A) and taper 

parameter with (B). Also non homogeneity is denoted by (𝐦𝟏). The table and graphs 

demonstrate the effect of non-homogeneity, aspect ratio, temperature gradient, and taper 

constant. 

 

2. Analysis of differential equation 

An orthotropic rectangular plate with variable thickness has a governing differential equation 

of transverse motion that is define as 

  Dx  
∂4W

∂x4 + Dy
∂4W

∂y4 + 2H
∂2W

∂x2
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∂y2 + 2
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∂y2 + 2
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∂x2 + 2
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∂x3 + 2
∂Dy

∂y
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∂y3  +

 
∂2Dx

∂x2

∂2W

∂x2 +
∂2Dy

∂y2

∂2W

∂y2 +
∂2D1

∂x2

∂2W

∂y2 +
∂2D1

∂y2

∂2W

∂x2  + 4
∂2Dxy

∂x ∂y

∂2W

∂x ∂y
+ ρh

∂2W

∂t2  =

0.                                  (1)  

And  H = D1 + 2Dxy. Let a be the length and b be the width side of the plate, thickness i and 

density ρ, of a non- homogeneous orthotropic rectangular plate with natural 

frequency  δ2.From governing differential equation of motion the strain energy and kinetic 

energy for orthotropic rectangular plate vibration are define as in [1]: 

St =  
1

2
∫  

a

0
 ∫  

b

0
[Dx (

∂2W

∂x2 )
2

+  Dy (
∂2W

∂y2 )
2

+ 2D1 (
∂2W

∂x2 )
2

(
∂2W

∂y2 )
2

+ 4 Dxy (
∂2W

∂x ∂y
)

2

]dxdy.             

(2)         

                     And                Kt =
1

2
 δ2ρ ∫  

a

0
 ∫  

b

0
 i W2 dxdy.                                                     (3)   

W is the deflection function. 

 Dx =
Exi3

12(1−vxvy)
 , Dy =

Eyi3

12(1−vxvy)
 , Dxy =

Gxyi3

12(1−vxvy)
 .                                                                (4) 

Dx and Dy are define as the flexural rigidities in x–direction and y-direction respectively. Dxy 

is  known as a torsional rigidity. D1= vxDy(= vxDx), D is the Rhelogical operator, Ex and Ey 

is used for the elastic moduli in the x-direction and y-directions, respectively, vx and vy applies 

for the Poisson ratio, and Gxy signifies the shear modulus.  
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2.1 Frequency Equation with Rayleigh Ritz Method 

With the help of Rayleigh Ritz Method, the maximum strain energy and the maximum kinetic 

energy is solved and are equal which satisfied the following equation  

                                                           D = δ(St − Kt)
= 0.                                                                     (5) 

   D =  
1

2
∫  

a

0
 ∫  

b

0
[Dx (

∂2W

∂x2 )
2

+  Dy (
∂2W

∂y2 )
2

+ 2D1 (
∂2W

∂x2 )
2

(
∂2W

∂y2 )
2

+ 4 Dxy (
∂2W

∂x ∂y
)

2

]dxdy 

−
1

2
 δ2ρ ∫  

a

0
 ∫  

b

0
 i W2 dxdy = 0.                                                                               (6) 

 Plate with two-dimensional parabolic temperature distribution is describe as 

τ = τ0 (1 −
x2

a2) (1

−
y2

b2).                                                                                                                     (7) 

τ0 is the excess of the temperature which mostly used in many field such as  marine, 

engineering and aerospace. This temperature distribution can be represented at the end of the 

plate materials in such form as 

 Ex = E1  [1 −  ατ], 

 Ey = E2 [1 −  ατ],  

 Gxy = G0[1 −  ατ].                                                                                                                       (8) 

E1  and E2 here are the Young’s modulus values in the x and y axis, respectively. Where α is 

the slope of the modulus whose elasticity change with τ.  Change in modulus can be presented 

by using equation (7), in equation (8) we get 

Ex(x) = E1  [1 − A (1 −
x2

a2) (1 −
y2

b2)], 

Ey(x) = E2 [1 − A (1 −
x2

a2) (1 −
y2

b2)],   

Gxy(x) = G0 [1 − A (1 −
x2

a2) (1 −
y2

b2)].                                                                                      (9)     

The temperature gradient parameter is denoted by  A =  α τ0  (0 ≤ A < 1 ), Using equation (9) 

in equation (4), we get 
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Dx =
E1i3

12(1−vxvy)
[1 − A (1 −

x2

a2) (1 −
y2

b2)], 

Dy =
E2i3

12(1−vxvy)
[1 − A (1 −

x2

a2) (1 −
y2

b2)],  Dxy =
G0i3

12
[1 − A (1 −

x2

a2) (1 −
y2

b2)].                

