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Delays and dropouts impact the transmission of outputs and error signals across the layers of
the multi-layer perceptron (MLP) network, which occurs during forward propagation, back
propagation, and weight updates during training. In order to simulate the lag time that comes
with wireless connection, the delay parameter (twait) is changed on the fly depending on the
network architecture and a Gaussian distribution. This changes the way the neurons calculate
their output. There is a gateway mote for direct contact with other nodes and differences in
latency between node pairs are also taken into account in the simulation. The simulation is run
numerous times with varying starting weights to analyze the influence of communication delays
on the neural network's performance throughout the training phase. Seven datasets were used
from the UCI Machine Learning repository.
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I. INTRODUCTION

The confluence of neural networks (NNs) with wireless sensor networks (WSNs) in recent
years has opened new vistas for intelligent, adaptable, and robust systems capable of real-time
data processing and decision-making. Comprising spatially distributed autonomous sensors
monitoring physical or environmental conditions including temperature, humidity, pressure,
and motion, wireless sensor networks have become absolutely necessary in a great variety of
applications including environmental monitoring, industrial automation, smart agriculture,
healthcare, and military surveillance. A WSN's main purpose is to detect, analyze, and send
data to a central base station or sink node for further analysis. WSNs, on the other hand, often
run under tight limits including low energy, bandwidth, and processing power as well as
difficult climatic conditions causing network delay and packet loss. When combining
intelligent models like neural networks, which need a specific degree of computational
consistency and communication stability to produce correct outcomes, these limitations
become very important.
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Inspired by the structure and operation of the human brain, neural networks can simulate
complicated nonlinear connections, learn from input, and adjust to changing settings. Their
uses in WSNs are many and varied, from data fusion, event detection, pattern recognition, fault
diagnostics, to energy-efficient routing and node location. By letting WSNs handle raw sensor
data locally, hence lowering the communication load and preserving energy, neural networks
may improve their decision-making ability. But in actual WSN situations, neural networks
have particular difficulties resulting from the very essence of wireless communication—
specifically, latency and packet failures.

Various elements include medium access control (MAC) layer contention, retransmissions
caused by interference or fading, node congestion, and network topology changes cause
communication delays in WSNs. Such delays might cause asynchronous or out-of-date input
to enter the neural network, therefore impairing its function. Furthermore, delays might
interfere with the temporal correlations on which neural networks, particularly recurrent neural
networks (RNNs) or temporal convolutional networks (TCNs), rely for correct predictions.
Even little data aggregation delays might cause late or erroneous alarms in applications like
structural health monitoring or fire detection, which could have disastrous effects. Thus, the
design of neural network models for WSNs has to take into account the temporal dependability
of input data streams and provide strong methods for managing delays.

On the other side, packet drops are the loss of data packets during transmission, a common
event in WSNs caused by interference, low signal strength, restricted transmission range, and
battery depletion. Missing information caused by packet loss might result in discrepancies and
errors in the input supplied to the neural networks. Applications with little sensor data or where
every sensor reading is very important make the problem worse. In a healthcare monitoring
system, for instance, the loss of crucial signals like heart rate or blood pressure data may
mislead the neural network and endanger patient safety. Packet losses during model training
could also affect the learning phase of the neural network, therefore causing poor
generalization and worse predicting accuracy.

Delays and packet losses have a twofold effect that calls for further investigation on the fault-
tolerance and resilience of neural networks implemented in WSNs. Traditional neural networks
presuppose total and timely availability of input data, an assumption that does not apply in
actual WSN installations. Therefore, there is an increasing demand for the creation of loss-
resilient and delay-tolerant neural network designs. Active research is being done on methods
like data imputation, temporal interpolation, dropout-aware training, and resilient optimization
to reduce the consequences of data loss and delay. Moreover under consideration are hybrid
models combining neural networks with probabilistic reasoning systems including Bayesian
networks or Kalman filters to handle uncertainty in data.

