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Delays and dropouts impact the transmission of outputs and error signals across the layers of 

the multi-layer perceptron (MLP) network, which occurs during forward propagation, back 

propagation, and weight updates during training. In order to simulate the lag time that comes 

with wireless connection, the delay parameter (twait) is changed on the fly depending on the 

network architecture and a Gaussian distribution. This changes the way the neurons calculate 

their output. There is a gateway mote for direct contact with other nodes and differences in 

latency between node pairs are also taken into account in the simulation. The simulation is run 

numerous times with varying starting weights to analyze the influence of communication delays 

on the neural network's performance throughout the training phase. Seven datasets were used 

from the UCI Machine Learning repository. 
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I. INTRODUCTION  

The confluence of neural networks (NNs) with wireless sensor networks (WSNs) in recent 

years has opened new vistas for intelligent, adaptable, and robust systems capable of real-time 

data processing and decision-making. Comprising spatially distributed autonomous sensors 

monitoring physical or environmental conditions including temperature, humidity, pressure, 

and motion, wireless sensor networks have become absolutely necessary in a great variety of 

applications including environmental monitoring, industrial automation, smart agriculture, 

healthcare, and military surveillance. A WSN's main purpose is to detect, analyze, and send 

data to a central base station or sink node for further analysis. WSNs, on the other hand, often 

run under tight limits including low energy, bandwidth, and processing power as well as 

difficult climatic conditions causing network delay and packet loss. When combining 

intelligent models like neural networks, which need a specific degree of computational 

consistency and communication stability to produce correct outcomes, these limitations 

become very important. 
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Inspired by the structure and operation of the human brain, neural networks can simulate 

complicated nonlinear connections, learn from input, and adjust to changing settings. Their 

uses in WSNs are many and varied, from data fusion, event detection, pattern recognition, fault 

diagnostics, to energy-efficient routing and node location. By letting WSNs handle raw sensor 

data locally, hence lowering the communication load and preserving energy, neural networks 

may improve their decision-making ability. But in actual WSN situations, neural networks 

have particular difficulties resulting from the very essence of wireless communication—

specifically, latency and packet failures. 

Various elements include medium access control (MAC) layer contention, retransmissions 

caused by interference or fading, node congestion, and network topology changes cause 

communication delays in WSNs. Such delays might cause asynchronous or out-of-date input 

to enter the neural network, therefore impairing its function. Furthermore, delays might 

interfere with the temporal correlations on which neural networks, particularly recurrent neural 

networks (RNNs) or temporal convolutional networks (TCNs), rely for correct predictions. 

Even little data aggregation delays might cause late or erroneous alarms in applications like 

structural health monitoring or fire detection, which could have disastrous effects. Thus, the 

design of neural network models for WSNs has to take into account the temporal dependability 

of input data streams and provide strong methods for managing delays. 

On the other side, packet drops are the loss of data packets during transmission, a common 

event in WSNs caused by interference, low signal strength, restricted transmission range, and 

battery depletion. Missing information caused by packet loss might result in discrepancies and 

errors in the input supplied to the neural networks. Applications with little sensor data or where 

every sensor reading is very important make the problem worse. In a healthcare monitoring 

system, for instance, the loss of crucial signals like heart rate or blood pressure data may 

mislead the neural network and endanger patient safety. Packet losses during model training 

could also affect the learning phase of the neural network, therefore causing poor 

generalization and worse predicting accuracy.  

Delays and packet losses have a twofold effect that calls for further investigation on the fault-

tolerance and resilience of neural networks implemented in WSNs. Traditional neural networks 

presuppose total and timely availability of input data, an assumption that does not apply in 

actual WSN installations. Therefore, there is an increasing demand for the creation of loss-

resilient and delay-tolerant neural network designs. Active research is being done on methods 

like data imputation, temporal interpolation, dropout-aware training, and resilient optimization 

to reduce the consequences of data loss and delay. Moreover under consideration are hybrid 

models combining neural networks with probabilistic reasoning systems including Bayesian 

networks or Kalman filters to handle uncertainty in data. 

II. REVIEW OF LITERATURE 

Isabona, Joseph et al., (2022) The RMSE values of 8 to 12 dB for traditional models' route loss 

forecasts significantly exceed the tolerable error range of 0 to 6 dB, as shown in many studies. 

