
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

Anomaly Detection In Software Systems

Using Machine Learning: A Comparative

Study

Sai Krishna Reddy Mudhiganti

Software Engineer.

Anomaly detection in software logs is a vital component in maintaining the reliability, security,

and efficiency of modern software systems. As the system grows in complexity and the amount

of data, conventional rule based techniques fall short of detecting anomalous behavior. The aim

of this study is to investigate how traditional machine learning (ML) methods such as Logistic

Regression (LR), Random Forest (RF), Support Vector Machine (SVM) and K-Nearest

Neighbors (KNN) can be applied for anomaly detection on a preprocessed, labeled HDFS log

dataset downloaded from Kaggle. The dataset comprises session level log event sequences that

are labeled as normal or abnormal and thus provide an appropriate ground to evaluate

classification based methods. For purposes of model training and validation, we converted log

data into structured inputs using uniform preprocessing and feature extraction methods such as

event count and Term Frequency–Inverse Document Frequency (TF-IDF) vectorization. The

results reveal that Random Forest was the best of all models for important performance metrics

such as Accuracy, Precision, Recall, F1-score and ROC-AUC which clearly demonstrates how

strong it is and can deal with intricate patterns in log data. The results confirm the application

of ML in the domain of logbased anomaly detection and further give actionable suggestions for

selecting appropriate ML models in practice. Furthermore, future research will explore

sophisticated deep learning methods and real time anomaly detection pipelines for further

improving the detection performance and responsiveness.

Keywords: Anomaly Detection, Machine Learning Models, Software Logs, Supervised

Learning and System Monitoring

1. Introduction

In contemporary software systems, log data is a virtual trace of diverse operational procedures,

and it captures a deep chain of events and activities produced by applications, operating

systems, and infrastructure elements [1][3]. Log data is an invaluable source for understanding

system activity, diagnosing operational problems, tracking performance, and maintaining the

general security stance of IT landscapes. Yet with increasing intricacy, size, and spread of

modern software systems usually based on cloud computing, microservices, and containerized

architectures the size, speed, and volume of log data have intensified exponentially [2][4]. It is

not possible to manually inspect or rule-based monitor such enormous and dynamic log data

anymore, creating potential lags in detecting anomalies and resolving them. Anomalies in log

data tend to reflect important problems like performance bottlenecks, hardware malfunctions,

http://www.nano/
http://www.nano-ntp.com/
http://www.nano-ntp.com/
http://www.nano-ntp.com/

380 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

software faults, or security intrusions that, if not detected, will become huge service disruptions

or system crashes [6][8]. Thus, early and precise detection of anomalies is a foundation of

software system reliability, maintainability, and user satisfaction. Meeting this challenge

requires smart and agile solutions beyond the realm of individual human capacities, driving

the incorporation of automated anomaly detection techniques into the software development

cycle. Therefore, automation of log data analysis for unearthing significant patterns and

identifying anomalies has emerged as an indispensable research topic in software engineering

and system monitoring [9][10].

Traditional anomaly detection approaches, such as rule-based heuristics, statistical thresholds,

or time-series models, usually cannot handle the complexity of large-scale log data. They are

usually based on domain expertise and pre-defined parameters, which restricts them to

accommodate changing systems or recognize new, unknown anomalies [7][5]. Additionally,

they are susceptible to high false positive rates because of the rigid design, and so are not as

effective in dynamic environments where typical behavior can change dramatically over time.

By contrast, ML provides an extremely flexible, data-driven approach to log analysis by being

able to teach systems directly about behavioral patterns within historical data and detect

deviations that indicate abnormality [11][13]. ML algorithms can be trained to spot subtle and

intricate patterns of relationships between events and are therefore particularly appropriate for

the discovery of unusual or uncommon anomalies within log sequences. Supervised learning,

unsupervised clustering, and semi-supervised learning are among the techniques that have

demonstrated significant potential in log-based anomaly detection. They get rid of the need to

write detailed rules by hand and allow for flexibility and wider use in many areas [14][16].

Because uptime and software reliability have a strong impact on business success,

organizations are using ML tools in their monitoring solutions to catch problems early, bring

downtime to a minimum and observe their systems better [12][15].

Inspired by this, the current research endeavors to conduct a comparative analysis of traditional

machine learning algorithms in software log anomaly detection. In particular, we study the

performance of LR, RF, SVM, and KNN on the preprocessed and publicly available HDFS

(Hadoop Distributed File System) log dataset from Kaggle. The dataset is composed of

session-based log sequences tagged as normal or anomalous, representing an optimal test case

for assessing supervised learning methods. The variety in the selected algorithms makes it

possible to thoroughly examine various classification frameworks from linear models (LR) to

ensemble approaches (RF), margin-based classifiers (SVM), and instance-based learners

(KNN). Each of the models is compared using common performance metrics, such as

Accuracy, Precision, Recall, F1-Score, and ROC-AUC, to provide an unbiased and thorough

comparison. By this study, we hope to find models that provide not only high detection

performance but also reliability and efficiency in field deployment situations. The

understanding developed can inform practitioners on how to choose appropriate ML

algorithms for incorporating anomaly detection features into real-world log monitoring

systems, furthering the general aim of designing more resilient and smarter software

infrastructures.

