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Rectangular visco-elastic plates are commonly used in many industries, aviation, and
mechanical structures. Accurately determining the behaviour and strength properties of plates
is necessary for the right design of plate structures and the effective use of material. The
frequency of free vibrations of a rectangular visco-elastic plate with varying thickness is
examined in relation to two-dimensional thermal effects. In this article, the thermal effect varies
parabolically in two directions while the thickness varies circularly in the x-direction. The
fundamental frequencies are evaluated using the Rayleigh Ritz method. MATLAB is used to
calculate first two modes of frequencies over various values of temperature gradient, non-
homogeneity, and taper parameter values.

Key Words:- Vibration, parabolically, circularly, non-homogeneity, isotropic, aspect ratio,
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Introduction

Engineers and researchers must always be aware of the system's vibration characteristics when
building machines, structures, and other mechanical designs. It is impossible to overlook the
significance of researching the vibrations of non-homogeneous tapered plates, which are
frequently utilized in the building of bridges, ships, airplanes, and other structures. The
material is stronger and lighter due to non-homogeneity and plate tapering. By creating
appropriate and precise machine and building designs, the primary goal of vibration research
is to prevent unnecessary and excessive vibration. The majority of engineering structures in
the current technological period, including nuclear reactors, rockets, and missiles, work with
adequate temperature fields under various boundary conditions. Hence, it becomes essential to
investigate how temperature changes affect the structures vibrational characteristics. Vibration
research primary goal is to minimize unnecessary and excessive vibration by accurately and
appropriately constructing mechanical structures.
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Studied the effect of bi-parabolic temperature variation on the vibration of an orthotropic
rectangular plate, highlighting the importance of thermal sensitivity in structural analysis [1].
A simple model analyses the thermal effect on the vibration of a non-homogeneous orthotropic
visco-elastic rectangular plate with parabolically varying thickness and clamped edges, using
the Rayleigh-Ritz technique to derive an approximate frequency equation[2].This paper
presents a unified nonlinear analytical solution for bending, buckling, and vibration of
temperature-dependent functionally graded rectangular plates under thermal load, comparing
three mathematical models for effective material properties [3]. The study analyses the
vibration frequencies of a rectangular plate with a linearly varying thickness and a circularly
varying Poisson’s ratio[4]. The paper presents a mathematical model to analyse the
temperature-thickness coupling in a non-homogeneous isotropic viscoelastic rectangular plate
with bi-parabolic temperature variation, linear thickness variation, and exponential Poisson’s
ratio variation[5]. The paper analyses the buckling loads of rectangular composite plates under
non-uniform in-plane loading using higher-order shear deformation theory, solving for stress
distribution and buckling equations to obtain critical loads and mode shapes[6]. The paper
investigates the buckling behaviour of symmetrically laminated rectangular plates under
parabolic in-plane compressive loading using the Rayleigh—Ritz method, incorporating
Chebyshev polynomials to derive buckling loads for various boundary conditions and
validating results against DQM and FEM[7]. The paper analyses the vibrational frequencies of
a non-homogeneous viscoelastic parallelogram plate with circular thickness variation and bi-
parabolic temperature distribution using the Rayleigh—Ritz method and MAPLE software[8].
The paper presents a nonlinear vibration analysis of functionally graded rectangular micro-
plates with variable thickness and a central partial crack using Classical Plate Theory and
modified couple stress theory, demonstrating how thickness variation can mitigate crack eftects
on vibration characteristics[9]. The effect of two-parameter foundation on the transverse
vibrations and critical buckling loads of nonhomogeneous rectangular plates under linearly
varying in-plane forces has been analysed using the Kirchhoff plate theory and solved
numerically via the Levy approach and Differential Quadrature Method[10]. The natural
transverse vibration of a nonhomogeneous skew plate with variable thickness and temperature
field is analysed using the Rayleigh—Ritz technique under CCCC and CSCS edge
conditions[11]. Free transverse vibrations of isotropic rectangular plates with arbitrarily
varying non-homogeneity are analysed using the Generalized Differential Quadrature Method
based on Kirchhoff plate theory[12]. The Rayleigh—Ritz method is used to analyse the natural
vibration time period of an isotropic viscoelastic square plate with circular thickness variation
and Poisson’s ratio under clamped and simply supported conditions[13]. This paper
investigates the natural vibration of a non-uniform, non-homogeneous square plate with
clamped boundaries, considering circular thickness variation, bi-linear temperature
distribution, and linear density variation using the Rayleigh—Ritz method[14]. This paper
analyzes the natural vibration of a non-uniform, non-homogeneous square plate with clamped
boundaries, considering thickness variation, bi-linear temperature distribution, and density
variation using the Rayleigh—Ritz method[15]. The vibration of a tapered isotropic rectangular
plate under thermal conditions is analyzed using the Rayleigh—Ritz method for various
boundary conditions[16]. The effect of linear thickness variation on the vibration of a
viscoelastic rectangular plate with clamped edges is analyzed using the Rayleigh—Ritz
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method[17]. The Rayleigh Ritz method is used to solve the differential equation involving the
linear density variation and the circular Poisson's ratio fluctuation on the vibration time period
of the rectangular plate[18]. A tapered, non-homogeneous rectangular plate with a variety of
boundary conditions is used to examine plate properties[19]. The effect of bilinear temperature
variation on the vibration of a non-homogeneous viscoelastic rectangular plate with non-
uniform thickness is analyzed using the Rayleigh—Ritz method[20].