(10) 

let us assume that the plate’s thickness I, varies circular in one dimension, i.e., 

I = I0 [1 + B (1 − √1 −
x2

a2)].                                                                                                   (11) 

And B denote the taper constant. For non-homogeneity of the plate material the density vary a 

one-dimensional linear fluctuation, describe as 

ρ

= ρ0 (1

+ m1

x

a
).                                                                                                                                 (12) 

And the non- homogeneity constants is denoted by   m1 , where 0 ≤ m1 < 1. Let us assume 

the non-dimensional variable’s such as 

 X1 = 
x

a
,        Y1 = 

y

b
,  

 By using equation (10), (11), (12) and non dimensional variable in (6), we get 

D =
P

2
 ∫  

a

0 ∫  
b

0
[1 − A (1 −

x2

a2) (1 −
y2

b2)] [1 + B (1 − √1 −
x2

a2)]

3

[(
∂2W

∂x2 )
2

+
E2

E1
(

∂2W

∂y2 )
2

+

2vx
E2

E1

∂2W

∂x2

∂2W

∂y2 + 4
G0

E1
(1 − vxvy) (

∂2W

∂x ∂y
)

2

] dxdy − d2 ∫  
a

0
 ∫0

b
(1 + m1

x

a
) [1 + B (1 −

√1 −
x2

a2)] W2dxdy = 0.                                                                                                                             (13) 

Now the limits of  X1  and Y1  are 0 to 1 and 0 to  
b

a
, respectively. It replaces the values of St & 

Kt in equation (13) with the help of equation (5), we define the equation as 

                             (𝑆𝑡
∗ − 𝑑2𝐾𝑡

∗) = 0.                                                                                          (14)                                     

 This gives us value for 𝑆𝑡
∗ and 𝐾𝑡

∗ define as, 
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𝑆𝑡
∗ = 𝑃/2 ∫  

1

0 ∫  
𝑏

𝑎
0

  [1 − 𝐴(1−𝑋1 
2) (1 −

𝑌1 
2𝑎2

𝑏2 )] [1 + 𝐵 (1 − √1−𝑋1 
2)]

3

[(
𝜕2𝑊

𝜕𝑥2 )
2

+

𝐸2

𝐸1
(

𝜕2𝑊

𝜕𝑦2 )
2

+ 2𝑣𝑥
𝐸2

𝐸1

𝜕2𝑊

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2 + 4
𝐺0

𝐸1
(1 − 𝑣𝑥𝑣𝑦) (

𝜕2𝑊

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑋1 𝑑𝑌1 .                                                                    

(15)                                          

And 

𝐾𝑡
∗ = ∫0

1
 ∫0

𝑏/𝑎
(1 + 𝑚1𝑋1 ) [1

+ 𝐵 (1 − √1−𝑋1 
2)] 𝑊2𝑑𝑋1 𝑑𝑌1 .                                                (16) 

Where, 𝑃 = 
1

2
 

𝐸1  𝑖0
3

12(1−𝑣𝑥𝑣𝑦)
  and   𝑑2 =

12 𝛿2𝑎4𝜌(1−𝑣𝑥𝑣𝑦)

𝐸1𝑖0
2  .    

By using the clamped boundary condition, which define as  

𝑊(𝑥, 𝑦) = [((
𝑥

𝑎
) (

𝑦

𝑏
) (1 −

𝑥

𝑎
) (1 −

𝑦

𝑏
))

2

] [𝐶1 + 𝐶2 (
𝑥

𝑎
) (

𝑦

𝑏
) (1 −

𝑥

𝑎
) (1 −

𝑦

𝑏
)]. (17)                              

Two unknown 𝐶1 & 𝐶2 in equation (14) are the results from the clamped boundary condition 

used in equation (17). Now to evaluate the values of these two constant 𝐶1 & 𝐶2, we can use 

the following equation describe as: 