Achieving this aim requires very precise route loss prediction models using machine learning. 

This study establishes an innovative route loss model with multi-layer perceptron (MLP) 
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neural networks, employing a grid search methodology for hyperparameter optimization. The 

model has a well organized implementation network architecture. The suggested model was 

developed to provide the most accurate estimate of route loss between the base station and the 

mobile station. All hyperparameters, including the learning rate, number of hidden layers, and 

neuron count, are taken into account. The hyperparameters of the proposed MLP model have 

been optimized, and its predictive accuracy evaluated by various learning and training 

techniques on comprehensive route loss experimental datasets. The experimental route loss 

data are obtained by doing a field driving test in an urban microcellular environment over a 

functioning 4G LTE network. The outcomes were evaluated using several first-order statistical 

performance criteria. The results indicate a positive correlation with the measured data, and 

the prediction errors of the proposed MLP model exceeded those produced by traditional log-

distance-based route loss models. 

Weissbart, Léo. (2020). The most effective findings in profiling side-channel analysis are now 

produced by analyses that are based on machine learning. Methods belonging to the family of 

neural networks, including multilayer perceptrons and convolutional neural networks, exhibit 

this property to a heightened degree. In most cases, convolutional neural networks are used 

because of their superior performance when confronted with targets that are shielded by 

countermeasures. Since most research just compare multilayer perceptrons to convolutional 

neural networks, it is clear that these networks are under-discussed in the scholarly literature. 

The multilayer perceptron, on the other hand, has a design that is rather simple, which makes 

changing the hyperparameters easy and, perhaps, makes the inner workings of this neural 

network more explainable. 

Kumar, Shiu et al., (2016) As Wireless Sensor Networks become more prevalent in 

manufacturing, new research opportunities are emerging. Among the many critical and 

challenging applications is node localization. This research employs a method that is centered 

on feed-forward neural networks. The RSSI readings provided by the anchor node beacons are 

used for this purpose. In addition, the research delves into the ways in which the configuration 

and quantity of anchor nodes impact the localization system's accuracy. To determine which 

training algorithm produces the optimal outcomes, five distinct algorithms are assessed. The 

multi-layer Perceptron (MLP) neural network model was trained using Matlab. The efficacy 

of the suggested approach may be assessed in real-time when the model is written into the 

Arduino microcontroller. In a 12-12-2 neural network configuration, four anchor nodes 

produced an average two-dimensional localization error of 0.2953 meters. The suggested 

approach is suitable for any embedded microcontroller system. 

Abu Alsheikh, Mohammad et al., (2014) wireless sensor networks detect environments that 

are always changing. This dynamic behavior could be triggered by either external factors or 

the designers of the system. Sensor networks often use machine learning techniques to adapt 

to various scenarios while avoiding unnecessary redesign. In addition to generating many 

practical ideas, machine learning also optimizes resource efficiency and increases the lifespan 

of the network. By comparing each algorithm to the current scenario, we are able to balance 

their advantages and disadvantages. Furthermore, we provide a comparative reference to assist 

WSN designers in developing efficient machine learning solutions tailored to their specific 

application challenges. 
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Serpen, Gursel et al., (2013) This research proposes using artificial neural network 

technologies to provide "intelligent computation" and "adaptation" capabilities inside the 

network, which would increase the value, usefulness, and survivability of wireless sensor 

networks. Our goal is to provide wireless sensor networks with AI capabilities that will allow 

them to gain knowledge from their experiences and adjust to different field conditions. 

Wireless sensor networks are notoriously difficult to work with due to their many peculiarities. 

Considerations such as a constantly shifting topology, a dense deployment of sensor nodes, 

and, most importantly, limited power, compute, storage, and communication are present. In 

addition to being durable, scalable, and energy efficient, the protocols and applications running 

on wireless sensor networks need to be intelligent and able to "adapt" to new situations, 

application scopes, and uses. The proposed technique is shown in a simulation-based case 

study to be effective by clustering data from the Breast Cancer Wisconsin research utilizing a 

wireless sensor network integrated with Kohonen's self-organizing map neural network. 