In addition to using aspect ratios of 1.5 and 2.5, the deflection function is utilized to identify
the modes of frequency for various values of temperature gradient, taper constant, and non-
homogeneity. With SSSS boundary conditions and a two-dimensional temperature field
distribution, the Rayleigh-Ritz technique is used to study the natural vibration of an isotropic
non-homogeneous rectangular plate with a one-dimensional circularly variable thickness and
density parameter.

A rectangular plate composed of duralumin material with a circular variation in thickness in
one direction was used to achieve the solution of the first two modes of vibration in the current
experiment. Both tabular and graph formats are used to display the numerical values of the first
two modes of the frequency at different structural parameter values for the SSSS boundary
condition, assuming that the plate is simply supported on all four edges.

Analysis Of Equation Of Motion
The differential equation of motion of visco-elastic isotropic plate may be written as [16]
921y 0%1yy 0 9%E

2
+ Y=
0x2 0x dy dy? ot?

(1

where x and y represent the plate geometry's coordinates, Ty and Ty represent the bending
moments, Ty, represents the twisting moment per unit plate length, p represents the mass per
unit volume, h represents the plate's thickness, and & represents the displacement at time t.

The expressions for Ty, Ty and Tyy are given by [17]

N 92 92
T = —DD,y [TZ + VTZ],

ox? 0
. [8%  a%
Ty_ DD1 P 2-|'Va—y2 and
~ azg
Txy = —DD1(1 _V)Fay

2

where D is the representation for visco-elastic operator.
In this case, D; represents the material's flexural rigidity and is written as[ 18]
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Eh3
D, = 12(1-v2)

3)
When 1y, Ty and T4y are substituted in equation (1), one obtains

e 9% aD, (0% FER aD, (93K 23
D [Dl (6X4 +2 ox2 dy? + 6y‘*) +2 0x (6){3 +2 6x6y2) +25 ay (6y +2 dy 9x2 )

TDu(2E )8 | 2y (0% 0%, 0] 0% _
t o 0x2+v(7y2 + ay? ay2+ ax? +2(1- )axayaxoy +phat2 =0

“4)

Deflection & can be considered the product of two functions using the variable separation
method[19] Exy,)=0bxy) - T
(5)

where T(t) is a time function for the vibration of a rectangular plate and ¢ (x, y) is the deflection
function in x and y. Equation (5) can be substituted into equation (4), to get

[0 (5 + 2550+ ) + 252 (R 25 ) #2505+ 25000)

92D, (3% % %D, (3% %D, 9%¢ _ 92T/ at?
+ ox2 (Bx2 +V6y2)+ ay? ( )+2(1 )BxByBxBy]/phq)_ ( DT )

(6)

