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Rectangular visco-elastic plates are commonly used in many industries, aviation, and 

mechanical structures. Accurately determining the behaviour and strength properties of plates 

is necessary for the right design of plate structures and the effective use of material. The 

frequency of free vibrations of a rectangular visco-elastic plate with varying thickness is 

examined in relation to two-dimensional thermal effects. In this article, the thermal effect varies 

parabolically in two directions while the thickness varies circularly in the x-direction. The 

fundamental frequencies are evaluated using the Rayleigh Ritz method. MATLAB is used to 

calculate first two modes of frequencies over various values of temperature gradient, non-

homogeneity, and taper parameter values. 
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Introduction  

Engineers and researchers must always be aware of the system's vibration characteristics when 

building machines, structures, and other mechanical designs. It is impossible to overlook the 

significance of researching the vibrations of non-homogeneous tapered plates, which are 

frequently utilized in the building of bridges, ships, airplanes, and other structures. The 

material is stronger and lighter due to non-homogeneity and plate tapering. By creating 

appropriate and precise machine and building designs, the primary goal of vibration research 

is to prevent unnecessary and excessive vibration. The majority of engineering structures in 

the current technological period, including nuclear reactors, rockets, and missiles, work  with 

adequate temperature fields under various boundary conditions. Hence, it becomes essential to 

investigate how temperature changes affect the structures vibrational characteristics. Vibration 

research primary goal is to minimize unnecessary and excessive vibration by accurately and 

appropriately constructing mechanical structures. 
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Studied the effect of bi-parabolic temperature variation on the vibration of an orthotropic 

rectangular plate, highlighting the importance of thermal sensitivity in structural analysis [1]. 

A simple model analyses the thermal effect on the vibration of a non-homogeneous orthotropic 

visco-elastic rectangular plate with parabolically varying thickness and clamped edges, using 

the Rayleigh-Ritz technique to derive an approximate frequency equation[2].This paper 

presents a unified nonlinear analytical solution for bending, buckling, and vibration of 

temperature-dependent functionally graded rectangular plates under thermal load, comparing 

three mathematical models for effective material properties [3]. The study analyses the 

vibration frequencies of a rectangular plate with a linearly varying thickness and a circularly 

varying Poisson’s ratio[4]. The paper presents a mathematical model to analyse the 

temperature-thickness coupling in a non-homogeneous isotropic viscoelastic rectangular plate 

with bi-parabolic temperature variation, linear thickness variation, and exponential Poisson’s 

ratio variation[5]. The paper analyses the buckling loads of rectangular composite plates under 

non-uniform in-plane loading using higher-order shear deformation theory, solving for stress 

distribution and buckling equations to obtain critical loads and mode shapes[6]. The paper 

investigates the buckling behaviour of symmetrically laminated rectangular plates under 

parabolic in-plane compressive loading using the Rayleigh–Ritz method, incorporating 

Chebyshev polynomials to derive buckling loads for various boundary conditions and 

validating results against DQM and FEM[7]. The paper analyses the vibrational frequencies of 

a non-homogeneous viscoelastic parallelogram plate with circular thickness variation and bi-

parabolic temperature distribution using the Rayleigh–Ritz method and MAPLE software[8]. 

The paper presents a nonlinear vibration analysis of functionally graded rectangular micro-

plates with variable thickness and a central partial crack using Classical Plate Theory and 

modified couple stress theory, demonstrating how thickness variation can mitigate crack effects 

on vibration characteristics[9]. The effect of two-parameter foundation on the transverse 

vibrations and critical buckling loads of nonhomogeneous rectangular plates under linearly 

varying in-plane forces has been analysed using the Kirchhoff plate theory and solved 

numerically via the Levy approach and Differential Quadrature Method[10]. The natural 

transverse vibration of a nonhomogeneous skew plate with variable thickness and temperature 

field is analysed using the Rayleigh–Ritz technique under CCCC and CSCS edge 

conditions[11]. Free transverse vibrations of isotropic rectangular plates with arbitrarily 