𝜕

𝜕𝐴𝑛
[𝑆𝑡

∗ − 𝑑2𝐾𝑡
∗] = 0 ,    n=1, 2.                                                                                                   (18)                                                                                                                             

Equation (18) can be simplified to provide the following form   

                                                      𝐷𝑘1 𝐴1 + 𝐷𝑘2 𝐴2 = 0.                                                          (19)  

The parametric constants and the frequency parameter are involved in 𝐷𝑘1 & 𝐷𝑘2 where k=1, 

2. When the coefficients of equation (19) are determined to be non-zero, they must disappear. 

In this manner, the frequency equation was 

                                                      |
𝑑11 𝑑12

𝑑21 𝑑22
| = 0.                                                                    (20)                

When equation (20) is solved, a quadratic equation in 𝑑2 is obtained, yielding two roots. When 

 𝐶1 = 1 is chosen to be substituted in equation (17),   𝐶2 = −
𝑑11

𝑑12
   is obtained, and W becomes 



4977   Non-Homogeneous Orthotropic …  Abhishek Thakur et. al. 

 

Nanotechnology Perceptions 20 No. 6 (2024) 4971-4985 

 𝑊(𝑥, 𝑦) = [((
𝑥

𝑎
) (

𝑦

𝑏
) (1 −

𝑥

𝑎
) (1 −

𝑦

𝑏
))

2

] [1 + (−
𝑐11

𝑐12
) (

𝑥

𝑎
) (

𝑦

𝑏
) (1 −

𝑥

𝑎
) (1 −

𝑦

𝑏
)]. 

Additionally, it can be expressed as 

𝑊(𝑥, 𝑦) = [(𝑋1 𝑌1 
𝑎

𝑏
(1 − 𝑋1 ) (1 −

𝑎

𝑏
𝑌1 ))

2

] [1 + (−
𝑐11

𝑐12
) 𝑋1 𝑌1 

𝑎

𝑏
(1 − 𝑋1 ) (1 −

𝑎

𝑏
𝑌1 )]. 

3. Result and discussion 

Table 1. Thermal gradient (A) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5 

A B=m1=0.2,v=0.345 B=𝒎𝟏=0.4, v=0.345 B= m1=0.8,v=0.345 

d1 d2 d1 d2 d1 d2 

0.0 46.2992 185.7404 46.4354 186.1372 47.2641 189.6615 

0.2 44.2252 177.5717 44.4416 178.3987 45.3859 182.6628 

0.4 42.0393 169.0110 42.3411 170.3122 43.4070 175.3898 

0.6 39.7195 159.9964 40.1129 161.8266 41.3074 167.8083 

0.8 37.2350 150.4477 37.7272 152.8772 39.0593 159.8765 

Figure 1. For fixed aspect ratio a/b = 1.5, Thermal gradient (A) against Frequency (d) 

 

Table 2. Non-homogeneity (m1) vs Frequency (d) of clamped rectangular plate for Aspect 

Ratio 1.5 

m1 A=B=0.2, v=0.345 A=B=0.4, v=0.345 A=B=0.8, v=0.345 

 d1 d2 d1 d2 d1 d2 

0.0 46.3946 186.3390 46.4198 186.9257 47.5128 190.3548 

0.2 44.2252 177.5717 44.2400 178.0402 45.2310 181.1335 

0.4 42.3343 169.9359 42.3411 170.3122 43.2832 173.1346 
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0.6 40.6669 163.2074 40.6675 163.5105 41.5149 166.1099 

0.8 38.5222 154.1267 38.8625 155.3219 39.0593 159.8765 

1.0 37.74901 151.8460 37.8410 152.0417 38.5234 154.2961 

 

Figure 2. For fixed aspect ratio a/b = 1.5, Non homogeneity constant (𝑚1) against Frequency 

(d) 

 

Table 3. Taper constant (B) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5 

B A=m1=0.2, v=0.345 A=m1=0.4, v=0.345 A=m1=0.8, v=0.345 

 d1 d2 d1 d2 d1 d2 

0.0 42.1973 169.6000 38.3096 154.0868 31.2067 125.9123 

0.2 44.2252 177.5717 40.2419 161.7431 32.9897 133.2026 

0.4 46.4349 186.4930 42.3411 170.3122 34.9094 141.3421 

0.6 48.7989 196.3039 44.5801 179.7310 36.9399 150.2589 

0.8 51.2915 206.9362 46.9341 189.9291 39.0593 159.8765 

1.0 53.8902 218.3182 49.3823 200.8339 41.2507 170.1199 
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Figure 3. For fixed aspect ratio a/b = 1.5, Tapering constant (B) against Frequency (d) 