When both sides of equation (6) are equal to a constant p?, the result is

D, (22 42 3:¢2+"4"’ +221 (28 45 T0 ) 5P (T0 ) 5 00
0x 0x2 dy

0x3 0x dy? dy \ay3 dy 0x?
62D1 92¢ ¢ 92Dy (0% Dy 3%p] 5 _
+ ax? (6x2 TV Byz) + dy? (E’y2 v axz) +2(1 )Bxﬂyﬂxﬂy] PP h¢t =0

(7)
and

0T 25

Py + p DT =0
(8)

Assumption Required
one dimensional circular variation in thickness as [ 18]

h=h0[1+8<1— 1—§—§>]
)

where 8, (0 < 8 < 1) is known as tapering parameter and thickness of plate becomes constant
at x = 0 and for non-homogeneity (p ) consideration, assumed one dimensional circular
variation in Poisson's ratio as
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p=po[1+m,3],

XZ
V =Yg 1_m1 1-— 1_§

where m,, (0 <m, <1) and m; (0 <m; < 1)are known as non-homogeneity constant
corresponding to density and Poisson's ratio.

(10)

(11)

The plate is subjected to steady two-dimensional parabolically varying temperature
distributions as[11]

(12)

Therefore the temperature dependent modulus of elasticity is taken as[16]

E(t) = Eo(1- Y 0
(13)

E(t) = Eo[l— YT (1 - i—i) (1 - Z_j)]

E(t) = EO[l'“(l —;‘—3( _Z_j)]
(14)

Where 0. =71, (0 < a < 1)

Boundary Condition
For SSSS , the boundary conditions are [19]

_ 9% _ _ _0%¢ _ _
¢_ﬁ—o at x=0,a and ¢_ay2—0 at y=0,b

The deflection function (i.e. maximum displacement) which satisfy boundary condition given

269 = Q-9 (Dl 2O (-9 (-]

where A; and A, are arbitrary constants.

(15)
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Rayleigh Ritz Method In Rectangular Plate
We are using Rayleigh Ritz technique (i.e., maximum strain energy Sy must equal to maximum
kinetic energy Kg ) in order to obtain frequency equation for both modes of vibrations. As a
result, we need to have:

6(Sg—Kg)=0
(16)

The K and Sg formula are provided by [20]

1 b
Kg :EPZ foa J, pho *dxdy

(17)
_1pe b 9\ (), 5,200 | 50
Sg = zfo Jy D1 [(axZ) + (6y2) Vo ay2 + 2(1
a2¢ \2
V) (axay) ]dxdy (18)
The non-dimensional variables are outlined to make the computation simple and convenient:
_x =Y h=" 5 =2

X= -, Y- x h " and [0) "

(19)

Solution Of Frequency Equation
on using the above assumptions along with (19) ; equation (17) and (18) becomes

1 5 a b x xZ 5
KE=§pf f p0[1+mZE]h0 1+8( 1~ [1-= || p2dydx
0 0
_ L fafb[1+ x]1+ 1— 1= s2aya
—ZPOP 00 . mza B 72 p-dydx

X
Substituting X = P | Y =

QI

x—->0=>X-0 y-20=Y-0

x—>a=>X-1 y—>b:>Y—>g

Kg = %popzho fol fob/a [1+m,X][1+p(1-v1-x2)] (%)2 a?dXdy

_L0h jljb/a[u X][1+ (1—\/1—)(2)]'2 4dxdy
—2P0P 0 o Jo m; B p“a
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1

= EpOPz%a x atf [0 1+ myX] [1 +6(1-+1 —XZ)] P2dxdy

= —popzho asf, f 1+ myX][1 + B(1 — V1 — x2)]p2dXdy
(20)

And

2 2
- 0%¢ 02¢)6¢) 92¢
o el
3 azd) ¢2 ¢) ¢ 62¢ 2
f ,[ 12(1 — VZ) [(axz) < y2> +2v Ox 3,2 ayz + 2(1 - V)( ay) dXdy

s & B[t a(1-E) (- B o+

p(1i-2)] [

xdy

9% 0%¢

+2voag,. 201
v) (aaza ) ]dXdy - z4f:h12)f f [
3
(1= (DN [rea (- B G+ G
+2v227f‘;27f +2(1 -