varying non-homogeneity are analysed using the Generalized Differential Quadrature Method 

based on Kirchhoff plate theory[12]. The Rayleigh–Ritz method is used to analyse the natural 

vibration time period of an isotropic viscoelastic square plate with circular thickness variation 

and Poisson’s ratio under clamped and simply supported conditions[13]. This paper 

investigates the natural vibration of a non-uniform, non-homogeneous square plate with 

clamped boundaries, considering circular thickness variation, bi-linear temperature 

distribution, and linear density variation using the Rayleigh–Ritz method[14]. This paper 

analyzes the natural vibration of a non-uniform, non-homogeneous square plate with clamped 

boundaries, considering thickness variation, bi-linear temperature distribution, and density 

variation using the Rayleigh–Ritz method[15]. The vibration of a tapered isotropic rectangular 

plate under thermal conditions is analyzed using the Rayleigh–Ritz method for various 

boundary conditions[16]. The effect of linear thickness variation on the vibration of a 

viscoelastic rectangular plate with clamped edges is analyzed using the Rayleigh–Ritz 
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method[17]. The Rayleigh Ritz method is used to solve the differential equation involving the 

linear density variation and the circular Poisson's ratio fluctuation on the vibration time period 

of the rectangular plate[18]. A tapered, non-homogeneous rectangular plate with a variety of 

boundary conditions is used to examine plate properties[19]. The effect of bilinear temperature 

variation on the vibration of a non-homogeneous viscoelastic rectangular plate with non-

uniform thickness is analyzed using the Rayleigh–Ritz method[20]. 

In addition to using aspect ratios of 1.5 and 2.5, the deflection function is utilized to identify 

the modes of frequency for various values of temperature gradient, taper constant, and non-

homogeneity. With SSSS boundary conditions and a two-dimensional temperature field 

distribution, the Rayleigh-Ritz technique is used to study the natural vibration of an isotropic 

non-homogeneous rectangular plate with a one-dimensional circularly variable thickness and 

density parameter.  

A rectangular plate composed of duralumin material with a circular variation in thickness in 

one direction was used to achieve the solution of the first two modes of vibration in the current 

experiment. Both tabular and graph formats are used to display the numerical values of the first 

two modes of the frequency at different structural parameter values for the SSSS boundary 

condition, assuming that the plate is simply supported on all four edges. 

Analysis Of Equation Of Motion 

The differential equation of motion of  visco-elastic isotropic plate may be written as [16] 

                                                   
∂2τx

∂x2 + 2
∂2τxy

∂x ∂y
+

∂2τy

∂y2 = ρh
∂2ξ

∂t2                                                                                              

(1) 

where x and y represent the plate geometry's coordinates, τx and τy represent the bending 

moments, τxy  represents the twisting moment per unit plate length, ρ represents the mass per 

unit volume, h represents the plate's thickness, and  ξ represents the displacement at time t. 

The expressions for τx, τy and τxy are given by [17] 

  τx = −D̃D1 [
∂2ξ

∂x2
+ ν

∂2ξ

∂y2
], 

          τy = −D̃D1 [
∂2ξ

∂x2
+ ν

∂2ξ

∂y2
]  and  

                                                                                        τxy = −D̃D1(1 − ν)
∂2ξ

∂x ∂y
                                                                          

(2) 

where D̃ is the representation for visco-elastic operator.  