G. Soares Alcalá, Symone et al., (2010) Wireless sensor networks (WSN) are a relatively new 

technology that could have several real-world applications. In the meantime, ANNs have found 

abundant usage in a variety of productive domains. Several similarities exist between WSN 

and ANN. The sensor node might be likened to a neuron, since wireless sensor network (WSN) 

applications exhibit traits such as distributed processing, extensive parallelism, adaptability, 

fault tolerance, and minimal computational requirements. Our focus here is on the Smart Table 

and how it may benefit from ANN and WSN integration. The incorporation of ANN models 

onto reasonably priced System-on-a-Chip (SoC) devices has been shown via prototypes. 

III. EXPERIMENTAL SETUP 

The effect of wireless communication on neural network performance in WSNs was modeled 

using a proprietary C++ simulator. Message latency and packet drop were the particular 

communication issues studied. 

To simplify things, the simulator doesn't worry about complex networking specifics; instead, 

it focuses on recreating transmission delays and dips that have an impact on neuron outputs. 

Training neural networks with this architecture guarantees excellent computational efficiency 

while faithfully reflecting limitations imposed by wireless communication. 

Accessing data, initializing, instantiating delay/drop behavior, training MLPs, and evaluating 

performance are all steps in the simulation process. Training consists of the usual procedures, 

including forward and backpropagation, as well as weight updates. 

It is possible for motes to miss or delay neuron outputs or error messages when training. You 

won't see these impacts represented when testing; they're reserved for training. Communication 

between motes has unpredictable transmission delays when neurons are placed across them. 

To determine how long a neuron should wait for inputs, the simulator provides it a waiting 

time parameter (twait). The formula for this is: 

twait = ϑ × μ × Lmax                                                                                                           (1) 
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Lmax is the maximum distance that covers 90% of mote pairs in the WSN, ϑ is an experimentally 

selected constant, and μ is the mean of a truncated Gaussian delay distribution. Different 

delay/drop circumstances are simulated by varying the value of ϑ from 0.3 to 2.1. 

The model presupposes a centralised gateway mote that can communicate with all other motes 

via a single hop, without any delay or drop in messages that originate from the gateway. 

Seven UCI datasets (Breast Cancer Wisconsin, Digits, Adult, Wine Quality, Pima Indians 

Diabetes, Heart Disease, and Abalone) were used and each experiment was repeated five times 

with different initial weights to ensure reliability. 

IV. RESULTS AND DISCUSSION 

Time Complexity 

Let us assume that the training set contains patterns of |PT| and that the validation or testing set 

contains patterns of |PV|. The MLP network, which has one hidden layer and one output layer, 

is fed patterns from the training set PT in a very sequential fashion. Through distributed (and 

asynchronous) processing, each pattern is processed in parallel at the level of the individual 

neuron. The cumulative delay, twait, mostly influenced by delays associated with MAC and 

routing protocol requirements, may include the processing time for individual neurons. A lot 

of variables determine the value of this delay parameter, which is a random variable. The value 

of the random variable niter, which is defined as the number of iterations required to converge 

to a solution, depends on various factors such as the training algorithm, initial weight and 

parameter values, stopping criterion, data set characteristics, and presentation order. Equation 

following yields an approximation of the temporal complexity, TC, of a WSN-MLP design: 

TC = ntier × (│PT│+ │PV│) × E{twait}                                                              (2)  

Where E {} is the expected value operator. twait the simulation uses Equation 1 and sets the 

mean of the truncated Gaussian distribution Pi to 1. Multiplying Pn by the per-hop delay yields 

the real time. The expected per-hop delay is 65 ms, with a range of 226–226 ms. The simulation 

research parameter set was employed for TC calculation. Take the iteration count as an 

example; it was determined by averaging all the variables in the dataset. Also, by averaging 

the results from each trial, we were able to get the average value for the simulation time. Table 

1 displays related data for all datasets; all other parameters have constant values because they 

were used in the simulation research. 

Table 1: Factors influencing time complexity in WSN-MLP design 

Dataset Iterations patterns Hidden 

neurons 

Output 

neurons 

twait(ms) Simulation 

duration (hrs) 
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Breast 

Cancer 

Wisconsin 

179 150 4 3 186.8 1.50 

Wine 

Quality 

194 175 9 3 234.3 1.74 

Digits 126 351 11 2 218.7 2.31 

Adult 139 358 16 6 311.7 4.08 

Pima 

Indians 

Diabetes 

113 2000 53 10 467.6 28.94 

Heart 

Disease 

170 7797 131 26 702.3 261.88 

Abalone 106 4667 141 2 577.6 119.86 

 

According to Table 1, the iteration count values exhibit little variation. The quantity of patterns 

fluctuates, and hence, the neuron count in the hidden layer likewise differs across various 

datasets. The quantity of designs fluctuates by an order of magnitude from 150 to 7,797: The 

primary determinant influencing the value of temporal complexity TC is, in fact, this element. 