V) (:}:;})2] dxdy

= BB - a1 - XD - Y2(a/b)I[1+ (1 -VI=x2)] [( [“’

T 24(1-v2) Y0

(327‘2) + i Lo

2
201 -v)(£2) ] a?dxdy

= Ehsd 1 bl (1 — x2)(1 - Y2 (a/b)][1 + B(1 - V1= X7)] [(ﬂ)2 +

T 24(1-v2) 92
074 029 2°¢
(6y ) * , tovoaoe T
201-v) (22 ) ] dxdy 1)

Nanotechnology Perceptions 20 No. 5 (2024) 1801-1817



1808 Study Of Isotropic Non-Homogeneous ... Umesh Bhardwaj et. al.

Using equation (19) and (20) in equation (16) represents the necessary frequency parameter.

5(Sp —A%Kz) =0

@2)
23 2 27 2
Si=Jy 3" 11— e =x3( - V2@/ml |1+ 81 -VT=77] (22) + (52) +
+2v%%+2(1—

-\ 2
M (5:25)

kg = [0 [1+moX1[1 + B(1 — V1 — X%)|G%dxdy
(24)

] dxdy (23)

Here expression of the required frequency parameter is

12 = 12pop?a?(1-v?)
- EohZ
(25)

Equation (22) contains two unknown constants, A; and A, which result from the substitution
of deflection function ¢(x, y).

The following formula could be used to determine these two unknowns:
2 [Sp - 22K3] =0
94, [OE E

(26)

After simplifying equation (26) we get system of homogeneous eq. as
CllAl + C12A2 =0

and CZlAl + C22A2 =0
(27)

The determinant of the coefficient matrix obtained from equation (27) must be zero in order to
produce a non-zero solution (frequency equation).

|C11 C12|

=0
C21 C22

(28)
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After simplifying above equation we get a quadratic equation in 1. With A representing
frequency modes derived from equation (28), the time period of frequency modes is computed

21
k=—.
as 1

Result And Discussion

Duralumin, an aluminium alloy, is a visco-elastic material that produces the intended results.
The calculations for Duralumin make use of the following parameters:

Eo = 7.08 x 10'° N/M?,
G = 2.632x 10" N/M?,
n=14.612 x 10° N s/M?,
po = 2.8 x 10° kg/M?,

v=0.345 and hy =0.01 M

I)

1)

1)

V)

For aspect ratios of 1.5 and 2.5, calculations were carried out for the first two frequency
modes for various values of the thermal gradient (o), non-homogeneity(m,), and taper
parameter (J3).

The first two modes of the frequency parameter in Tables (1) and (4) increases
continuously for both aspect ratios of 1.5 and 2.5 for every fixed value of the thermal
gradient (o) while the taper parameter () increases from 0.2 to 0.6 and non-
homogeneity (m.) stays constant at v = 0.345. In every cases, the first two modes of
the frequency parameter decrease as the thermal gradient (o) values rise from 0.0 to
0.8.

For any fixed value of non-homogeneity (m) in Tables (2) and (5), the first two modes
of the frequency parameter increase steadily for both aspect ratios of 1.5 and 2.5 as the
values of the thermal gradient (o)) and taper parameter () rise from 0.2 to 0.8 with v
= 0. In every scenario, the first two modes of the frequency parameter drop as the non-
homogeneity (m.) values rise from 0.0 to 1.0.

In Table (3) and (6), for each fixed value of taper parameter(p), the first two mode of
frequency parameter decrease continuously for both aspect ratio 1.5 and 2.5 as value
of the thermal gradient (o) and non-homogeneity(m;) increase from 0.2 to 0.6 with v
=(0.345. As the values of the taper parameter(p) increases from 0.0 to 1.0, the first two
mode of frequency parameter increases for all cases.