In this case, D1 represents the material's flexural rigidity and is written as[18] 
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                                                                                           D1 =
Eh3

12(1−ν2)
                                                                                    

(3)            

When τx, τy and τxy are substituted in equation (1), one obtains 

D̃ [D1 (
∂4ξ

∂x4 + 2
∂4ξ

∂x2 ∂y2 +
∂4ξ

∂y4
) + 2

∂D1

∂x
(

∂3ξ

∂x3 + 2
∂3ξ

∂x ∂y2
) + 2

∂D1

∂y
(

∂3ξ

∂y3 + 2
∂3ξ

∂y ∂x2
)

                                                      +
∂2D1

∂x2
(

∂2ξ

∂x2 + ν
∂2ξ

∂y2
) +

∂2D1

∂y2
(

∂2ξ

∂y2 + ν
∂2ξ

∂x2
) + 2(1 − ν)

∂2D1

∂x ∂y

∂2ξ

∂x ∂y
] + ρh

∂2ξ

∂t2 = 0
            

(4)                                

Deflection ξ can be considered the product of two functions using the variable separation 

method[19]                                                                                              ξ(x, y, t) = ϕ (x, y) ⋅ T(t)                                                                                           

(5) 

where T(t) is a time function for the vibration of a rectangular plate and ϕ (x, y) is the deflection 

function in x and y. Equation (5) can be substituted into equation (4), to get 

[D1 (
∂4ϕ 

∂x4 + 2
∂4ϕ 

∂x2 ∂y2 +
∂4ϕ 

∂y4
) + 2

∂D1

∂x
(

∂3ϕ 

∂x3 + 2
∂3ϕ 

∂x ∂y2
) + 2

∂D1

∂y
(

∂3ϕ 

∂y3 + 2
∂3ϕ 

∂y ∂x2
)

                         +
∂2D1

∂x2
(

∂2ϕ 

∂x2 + ν
∂2ϕ 

∂y2
) +

∂2D1

∂y2
(

∂2ϕ 

∂y2 + ν
∂2ϕ 

∂x2
) + 2(1 − ν)

∂2D1

∂x ∂y

∂2ϕ 

∂x ∂y
] /ρhϕ = − (

∂2T/∂t2

D̃T
)
                      

(6) 

When both sides of equation (6) are equal to a constant p2, the result is 

[D1 (
∂4ϕ 

∂x4 + 2
∂4ϕ 

∂x2 ∂y2 +
∂4ϕ 

∂y4
) + 2

∂D1

∂x
(

∂3ϕ 

∂x3 + 2
∂3ϕ 

∂x ∂y2
) + 2

∂D1

∂y
(

∂3ϕ 

∂y3 + 2
∂3ϕ 

∂y ∂x2
)

                                     +
∂2D1

∂x2
(

∂2ϕ 

∂x2 + ν
∂2ϕ 

∂y2
) +

∂2D1

∂y2
(

∂2ϕ 

∂y2 + ν
∂2ϕ 

∂x2
) + 2(1 − ν)

∂2D1

∂x ∂y

∂2ϕ 

∂x ∂y
] − ρp2hϕ = 0

                       

(7) 

and 

                                                                        
∂2T

∂t2 + p2D̃T = 0                                                                                              

(8)     

Assumption Required 

one dimensional circular variation in thickness as [18] 

                                                         h = h0 [1 + β (1 − √1 −
x2

a2)]                                                                                       

(9) 

where β, (0 ≤ β ≤ 1) is known as tapering parameter and thickness of plate becomes constant 

at x = 0 and for non-homogeneity (ρ ) consideration,  assumed one dimensional circular 

variation in Poisson's ratio as 
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                                                                         ρ = ρ0 [1 + m2
x

a
],                                                                                                

(10) 

                                                      ν = ν0 [1 − m1 (1 − √1 −
x2

a2)]                                                                                    

(11)                           

where m2, (0 ≤ m2 ≤ 1) and m1 (0 ≤ m1 < 1)are known as non-homogeneity constant 

corresponding to density and Poisson's ratio. 