The change in the number of hidden neurons and output neurons will result in a modification 

of the parameter Lmax, thereby increasing the value of twait. 

Message Complexity  

The number of messages transmitted that communicate neuron output values is the main 

component of communication costs, hence complexity is measured by this factor. A 

fundamental unit of measurement is each original or retransmitted neuron output message. 

Using backpropagation with momentum, nhid neurons in the hidden layer send their outputs to 

an average of nout neurons in the output layer during MLP training. Messages must be 

retransmitted at every wireless hop. Hij is the distance between hidden and output neurons. The 

total number of message transmissions (including retransmissions) for each training pattern 

during the forward propagation cycle is represented as cfp. 

 cfp = ∑ ∑ hij ∙
nout
j=1

nhid
i=1  

Each PT and PV training pattern in the training and validation datasets costs this. The number 

of iterations needed for convergence depends on the dataset size, issue features, initial weight 

values, and learning parameters, as well as the message complexity, MC, during the whole 

training episode. The equation below calculates message complexity during forward 

propagation:  
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MCFP = ntier × (│PT│ + │PV│) × cfp∙    

In backward propagation, nout output-layer neurons send messages to nhid hidden-layer neurons, 

equaling cfp. If online or incremental learning is utilized, each pattern in the training set is 

costed throughout the training phase, which lasts several iterations until convergence. Thus, 

backward propagation message complexity is measured by  

MCBP = ntier × │PT│ × cfp∙    

The cumulative message complexity for both training and validation is expressed as  

MC = MCFP +MCBP = ntier × (2│PT│ + │PV│) × ∑ ∑ hij ∙
nout
j=1

nhid
i=1     

Table 2 displays the metrics for message complexity across all simulation trials. It also shows 

the average value of the message complexity variable for each dataset. The total of the hop 

lengths between every pair of nodes, the number of iterations, and the patterns used for training 

and testing determine the complexity of the message. 

Table 2: Factors Influencing Message Complexity in WSN-MLP Design 

Dataset Iteration

s 

Trainin

g 

patterns 

Testing 

pattern

s 

Hidden 

neuron

s 

Output 

neuron

s 

cfp Message 

packets 

Breast 

Cancer 

Wisconsi

n 

179 100 50 4 3 22 985,671 

Wine 

Quality 

194 117 58 9 3 52 2,858,248 

Digits 126 234 117 11 2 45 3,260,205 

Adult 139 239 119 16 6 269 23,755,353 

Pima 

Indians 

Diabetes 

113 2000 666 53 10 2128 804,279,201 

Heart 

Disease 

170 5198 2599 131 26 2072

4 

2,549,444,06

0 
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Abalone 106 4667 2333 141 2 1446 1,381,217,20

0 

In Table 2, the total distances (hops) between any two neurons (motes) and the quantity of 

messages (packets) increase proportionally with the number of neurons (calculated as a 

function of pattern count) in the hidden and output layers. For every hundred-fold increase in 

neuron count, hops and messages double by 1,000. Though time complexity is essential, 

message complexity—which is worse than linear—is the biggest barrier on WSN-MLP 

scalability. 

V. CONCLUSION 

The inherently variable latency between nodes is captured by the custom-developed simulator, 

which successfully replicates the complexity of message transmission and reception in the 

context of wireless communication. In order to demonstrate how important network topology 

and communication parameters are for training neural network models efficiently and 

accurately, the research simulates the forward and backward propagation phases of an MLP 

network. The findings highlight the significance of meticulously controlling communication 

delays in order to maximize the efficiency of distributed neural networks in WSNs. Message 

complexity is the primary factor limiting network scalability, and the research sheds light on 

the scalability issues of large-scale WSN-MLP systems. The results provide a foundation for 

future studies to strengthen and optimize these systems, and they add to our knowledge of how 

communication flaws impact dispersed learning in wireless settings. 
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