II. REVIEW OF LITERATURE

Isabona, Joseph et al., (2022) The RMSE values of 8 to 12 dB for traditional models' route loss
forecasts significantly exceed the tolerable error range of 0 to 6 dB, as shown in many studies.
Achieving this aim requires very precise route loss prediction models using machine learning.
This study establishes an innovative route loss model with multi-layer perceptron (MLP)

Nanotechnology Perceptions 20 No. $16 (2024) 3423-3431



Performance Assessment Of Neural ... Ravinder Gaja, et al. 3425

neural networks, employing a grid search methodology for hyperparameter optimization. The
model has a well organized implementation network architecture. The suggested model was
developed to provide the most accurate estimate of route loss between the base station and the
mobile station. All hyperparameters, including the learning rate, number of hidden layers, and
neuron count, are taken into account. The hyperparameters of the proposed MLP model have
been optimized, and its predictive accuracy evaluated by various learning and training
techniques on comprehensive route loss experimental datasets. The experimental route loss
data are obtained by doing a field driving test in an urban microcellular environment over a
functioning 4G LTE network. The outcomes were evaluated using several first-order statistical
performance criteria. The results indicate a positive correlation with the measured data, and
the prediction errors of the proposed MLP model exceeded those produced by traditional log-
distance-based route loss models.

Weissbart, Léo. (2020). The most effective findings in profiling side-channel analysis are now
produced by analyses that are based on machine learning. Methods belonging to the family of
neural networks, including multilayer perceptrons and convolutional neural networks, exhibit
this property to a heightened degree. In most cases, convolutional neural networks are used
because of their superior performance when confronted with targets that are shielded by
countermeasures. Since most research just compare multilayer perceptrons to convolutional
neural networks, it is clear that these networks are under-discussed in the scholarly literature.
The multilayer perceptron, on the other hand, has a design that is rather simple, which makes
changing the hyperparameters easy and, perhaps, makes the inner workings of this neural
network more explainable.

Kumar, Shiu et al., (2016) As Wireless Sensor Networks become more prevalent in
manufacturing, new research opportunities are emerging. Among the many critical and
challenging applications is node localization. This research employs a method that is centered
on feed-forward neural networks. The RSSI readings provided by the anchor node beacons are
used for this purpose. In addition, the research delves into the ways in which the configuration
and quantity of anchor nodes impact the localization system's accuracy. To determine which
training algorithm produces the optimal outcomes, five distinct algorithms are assessed. The
multi-layer Perceptron (MLP) neural network model was trained using Matlab. The efficacy
of the suggested approach may be assessed in real-time when the model is written into the
Arduino microcontroller. In a 12-12-2 neural network configuration, four anchor nodes
produced an average two-dimensional localization error of 0.2953 meters. The suggested
approach is suitable for any embedded microcontroller system.

Abu Alsheikh, Mohammad et al., (2014) wireless sensor networks detect environments that
are always changing. This dynamic behavior could be triggered by either external factors or
the designers of the system. Sensor networks often use machine learning techniques to adapt
to various scenarios while avoiding unnecessary redesign. In addition to generating many
practical ideas, machine learning also optimizes resource efficiency and increases the lifespan
of the network. By comparing each algorithm to the current scenario, we are able to balance
their advantages and disadvantages. Furthermore, we provide a comparative reference to assist
WSN designers in developing efficient machine learning solutions tailored to their specific
application challenges.
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Serpen, Gursel et al., (2013) This research proposes using artificial neural network
technologies to provide "intelligent computation" and "adaptation" capabilities inside the
network, which would increase the value, usefulness, and survivability of wireless sensor
networks. Our goal is to provide wireless sensor networks with Al capabilities that will allow
them to gain knowledge from their experiences and adjust to different field conditions.
Wireless sensor networks are notoriously difficult to work with due to their many peculiarities.
Considerations such as a constantly shifting topology, a dense deployment of sensor nodes,
and, most importantly, limited power, compute, storage, and communication are present. In
addition to being durable, scalable, and energy efficient, the protocols and applications running
on wireless sensor networks need to be intelligent and able to "adapt" to new situations,
application scopes, and uses. The proposed technique is shown in a simulation-based case
study to be effective by clustering data from the Breast Cancer Wisconsin research utilizing a
wireless sensor network integrated with Kohonen's self-organizing map neural network.