The plate is subjected to steady two-dimensional parabolically varying temperature 

distributions as[11] 

                                                                        τ̅ = τ0̅ (1 −
x2

a2) (1 −
y2

a2)                                                                                      

(12)                                                                               

Therefore the temperature dependent modulus of elasticity is taken as[16] 

                                                               E(τ) = E0(1- γ τ̅)                                                                                                    

(13) 

                                                              E(τ) = E0[1-  γ τ0̅ (1 −
x2

a2) (1 −
y2

a2)]                                      

                                                             E(τ) = E0[1- α (1 −
x2

a2) (1 −
y2

a2)]                                                                           

(14)                                                               

Where α = γτ0̅, (0 ≤ α < 1) 

Boundary Condition 

For SSSS , the boundary conditions are [19] 

                                ϕ =
∂2ϕ

∂x2  = 0  at  x = 0, a       and       ϕ = 
∂2ϕ

∂y2  = 0  at  y = 0, b 

The deflection function (i.e. maximum displacement) which satisfy boundary condition given 

in as: 

             ϕ (x, y) = (
x

a
) (

y

b
) (1 −

x

a
) (1 −

y

b
) [A1 + A2 (

x

a
) (

y

b
) (1 −

x

a
) (1 −

y

b
)]                                                                   

(15) 

where 𝐴1 and 𝐴2 are arbitrary constants. 
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Rayleigh Ritz Method In Rectangular Plate 

We are using Rayleigh Ritz technique (i.e., maximum strain energy 𝑆𝐸 must equal to maximum 

kinetic energy 𝐾𝐸 ) in order to obtain frequency equation for both modes of vibrations. As a 

result, we need to have:  

                                                                                          𝛿(𝑆𝐸 − 𝐾𝐸) = 0                                                                                           

(16) 

The 𝐾𝐸 and 𝑆𝐸 formula are provided by  [20] 

                                           𝐾𝐸 =
1

2
𝑃2 ∫  

𝑎

0
 ∫  

𝑏

0
 𝜌ℎ𝜙 2𝑑𝑥𝑑𝑦                                                                                                       

(17) 

                                                𝑆𝐸 =
1

2
∫  

𝑎

0
 ∫  

𝑏

0
 𝐷1 × [(

𝜕2𝜙 

𝜕𝑥2 )
2

+ (
𝜕2𝜙 

𝜕𝑦2 )
2

+ 2𝜈
𝜕2𝜙 

𝜕𝑥2

𝜕2𝜙 

𝜕𝑦2 + 2(1 −

𝜈) (
𝜕2𝜙 

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦                        (18) 

The  non-dimensional variables are outlined to make the computation simple and convenient: 

                                           X= 
𝑥

𝑎
,       Y=  

𝑦

𝑏
,       ℎ̅= 

ℎ

𝑎
        and      𝜙 ̅ = 

𝜙 

𝑎
                                                                                  

(19) 

Solution Of Frequency Equation 

on using the above assumptions along with  (19) ; equation (17) and (18) becomes 

𝐾𝐸 =
1

2
𝑝2 ∫  

𝑎

0

 ∫  
𝑏

0

 𝜌0 [1 + 𝑚2

𝑥

𝑎
] ℎ0 [1 + 𝛽 (1 − √1 −

𝑥2

𝑎2
)] 𝜙2𝑑𝑦𝑑𝑥 

=
1

2
𝜌0𝑝2ℎ0 ∫  

𝑎

0

 ∫  
𝑏

0

  [1 + 𝑚2

𝑥

𝑎
] [1 + 𝛽 (1 − √1 −

𝑥2

𝑎2
)] 𝜙2𝑑𝑦𝑑𝑥 

Substituting 𝑋 =
𝑥

𝑎
                  |                  𝑌 =

𝑦

𝑎
 

                                                  
𝑥 → 0 ⇒ 𝑋 → 0
𝑥 → 𝑎 ⇒ 𝑋 → 1

                      
𝑦 → 0 ⇒ 𝑌 → 0

𝑦 → 𝑏 ⇒ 𝑌 →
𝑏

𝑎

 

𝐾𝐸 =
1

2
𝜌0𝑝2ℎ0 ∫  

1

0

 ∫  
𝑏/𝑎

0

  [1 + 𝑚2𝑋] [1 + 𝛽 (1 − √1 − 𝑋2)] (
𝜙

𝑎
)