 

Table 1, we take the value of thermal gradient (A) from (0.0 to 0.8), non homogeneity (m1) 

and taper constant (B), from (B=m1 =0.2, B=m1=0.4 and B=m1=0.8). With the increase of the 

value thermal gradient (A) (0.0 to 0.8), the value of non homogeneity m1 and taper constant B 

decrease at constant value of (B=m1 =0.2, B=m1=0.4 and B=m1=0.8). 

Table 2, we take the value of non-homogeneity (m1) from (0.0 to 1.0), thermal gradient (A) 

and taper constant (B), from (A=B=0.2, A=B=0.4 and A=B=0.8). Increasing the value of non 

homogeneity from (0.0 to 1.0), the value of thermal gradient (A) and taper constant (B) 

decrease at constant value of (A=B=0.2, A=B=0.4 and A=B=0.8). 

 In Table 3, when we take the value of taper constant( B )from (0.0 to 1.0), thermal gradient 

(A) and non-homogeneity (m1 )values which lies from (A=m1=0.2, A=m1=0.4 and A=m1=0.8), 

with the increase of taper constant (B) from ( 0.0 to 1.0), the constant value of thermal gradient 

(A) and non-homogeneity (m1) also increase instead of decreasing for values (A=m1=0.2, 

A=m1=0.4 and A=m1=0.8). 

From Table1, Table2 and Table3 the main results for aspect ratio a/b=1.5, are: 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table1, (B=m1=0.2, B=m1=0.4 and B=m1=0.8), the values show a horizontal rise 

with thermal gradient (A) values ranging from (0.0 to 0.8). 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table1, (B=m1=0.2, B=m1=0.4 and B=m1=0.8), the values show a vertical decrease 

with thermal gradient (A) values ranging from (0.0 to 0.8). 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table2, (A=B=0.2, A=B=0.4 and A=B=0.8), decreasing vertically and increasing 

horizontally for different values of non homogeneity (m1) from (0.0 to 1.0). 
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• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table3, (A=m1=0.2, A=m1=0.4 and A=m1=0.8), the values show a horizontal 

decrease with taper constant (B) values ranging from (0.0 to 1.0). 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table3, (A=m1=0.2, A=m1=0.4 and A=m1=0.8), the values show a vertical increase 

with taper constant (B) values ranging from (0.0 to 1.0). 

Table 4. Thermal gradient (A) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 

2.5 

A B=m1=0.2,v=0.345 B=𝒎𝟏=0.4, v=0.345 B= m1=0.8,v=0.345 

d1 d2 d1 d2 d1 d2 

0.0 36.5347 147.6456 36.1889 145.7340 35.8758 143.4432 

0.2 34.8545 140.9501 34.5563 139.2555 34.3174 137.3272 

0.4 33.0831 133.9217 32.8360 132.4623 32.6768 130.9278 

0.6 31.2027 126.5056 31.0112 125.3036 30.9383 124.2018 

0.8 29.1885 118.6300 29.0580 117.7138 29.0299 117.0942 

Figure 4. For fixed aspect ratio a/b = 2.5, Thermal gradient (A) against Frequency (d) 

Table 5. Non-homogeneity (m1) vs Frequency (d) of clamped rectangular plate for Aspect 

Ratio 2.5 

m1 A=B=0.2, v=0.345 A=B=0.4, v=0.345 A=B=0.8, v=0.345 

 d1 d2 d1 d2 d1 d2 

0.0 36.5641 147.9092 35.9990 145.3821 34.4934 139.4027 

0.2 34.8545 140.8501 34.3086 138.4721 32.8618 132.6538 

0.4 33.3643 134.8891 32.8360 132.4623 31.4420 126.7992 

0.6 32.0503 129.5483 31.5382 127.1727 30.1918 121.6572 
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0.8 30.8803 124.7955 30.3831 122.4701 29.0299 117.0942 

1.0 29.8297 120.5301 29.3464 118.2535 28.0826 113.0090 

 

Figure 5. For fixed aspect ratio a/b = 2.5, Non homogeneity constant (𝑚1) against Frequency 