G. Soares Alcald, Symone et al., (2010) Wireless sensor networks (WSN) are a relatively new
technology that could have several real-world applications. In the meantime, ANNs have found
abundant usage in a variety of productive domains. Several similarities exist between WSN
and ANN. The sensor node might be likened to a neuron, since wireless sensor network (WSN)
applications exhibit traits such as distributed processing, extensive parallelism, adaptability,
fault tolerance, and minimal computational requirements. Our focus here is on the Smart Table
and how it may benefit from ANN and WSN integration. The incorporation of ANN models
onto reasonably priced System-on-a-Chip (SoC) devices has been shown via prototypes.

III. EXPERIMENTAL SETUP

The effect of wireless communication on neural network performance in WSNs was modeled
using a proprietary C++ simulator. Message latency and packet drop were the particular
communication issues studied.

To simplify things, the simulator doesn't worry about complex networking specifics; instead,
it focuses on recreating transmission delays and dips that have an impact on neuron outputs.
Training neural networks with this architecture guarantees excellent computational efficiency
while faithfully reflecting limitations imposed by wireless communication.

Accessing data, initializing, instantiating delay/drop behavior, training MLPs, and evaluating
performance are all steps in the simulation process. Training consists of the usual procedures,
including forward and backpropagation, as well as weight updates.

It is possible for motes to miss or delay neuron outputs or error messages when training. You
won't see these impacts represented when testing; they're reserved for training. Communication
between motes has unpredictable transmission delays when neurons are placed across them.
To determine how long a neuron should wait for inputs, the simulator provides it a waiting
time parameter (twait). The formula for this is:

twait =9 X WX Lipax (D
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Lmax 1s the maximum distance that covers 90% of mote pairs in the WSN, 9 is an experimentally
selected constant, and p is the mean of a truncated Gaussian delay distribution. Different
delay/drop circumstances are simulated by varying the value of 3 from 0.3 to 2.1.

The model presupposes a centralised gateway mote that can communicate with all other motes
via a single hop, without any delay or drop in messages that originate from the gateway.

Seven UCI datasets (Breast Cancer Wisconsin, Digits, Adult, Wine Quality, Pima Indians
Diabetes, Heart Disease, and Abalone) were used and each experiment was repeated five times
with different initial weights to ensure reliability.

IV.  RESULTS AND DISCUSSION
Time Complexity

Let us assume that the training set contains patterns of |Pt| and that the validation or testing set
contains patterns of |Py|. The MLP network, which has one hidden layer and one output layer,
is fed patterns from the training set PT in a very sequential fashion. Through distributed (and
asynchronous) processing, each pattern is processed in parallel at the level of the individual
neuron. The cumulative delay, tw.i, mostly influenced by delays associated with MAC and
routing protocol requirements, may include the processing time for individual neurons. A lot
of variables determine the value of this delay parameter, which is a random variable. The value
of the random variable niter, which is defined as the number of iterations required to converge
to a solution, depends on various factors such as the training algorithm, initial weight and
parameter values, stopping criterion, data set characteristics, and presentation order. Equation
following yields an approximation of the temporal complexity, TC, of a WSN-MLP design:

TC = nger X (| Pr | + | Py |) X Eftyyaic} )

Where E {} is the expected value operator. t,y;; the simulation uses Equation 1 and sets the
mean of the truncated Gaussian distribution Pi to 1. Multiplying Pn by the per-hop delay yields
the real time. The expected per-hop delay is 65 ms, with a range of 226—226 ms. The simulation
research parameter set was employed for TC calculation. Take the iteration count as an
example; it was determined by averaging all the variables in the dataset. Also, by averaging
the results from each trial, we were able to get the average value for the simulation time. Table
1 displays related data for all datasets; all other parameters have constant values because they
were used in the simulation research.