2

𝑎2𝑑𝑋𝑑𝑌 

=
1

2
𝜌0𝑝2ℎ0 ∫  

1

0

 ∫  
𝑏/𝑎

0

  [1 + 𝑚2𝑋] [1 + 𝛽 (1 − √1 − 𝑋2)] 𝜙‾2𝑎4𝑑𝑋𝑑𝑌 
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                       =
1

2
𝜌0𝑃2

ℎ0

𝑎
𝑎 × 𝑎4∫0

1
 ∫0

𝑏/𝑎
 [1 + 𝑚2𝑋] [1 + 𝛽 (1 − √1 − 𝑋2)] 𝜙‾2𝑑𝑋𝑑𝑌 

                       =
1

2
𝑝0𝑝2ℎ0

̅̅ ̅ 𝑎5∫0

1
 ∫0

𝑏/𝑎
[1 + 𝑚2𝑋][1 + 𝛽(1 − √1 − 𝑋2)]𝜙‾2𝑑𝑋𝑑𝑌                                                                   

(20) 

And 

𝑆𝐸 =     
1

2
∫  

𝑎

0

 ∫  
𝑏

0

 𝐷1 [(
𝜕2𝜙

𝜕𝑥2 )

2

+ (
𝜕2𝜙

𝜕𝑦2 )

2

+ 2𝜈
𝜕2𝜙

𝜕𝑥2

𝜕2𝜙

𝜕𝑦2
+ 2(1 − 𝜈) (

𝜕2𝜙

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦 

     =   
1

2
∫  

𝑎

0

 ∫  
𝑏

0

 
𝐸ℎ3

12(1 − 𝜈2)
[(

𝜕2𝜙

𝜕𝑥2 )

2

+ (
𝜕2𝜙

𝜕𝑦2 )

2

+ 2𝜈
𝜕2𝜙

𝜕𝑥2

𝜕2𝜙

𝜕𝑦2
+ 2(1 − 𝜈) (

𝜕2𝜙

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦 

    =  
1

24(1−𝜈2)
∫  

𝑎

0
 ∫  

𝑏

0
 𝐸0 [1 − 𝛼 (1 −

𝑥2

𝑎2) (1 −
𝑦2

𝑎2)] ℎ0
3 [1 +

𝛽 (1√1 −
𝑥2

𝑎2)]

3

[(
𝜕2𝜙

𝜕𝑥2)
2

+ (
𝜕2𝜙

𝜕𝑦2)
2

+

                                                                                                                           + 2𝜈
𝜕2𝜙

𝜕𝑥2

𝜕2𝜙

𝜕𝑦2 + 2(1 −

𝜈) (
𝜕2𝜙

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦                                      =  
𝐸0ℎ0

3

24(1−𝜈2)
∫  

𝑎

0
 ∫  

𝑏

0
  [1 −

𝛼 (1 −
𝑥2

𝑎2) (1 −
𝑦2

𝑎2)] [1 + 𝛽 (1 − √1 −
𝑥2

𝑎2)]

3

[(
𝜕2𝜙

𝜕𝑥2)
2

+ (
𝜕2𝜙

𝜕𝑦2)
2

+

                                                                                                                         +2𝜈
𝜕2𝜙

𝜕𝑥2

𝜕2𝜙

𝜕𝑦2     + 2(1 −

𝜈) (
𝜕2𝜙

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦 

= 
𝐸ℎ‾ 0

3𝑎3

24(1−𝜈2)
∫  

1

0
 ∫  

𝑏/𝑎

0
  [1 − 𝛼(1 − 𝑋2)(1 − 𝑌2(𝑎/𝑏)][1 + 𝛽(1 − √1 − 𝑋2)]

3
[(

𝜕2𝜙

𝜕𝑥2)
2

+

(
𝜕2𝜙

𝜕𝑦2)
2

+                                                                                                                          + 2𝜈
𝜕2𝜙

𝜕𝑥2

𝜕2𝜙

𝜕𝑦2 +

2(1 − 𝜈) (
𝜕2𝜙

𝜕𝑥2𝑦
)