(d) 

 

Table 6. Taper constant (B) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 2.5 

B A=m1=0.2, v=0.345 A=m1=0.4, v=0.345 A=m1=0.8, v=0.345 

 d1 d2 d1 d2 d1 d2 

0.0 33.6672 136.5942 30.5614 124.1193 24.8858 101.4692 

0.2 34.8545 140.8501 31.6688 128.1628 25.8609 105.0323 

0.4 36.1061 145.5732 32.8360 132.4623 26.8878 108.8330 

0.6 37.4174 150.4505 34.0588 137.0047 27.9623 112.8583 

0.8 38.7835 155.5677 35.3324 141.7762 29.0299 117.0942 

1.0 40.1997 160.9105 36.6521 146.7624 30.2364 121.5264 

 

Figure 6. For fixed aspect ratio a/b = 2.5, Tapering constant (B) against Frequency (d) 

 

In Table4 ,we take the value of thermal gradient (A )from( 0.0 to 0.8), non homogeneity( m1 

)and taper constant( B), from (B=m1 =0.2, B=m1=0.4 and B=m1=0.8). With the increase of the 

value thermal gradient (A) (0.0 to 0.8), the value of non homogeneity (m1) and taper constant 

B decrease at constant value of (B=m1 =0.2, B=m1=0.4 and B=m1=0.8). 
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In Table5, we take the value of non homogeneity (m1) from (0.0 to 1.0), thermal gradient (A) 

and taper constant (B), from (A=B=0.2, A=B=0.4 and A=B=0.8). Increasing the value of non 

homogeneity from (0.0 to 1.0), the value of thermal gradient (A) and taper constant( B ) 

decrease at constant value of (A=B=0.2, A=B=0.4 and A=B=0.8). 

But in Table6, when we take the value of taper constant (B )from (0.0 to 1.0), thermal gradient 

(A) and non homogeneity( m1 )values which lies from( A=m1=0.2, A=m1=0.4 and A=m1=0.8), 

with the increase of taper constant( B )from (0.0 to 1.0), the constant value of thermal gradient 

(A) and non homogeneity (m1) also increase instead of decreasing. 

From Table4, Table5 and Table6 the main results for aspect ratio a/b=2.5, are: 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table4, (B=m1=0.2, B=m1=0.4 and B=m1=0.8), decreasing both side horizontally 

and vertically for different values of thermal gradient (A) from (0.0 to 0.8). 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table5, (A=B=0.2, A=B=0.4 and A=B=0.8) decreasing both side horizontally and 

vertically for different values of non homogeneity (m1) from (0.0 to 1.0). 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table6, (A=m1=0.2, A=m1=0.4 and A=m1=0.8), the values show a horizontal 

decrease with taper constant (B) values ranging from (0.0 to 1.0). 

• First and second natural frequencies and corresponding mode shapes d1and d2 values 

in Table6, (A=m1=0.2, A=m1=0.4 and A=m1=0.8), the values show a vertical increase 

with taper constant (B) values ranging from (0.0 to 1.0). 

4. RESULT COMPARISON 

• A comparison of data which are presented in Table1, Table2 and Table3 as well as in 

Table4, Table5 and Table6. Also it is presented in graphical form Figure1 to Figure6. 

It shows the variation in frequency modes 𝑑1 and 𝑑2. 

• In Table1, 2 and 3 we have taken the aspect ratio 1.5, while in Table4, 5 and 6 we take 

2.5. 

• In Table1 the thermal gradient (A), frequency mode values 𝑑1 and 𝑑2 has highest point 

value at 0.0 for (B=𝑚1=0.8) and lowest point value at 0.8 for (B=𝑚1=0.2) with aspect 

ratio 1.5. For same thermal gradient (A) in Table4 mode values 𝑑1 and 𝑑2 has the 

highest values for (B=𝑚1=0.2) at 0.0 and lowest point values for (B=𝑚1=0.8) at 0.8 

with aspect ratio 2.5, but mode values in Table1 are greater than of Table4. 

• In Table2 non homogeneity 𝑚1 has the highest mode values 𝑑1 and 𝑑2 for (A=B=0.8) 

at 0.0, and lowest mode values 𝑑1 and 𝑑2 for (A=B=0.2) at 1.0 with aspect ratio 1.5. 