Tablel. Frequency of simple supported rectangular plate vs Thermal gradient(a) for
Aspect Ratio 1.5

B=0.2, m;= 0, v=0.345 | p = 0.4, m,= 0, v=0.345 B=10.6, m=0,
v=0.345

M | A M | ) M | )
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0 57.6608 430.5953 60.2813 448.4819 63.0982 467.9346
0.2 54.9658 413.0808 57.5806 431.0280 60.3886 450.5353
04 52.1281 394.7905 54.7424 412.8375 57.5460 432.4374
0.6 49.1219 375.6113 51.7426 393.8084 54.5479 413.5491
0.8 45.9121 355.3994 48.5489 373.8130 51.3648 393.7572
Graphical representation of the table-1 :
A, (1" mode of vibration)

)
8. &

-

Frequency(i

5

100 4

T
04

0.6

Themal gradient(a)

Figure-1 : Thermal gradient vs Frequency

—#—p=02mz0,v=0345
—A—f=04,mz0,v=0345
—4—p=08, m= 0,v=0.345

A (2" mode of vibration)
~+—f=02 m2=0, v=0.345
¥ p=04,mz=0,v=0345

——=08,m=0,v=0.145

Table2. Frequency of simple supported rectangular plate vs Non-Homogeneity(m.) for
Aspect Ratio 1.5

a=p=02,v=0 a=Pp=0.6,v=0 a=p=08,v=0
nm; M M M A M M
0.0 51.9895 388.0317 52.7129 389.3578 53.2293 391.3813
0.2 49.5520 369.6947 50.2089 370.4594 50.6862 372.1593
0.4 47.4281 353.7337 48.0308 354.0710 48.4758 355.5184
0.6 45.5558 339.6762 46.1137 339.6819 46.5315 340.9281
0.8 43.8890 327.1717 44.4092 326.9160 44 8038 327.9989
1 42.3928 315.9538 42.8807 315.4893 43.2553 316.4377
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Graphical representation of the table-2 :

A (1St mode of vibration)

—#—g=p =02, v=00

< —4—q=p =06, v=00
§ —4—a=p =08, v=00
% A (2mj mode of vibration)
w / w NG| [ TeEp =02, v=00

04 ) —¥—a=p =06, v=00

00 02 04 08 08 10
N | ——q=p =08, v=00

0.0 02 04 0.6 0.8 1.0

Nor»Homogene'rty(mz] s

Figure-2 : Non-Homogeneity vs Frequency

Table 3. Frequency of simple supported rectangular plate vs Taper constant(f) for Aspect
Ratio 1.5

a=m=02,v=0345 | a=m=04,v=0345 | o=m=0.8,v=0.345
B M A M A M M
0 50.1170 378.3390 45.3905 345.4425 36.7436 286.2095
0.2 52.3888 393.5601 47.5547 359.8946 38.7589 299.6551
0.4 54.8624 410.3737 49.9086 375.8674 40.9417 314.4937
0.6 57.5196 428.6701 52.4343 393.2489 43.2739 330.6070
0.8 60.3422 448.3324 55.1139 411.9211 45.7383 347.8744
1 63.3130 469.2423 57.9309 431.7667 48.3197 366.1790

Graphical representation of the table-3 :
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o

2, (1" mode of vibration)

+a=mz=02, v=0.345i
+a=n12=0.4, v=0.345i
—+—a=m=08, v=0345

A (2" mode of vibration)

—0—a=n12=02, v=0.345i

Frequency(i) -
¥ B B

150 +a=m2=0.4, v=0.345‘
100.. —a=m=08, v=034
oY e ————
09 02 M 06 08 19
Taper constant(p)

Figure-3 : Taper constant vs Frequency

Table 4. Frequency of simple supported rectangular plate vs Thermal gradient(a) for
Aspect Ratio 2.5

B=0.2, m;= 0, v=0.345 | p=0.4, m;=0, v=0.345 | B=0.6, m;=0, v=0.345
o M A2 M A M A
0 46.1175 385.4861 47.9804 397.5019 49.9649 410.1599
0.2 43.8635 369.4820 45.7102 381.3286 47.6766 393.8089
0.4 41.4850 352.7527 43.3186 364.4385 45.2697 376.7493
0.6 38.9587 335.1899 40.7834 346.7271 42.7231 358.8802
0.8 36.2524 316.6550 38.0745 328.0615 40.0087 340.0742