2

] 𝑎2𝑑𝑋𝑑𝑌 

=
𝐸ℎ‾ 0

3𝑎3

24(1−𝜈2)
 ∫  

1

0
 ∫  

𝑏/𝑎

0
  [1 − 𝛼(1 − 𝑋2)(1 − 𝑌2(𝑎/𝑏)][1 + 𝛽(1 − √1 − 𝑋2)]

3
 [(

𝜕2𝜙‾

𝜕𝑥2)
2

+

(
𝜕2𝜙‾

𝜕𝑦2)
2

+                                                                                                                           + 2𝜈
𝜕2𝜙‾

𝜕𝑥2

𝜕2𝜙‾

𝜕𝑦2 +

2(1 − 𝜈) (
𝜕2𝜙‾

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑋𝑑𝑌                   (21)                                   
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Using equation (19) and (20) in equation (16)   represents the necessary frequency parameter. 

                                                                            𝛿(𝑆𝐸
∗ − 𝜆2𝐾𝐸

∗) = 0                                                                                             

(22) 

𝑆𝐸
∗ = ∫  

1

0
 ∫  

𝑏/𝑎

0
  [1 − 𝛼(1 − 𝑋2)(1 − 𝑌2(𝑎/𝑏)] [1 + 𝛽(1 − √1 − 𝑋2]

3
(

𝜕2𝜙‾

𝜕𝑥2)
2

+ (
𝜕2𝜙‾

𝜕𝑦2)
2

+

                                                                                                                                 + 2𝜈
𝜕2𝜙‾

𝜕𝑥2

𝜕2𝜙‾

𝜕𝑦2 +2(1 −

𝜈) (
𝜕2𝜙‾

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑋𝑑𝑌              (23)                                  

𝑘𝐸
∗ = ∫  

1

0
 ∫  

𝑏/𝑎

0
  [1 + 𝑚2𝑋][1 + 𝛽(1 − √1 − 𝑋2)]𝜙‾2𝑑𝑋𝑑𝑌                                                                                                   

(24) 

Here expression of the required frequency parameter is  

                                                            𝜆2 =
12𝜌0𝑝2𝑎2(1−𝜈2)

𝐸0ℎ‾ 0
2                                                                                                     

(25)    

Equation (22) contains two unknown constants, A1 and A2 which result from the substitution 

of deflection function ϕ(x, y). 

The following formula could be used to determine these two unknowns: 

                                                           
𝜕

𝜕𝐴𝑛
[𝑆𝐸

∗ − 𝜆2𝐾𝐸
∗] = 0                                                                                                   

(26) 

After simplifying equation (26) we get system of homogeneous eq. as 

𝐶11𝐴1 + 𝐶12𝐴2 = 0 

                                                                            and 𝐶21𝐴1 + 𝐶22𝐴2 = 0                                                                           

(27) 

The determinant of the coefficient matrix obtained from equation (27) must be zero in order to 

produce a non-zero solution (frequency equation). 

                                                                                     |
𝑐11 𝑐12

𝑐21 𝑐22
| = 0                                                                                 

(28) 
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After simplifying above equation we get a quadratic equation in 𝜆 . With λ representing 

frequency modes derived from equation (28), the time period of frequency modes is computed 

as k = 
2𝜋

𝜆
. 

Result And Discussion 

Duralumin, an aluminium alloy, is a visco-elastic material that produces the intended results. 

The calculations for Duralumin make use of the following parameters: 

 E0 = 7.08 × 1010 N/M2,  

 G =  2.632 × 1010 N/M2, 

 η = 14.612 × 105 N s/M2, 

 𝜌0 = 2.8 × 103 kg/M3, 

𝜈 = 0.345  and   ℎ0 = 0.01 M 

I) For aspect ratios of 1.5 and 2.5, calculations were carried out for the first two frequency 

modes for various values of the thermal gradient (α), non-homogeneity(m2), and taper 

parameter (β). 