In Table5 for same non homogeneity 𝑚1 highest and lowest point for mode values 

𝑑1 and 𝑑2 lies for (A=B=0.2) at 0.0 and for (A=B=0.8) at 1.0 respectively with aspect 

ratio 2.5. But mode values of 𝑑1 and 𝑑2 in Table2 are greater than Table5. 

• In Table3 and Table6 taper constant (B) has the same highest and lowest mode values 

𝑑1 and 𝑑2  for (A=𝑚1=0.2) at 1.0 and (A=𝑚1=0.8) at 0.0. But mode values of 

𝑑1 and 𝑑2 in Table3 with aspect ratio 1.5 are greater than of Table6 include aspect ratio 

2.5. 
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• In all graphs there is no sudden increase or decrease for frequency mode values 𝑑1 

and 𝑑2. The frequency mode values of 𝑑1 and 𝑑2 has the same order for increasing or 

decreasing. 

5. Numerical evaluations 

We use the material ‘Duralumin’ which is a mixture of aluminium (95%), copper (4%), 

magnesium (0.5%) and manganese (0.5%). Different values of temperature gradient (A1), taper 

constant (B1), non- homogeneity (𝑚1) and aspect ratio (a/b) calculated for the first two modes 

of vibration (𝑑1and 𝑑2)  by using the equation (18), which is quadratic in 𝑑2. The results of 

orthotropic rectangular plate material are shown by using the tables (1 to 6) and graph figures 

from (1 to 6).  

Following are the parameters for the clamped orthotropic rectangular plate: 

𝜌0 = 2.80× 10^3, 

𝐺0 = 2.632× 10^10, v = 0.345, for the aspect ratio of (a/b) =1.5, the dimensions are a=3 and 

b=2; for (a/b) = 2.5, a=5 and b=2.  

 𝐼0 = 0.01 meter. 

  
𝐸2

𝐸1
 = 0.32 

 
𝐸

 𝐸1
 = 0.04,  

𝐺0

𝐸1
 = 0.09 and E = 7.08× 10^10. 

6. Conclusions 

In this present paper we find the results of orthotropic rectangular plates with parabolic 

temperature whose thickness vary circular in one dimension and density linearly. The thermal 

gradient (A) is shown in Table1 and Table4. In Table1 the gradient increase horizontally but 

decrease vertically for aspect ratio (a/b) 1.5, with different values of B=m1=0.2, B=m1=0.4 and 

B=m1=0.8. But same gradient decrease both side horizontally and vertically for different values 

of B=m1=0.2, B=m1=0.4 and B=m1=0.8 at aspect ratio (a/b) 2.5. However, Table2 and Table5 

show same increase and decrease for frequency mode for non homogeneity (m1)for different 

values A=B=0.2, A=B=0.4 and A=B=0.8 with aspect ratio (a/b) 1.5 and 2.5. Also Table3 and 

Table6 shows the same behaviour for frequency mode for taper constant (B) horizontally and 

vertically along with values A=m1=0.2, A=m1=0.4, A=m1=0.8 at aspect ratio (a/b) 1.5 and 2.5. 

Due to the circular variation implementation, an increase and decrease in the variation in 

frequency mode 𝑑1 and 𝑑2 values in the temperature gradient (A), non-homogeneity (𝑚1) and 

taper constant (B) are less among the frequency. Frequency mode 𝑑1 and 𝑑2 shows no high 

difference values between two modes, weather increase or decrease at different values of 

thermal gradient (A), non homogeneity (m1) and taper constant (B). The frequency mode values 

𝑑1 and 𝑑2 for thermal gradient (A), non homogeneity (m1) and taper constant (B) at aspect ratio 

(a/b) 1.5 are higher than the same mode values of aspect ratio (a/b) 2.5. Present study shows 

us the vibration behaviour due to the thermal gradient, non homogeneity and density. This 

study helps us to create such a mechanism which increases the potential energy, intensive 
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strength and efficiency of the material. Accurate and effective mathematical structure is the 

demand of the current scenario in the world. All the researchers, authors can get the basic 

concept of the material that has a balanced effect of temperature and density. These types of 

balanced materials can help to develop such a mathematical design which can use in different 

branches of the engineering. This present study can help the researchers, scientists and the 

participators to get the authentic and practical approach information towards the mode 

vibration, which can be used to make an economy and technology friendly structure for the 

benefit of the science and the human being. 
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