Table 1: Factors influencing time complexity in WSN-MLP design

Dataset | Iterations | patterns | Hidden Output | tyai(ms) Simulation
neurons | neurons duration (hrs)
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Breast 179 150 4 3 186.8 1.50
Cancer
Wisconsin
Wine 194 175 9 3 2343 1.74
Quality
Digits 126 351 11 2 218.7 2.31
Adult 139 358 16 6 311.7 4.08
Pima 113 2000 53 10 467.6 28.94
Indians
Diabetes
Heart 170 7797 131 26 702.3 261.88
Disease
Abalone 106 4667 141 2 577.6 119.86

According to Table 1, the iteration count values exhibit little variation. The quantity of patterns
fluctuates, and hence, the neuron count in the hidden layer likewise differs across various
datasets. The quantity of designs fluctuates by an order of magnitude from 150 to 7,797: The
primary determinant influencing the value of temporal complexity TC is, in fact, this element.
The change in the number of hidden neurons and output neurons will result in a modification
of the parameter Lnax, thereby increasing the value of tyait.

Message Complexity

The number of messages transmitted that communicate neuron output values is the main
component of communication costs, hence complexity is measured by this factor. A
fundamental unit of measurement is each original or retransmitted neuron output message.
Using backpropagation with momentum, np¢ neurons in the hidden layer send their outputs to
an average of noy neurons in the output layer during MLP training. Messages must be
retransmitted at every wireless hop. Hj;is the distance between hidden and output neurons. The
total number of message transmissions (including retransmissions) for each training pattern
during the forward propagation cycle is represented as cs.

— V'hid vy Nout .
Ctp = Zi=1 ijl hij

Each PT and PV training pattern in the training and validation datasets costs this. The number
of iterations needed for convergence depends on the dataset size, issue features, initial weight
values, and learning parameters, as well as the message complexity, MC, during the whole
training episode. The equation below calculates message complexity during forward
propagation:
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MCrp = ngier X (| PT| + [PV]) x cq
In backward propagation, n.y output-layer neurons send messages to niig hidden-layer neurons,
equaling cg. If online or incremental learning is utilized, each pattern in the training set is

costed throughout the training phase, which lasts several iterations until convergence. Thus,
backward propagation message complexity is measured by

MCgp = Ner X | PT]| X cgp.

The cumulative message complexity for both training and validation is expressed as

MC = MCrp + MCgp = Ngjer X (2| PT| + [PV [) x Tt plouty; -

Table 2 displays the metrics for message complexity across all simulation trials. It also shows
the average value of the message complexity variable for each dataset. The total of the hop
lengths between every pair of nodes, the number of iterations, and the patterns used for training

and testing determine the complexity of the message.

Table 2: Factors Influencing Message Complexity in WSN-MLP Design

Dataset | Iteration | Trainin | Testing | Hidden | Output | cfp Message
S g pattern | neuron | neuron packets
patterns J J S

Breast 179 100 50 4 3 22 985,671
Cancer
Wisconsi

n

Wine 194 117 58 9 3 52 2,858,248
Quality

Digits 126 234 117 11 2 45 3,260,205

Adult 139 239 119 16 6 269 23,755,353

Pima 113 2000 666 53 10 2128 | 804,279,201
Indians
Diabetes

Heart 170 5198 2599 131 26 2072 | 2,549,444,06
Disease 4 0
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Abalone 106 4667 2333 141 2 1446 | 1,381,217,20
0

In Table 2, the total distances (hops) between any two neurons (motes) and the quantity of
messages (packets) increase proportionally with the number of neurons (calculated as a
function of pattern count) in the hidden and output layers. For every hundred-fold increase in
neuron count, hops and messages double by 1,000. Though time complexity is essential,
message complexity—which is worse than linear—is the biggest barrier on WSN-MLP
scalability.

V. CONCLUSION

The inherently variable latency between nodes is captured by the custom-developed simulator,
which successfully replicates the complexity of message transmission and reception in the
context of wireless communication. In order to demonstrate how important network topology
and communication parameters are for training neural network models efficiently and
accurately, the research simulates the forward and backward propagation phases of an MLP
network. The findings highlight the significance of meticulously controlling communication
delays in order to maximize the efficiency of distributed neural networks in WSNs. Message
complexity is the primary factor limiting network scalability, and the research sheds light on
the scalability issues of large-scale WSN-MLP systems. The results provide a foundation for
future studies to strengthen and optimize these systems, and they add to our knowledge of how
communication flaws impact dispersed learning in wireless settings.
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