II) The first two modes of the frequency parameter in Tables (1) and (4) increases 

continuously for both aspect ratios of 1.5 and 2.5 for every fixed value of the thermal 

gradient (α) while the taper parameter (β) increases from 0.2 to 0.6 and non-

homogeneity (m2) stays constant at 𝜈 = 0.345. In every cases, the first two modes of 

the frequency parameter decrease as the thermal gradient (α) values rise from 0.0 to 

0.8.  

III) For any fixed value of non-homogeneity (m2) in Tables (2) and (5), the first two modes 

of the frequency parameter increase steadily for both aspect ratios of 1.5 and 2.5 as the 

values of the thermal gradient (α) and taper parameter (β) rise from 0.2 to 0.8 with 𝜈 

= 0. In every scenario, the first two modes of the frequency parameter drop as the non-

homogeneity (m2) values rise from 0.0 to 1.0.  

 

IV) In Table (3) and (6),  for each fixed value of taper parameter(β), the first two mode of 

frequency parameter decrease continuously for both aspect ratio 1.5 and 2.5 as value 

of the thermal gradient (α) and non-homogeneity(m2)  increase from  0.2 to 0.6 with 𝜈 

= 0.345. As the values of the taper parameter(β) increases from 0.0 to 1.0, the first two 

mode of frequency parameter increases for all cases. 

 

Table1. Frequency of simple supported rectangular plate vs Thermal gradient(α) for 

Aspect Ratio 1.5 

 

α 

β = 0.2, m2 = 0, 𝝂=0.345 β = 0.4, m2 = 0, 𝝂=0.345 β = 0.6, m2 = 0, 

𝝂=0.345 

λ1 λ2 λ1 λ2 λ1 λ2 
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0 57.6608 430.5953 60.2813 448.4819 63.0982 467.9346 

0.2 54.9658 413.0808 57.5806 431.0280 60.3886 450.5353 

0.4 52.1281 394.7905 54.7424 412.8375 57.5460 432.4374 

0.6 49.1219 375.6113 51.7426 393.8084 54.5479 413.5491 

0.8 45.9121 355.3994 48.5489 373.8130 51.3648 393.7572 

 

Graphical representation of the table-1 : 

                            

Figure-1 : Thermal gradient vs Frequency 

Table2. Frequency of simple supported rectangular plate vs Non-Homogeneity(m2) for 

Aspect Ratio 1.5 

 

m2 

α = β = 0.2, 𝝂 = 0 α = β = 0.6, 𝝂 = 0 α = β = 0.8, 𝝂 = 0 

λ1 λ2 λ1 λ2 λ1 λ2 

0.0 51.9895 388.0317 52.7129 389.3578 53.2293 391.3813 

0.2 49.5520 369.6947 50.2089 370.4594 50.6862 372.1593 

0.4 47.4281 353.7337 48.0308 354.0710 48.4758 355.5184 

0.6 45.5558 339.6762 46.1137 339.6819 46.5315 340.9281 

0.8 43.8890 327.1717 44.4092 326.9160 44.8038 327.9989 

1 42.3928 315.9538 42.8807 315.4893 43.2553 316.4377 
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Graphical representation of the table-2 : 

                                  

Figure-2 : Non-Homogeneity vs Frequency 

Table 3. Frequency of simple supported rectangular plate vs Taper constant(β) for Aspect 

Ratio 1.5 

 

β 

α = m2 = 0.2, 𝝂=0.345 α = m2 = 0.4, 𝝂=0.345 α = m2 = 0.8, 𝝂=0.345 

λ1 λ2 λ1 λ2 λ1 λ2 

0 50.1170 378.3390 45.3905 345.4425 36.7436 286.2095 

0.2 52.3888 393.5601 47.5547 359.8946 38.7589 299.6551 

0.4 54.8624 410.3737 49.9086 375.8674 40.9417 314.4937 

0.6 57.5196 428.6701 52.4343 393.2489 43.2739 330.6070 

0.8 60.3422 448.3324 55.1139 411.9211 45.7383 347.8744 

1 63.3130 469.2423 57.9309 431.7667 48.3197 366.1790 

 