Graphical representation of the table-4 :
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]
(a)
A, (1" mode of vibration)
! s —a—p=02,m=0,v=0345|
= | S ¢
< 20 R = =0y= i
> . ! 1\ " —4—p=04, m; 0,v=034
= N RN = =0 y= 1
S m- A% —4—p=06,m=0,v=0345|
o 404 e % 1. (2" mode of vibration
i 1504 \\\l "( )
1 > 4 p=02m=0,v=034
wl ¥ . | |
|~ W o % 6 ow T p=04mz0v=038)
54 ,I p— ||t p=05m=0v=0365]
0 T T T T T T 2
00 02 04 05 08
Themalgradientfo) &

Figure-4 : Thermal gradient vs Frequency

Table 5. Frequency of simple supported rectangular plate vs Non-Homogeneity(m:) for
Aspect Ratio 2.5

0=$=02,v=0 a=$=06,v=0 a=p =08,v=0
m; M v M M M yv
0.0 41.3505 346.9228 40.8019 337.3437 40.5111 331.7484
0.2 394118 330.5286 38.8635 320.9718 38.5752 315.4584
0.4 37.7225 316.2587 37.1774 306.7741 36.8926 301.3554
0.6 36.2333 303.6906 35.6934 294.3083 35.4127 288.9900
0.8 34.9076 292.5109 34.3739 283.2486 34.0976 278.0322

1 33.7176 282.4815 33.1907 273.3490 32.9189 268.2336

Graphical representation of the table-5 :
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3, (1 mode of vibration)

—4+—qz$=02 v=00
—4—q=p =06 v=00
—4—q=p =08, v=00
1, (27 mode of vibration)
—*+—gzp =02 v=00
~—¥a=p =06 v=00
—4—q=§=08 v=00

Pl (@)
%0 “r
R b [b)
4 VIR
g m
9 3
:
i 150 34
Y.
100
/I
,/ 32 T
o 00 02 04 06 08 10
3
7 e
L] L] I L] l 1 L]
00 02 04 0§ 10
Non-Homogeneity(m }————

Figure-5 : Non-Homogeneity vs Frequency

Table 6. Frequency of simple supported rectangular plate vs Taper constant(f) for Aspect

Ratio 2.5

o=m;= 0.2, v=0.345 a=m;= 0.4, v=0.345 a=m;= 0.8, v=0.345

p

M A M A M A

0.0 40.1848 341.6386 36.3133 311.9610 29.2029 258.5319
0.2 41.8070 352.0218 37.8453 321.5730 30.6041 266.9886
0.4 43.5523 363.0564 39.4934 331.8040 32.1082 276.0051
0.6 454114 374.6983 41.2481 342.6104 33.7059 285.5391
0.8 47.3746 386.9037 43.1001 353.9494 35.3877 295.5494
1 49.4325 399.6306 45.0401 365.7798 37.1448 305.9970

Graphical representation of the table-6 :
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o
3

fa)

o

=

L A
\.
i

=
I'|.
-
|
\
| l'l
1

A, (1" mode of vibration)
—+a=mF 0.2, v=0.345
—A—q= m= 04, v=0.345

~—a=m=08, v=0345

[
=2
|‘III
1

~
=

1, 2" mode of vibration)

RSN 0.2, v=0.345

Frequency(:\)
~>
=3

=

—¥-a=m:= 04, v=0.345

4
0) 4 ~a=mz08, v=0345
: ~—" W 02 04 05 08 10
w- \
e —
0 02 04 05 08 0

=

Taper constant(p) .

Figure-6 : Taper constant vs Frequency

Conclusion

This study investigated the frequencies of isotropic rectangular plates with circular thickness
and variations in density and linear temperature. The above result indicates that when the
tapering constant () increases, the frequency A; and A, decreases at varying values of the
temperature gradient (o) and non-homogeneity (m,). However, an increase in temperature
gradient (o) and non-homogeneity (m,) leads to an increase in frequency. The implementation
of circular variation causes the frequency modes A; and A,to vary very slowly, whether they
are growing or decreasing. There is no significant increase or decrease in the frequencies.
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