Graphical representation of the table-3 : 



1812   Study Of Isotropic Non-Homogeneous …  Umesh Bhardwaj et. al. 

 

Nanotechnology Perceptions 20 No. 5 (2024) 1801-1817 

                                   

Figure-3 : Taper constant vs Frequency 

Table 4. Frequency of simple supported rectangular plate vs Thermal gradient(α) for 

Aspect Ratio 2.5 

 

α 

β = 0.2, m2 = 0, 𝝂=0.345 β=0.4, m2 = 0, 𝝂=0.345 β=0.6, m2 = 0, 𝝂=0.345 

λ1 λ2 λ1 λ2 λ1 λ2 

0 46.1175 385.4861 47.9804 397.5019 49.9649 410.1599 

0.2 43.8635 369.4820 45.7102 381.3286 47.6766 393.8089 

0.4 41.4850 352.7527 43.3186 364.4385 45.2697 376.7493 

0.6 38.9587 335.1899 40.7834 346.7271 42.7231 358.8802 

0.8 36.2524 316.6550 38.0745 328.0615 40.0087 340.0742 

 

Graphical representation of the table-4 : 
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Figure-4 : Thermal gradient vs Frequency 

Table 5. Frequency of simple supported rectangular plate vs Non-Homogeneity(m2) for 

Aspect Ratio 2.5 

 

m2 

α = β = 0.2, 𝝂 = 0 α = β = 0.6, 𝝂 = 0 α = β  = 0.8, 𝝂 = 0 

λ1 λ2 λ1 λ2 λ1 λ2 

0.0 41.3505 346.9228 40.8019 337.3437 40.5111 331.7484 

0.2 39.4118 330.5286 38.8635 320.9718 38.5752 315.4584 

0.4 37.7225 316.2587 37.1774 306.7741 36.8926 301.3554 

0.6 36.2333 303.6906 35.6934 294.3083 35.4127 288.9900 

0.8 34.9076 292.5109 34.3739 283.2486 34.0976 278.0322 

1 33.7176 282.4815 33.1907 273.3490 32.9189 268.2336 

 

Graphical representation of the table-5 : 
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Figure-5 : Non-Homogeneity vs Frequency 

Table 6. Frequency of simple supported rectangular plate vs Taper constant(β) for Aspect 

Ratio 2.5 

 

β 

α = m2 = 0.2, 𝝂=0.345 α = m2 = 0.4, 𝝂=0.345 α = m2 = 0.8, 𝝂=0.345 

λ1 λ2 λ1 λ2 λ1 λ2 

0.0 40.1848 341.6386 36.3133 311.9610 29.2029 258.5319 

0.2 41.8070 352.0218 37.8453 321.5730 30.6041 266.9886 

0.4 43.5523 363.0564 39.4934 331.8040 32.1082 276.0051 

0.6 45.4114 374.6983 41.2481 342.6104 33.7059 285.5391 

0.8 47.3746 386.9037 43.1001 353.9494 35.3877 295.5494 

1 49.4325 399.6306 45.0401 365.7798 37.1448 305.9970 

 

Graphical representation of the table-6 : 
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Figure-6 : Taper constant vs Frequency 

Conclusion 

This study investigated the frequencies of isotropic rectangular plates with circular thickness 

and variations in density and linear temperature. The above result indicates that when the 

tapering constant (β) increases, the frequency λ1 and λ2 decreases at varying values of the 

temperature gradient (α) and non-homogeneity (𝑚2). However, an increase in temperature 

gradient (α) and non-homogeneity (𝑚2) leads to an increase in frequency. The implementation 

of circular variation causes the frequency modes λ1 and λ2to vary very slowly, whether they 

are growing or decreasing. There is no significant increase or decrease in the frequencies. 
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