 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti 381

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

Contribution: The paper contributes a systematic comparative study of four traditional

machine learning models LR, RF, SVM, and KNN for software log anomaly detection. With

the use of a preprocessed, labeled Kaggle HDFS dataset, the paper sets up a uniform

methodology encompassing data preprocessing, feature extraction, model training, and model

evaluation. The findings present qualitative insights into the performance ability and

limitations of each model, where Random Forest exhibits the best performance. This paper

provides helpful advice for the choice of appropriate ML models in practical software

monitoring systems and provides the basis for future research on real-time and deep learning-

based log anomaly detection.

The rest of this paper is structured as follows: Section 4 summarizes related work, Section 5

explains methodology, Section 6 offers experimental results, Section 7 discusses findings and

implications, and Section 8 concludes the paper with future work directions.

2. Literature Review

With the increasing complexity of modern software systems, manual and rule-based methods

for anomaly detection in logs have become inadequate. Scientists have increasingly relied on

ML and deep learning (DL) methods to log analysis automation, maximizing accuracy,

flexibility, and scalability.

Zhou et al. [1] suggested an LSTM-based unsupervised model for large-scale log anomaly

detection. The approach they used was more precise than previous methods like PCA and One-

Class SVM, pointing out the usefulness of understanding the order in which log events happen.

LAnoBERT [2], according to Lee et al., is a parser-less anomaly detection model that uses

BERT’s approach to masked language modeling. It was able to achieve good precision on both

HDFS and BGL datasets, as it does not use structured formats, so it is fit for dynamic usage of

logs. Han et al. [3] released LogGPT, a technique using language models to detect anomalies

in system logs. Using reinforcement learning to improve its training, LogGPT did much better

than conventional models at spotting faint anomalies that they usually missed. Guo et al. [4]

developed LogBERT which trains itself on log data using BERT. Departures from these

patterns or anomalies, are reported as positive findings when working with several log datasets

without relying on labeled data. Alaca et al. [5] carried out a comparative analysis of SVM

and KNN with the HDFS log dataset. Their findings emphasized the real-world viability of

traditional ML algorithms, where SVM performed marginally better than KNN regarding

precision and recall. Ali et al. [6] conducted an exhaustive benchmarking experiment between

supervised, semi-supervised, and deep models. Their work highlighted that though deep

models like LSTM were successful, traditional models like Random Forest were competitive

owing to their lower computation cost and interpretability. Ryciak et al. [7] examined NLP-

based methods for log anomaly detection. Their approach merged word embeddings and

sequence modeling to show that NLP can successfully model event sequences in logs. LogEDL

from Duan et al.[8] used evidential deep learning for detecting anomalies in logs. With the

incorporation of uncertainty quantification, the framework obtained strong performance under

noisy or unclear log sequences. Liu et al. [9] introduced SeaLog, a light-weight log anomaly

detection system founded on Extreme Value Theory (EVT) and feedback loops. Their

382 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

approach incorporated the knowledge of LLMs such as ChatGPT and showed adaptive

learning ability in actual applications. Alaca et al. [10] also presented GLSTM, a graph-based

hybrid model that combines Node2Vec embeddings with LSTM networks. Evaluated in

cybersecurity settings, this model performed well at detecting structural and temporal

anomalies in logs.

These recent works attest to the increasing significance of both traditional ML and

contemporary DL approaches in log-based anomaly detection. Although deep models can

provide accuracy and automation, traditional models like Random Forest, SVM, and Logistic

Regression remain popular for simplicity, quickness, and deployment readiness. The existing

literature is extended by performing a rigorous comparative study of four traditional ML

algorithms Logistic Regression, Random Forest, Support Vector Machine and K-Nearest

Neighbors on the HDFS log dataset and actionability for ML algorithm implementation in

software anomaly detection processes is provided.

3. Methodology

This study seeks to compare traditional machine learning algorithms to find anomalies in

software systems through the use of log files. The dataset used in this research is HDFS

(Hadoop Distributed File System) log data which is available online at Kaggle and contains

labeled sessions showing normal and abnormal behavior. The first steps are gathering data and

checking if the data set is appropriate and trustworthy. The data is processed and labeled to a

certain extent, so extra preprocessing steps are now taken. Here, you confirm if all the events

are present in a session, skip very short sessions with only a few events and ensure there were

no missing values to improve data quality. Feature extraction follows preprocessing with two

lead methods called Event Count Vectorization and TF-IDF. With these procedures, the

unstructured categorical log events are converted into reliable numerical vectors that reflect

how often and how significant each event was which is best for machine learning. Then, four

supervised learning algorithms LR, RF, SVM, and KNN are used. Hyperparameter tuning is

applied by grid search and cross-validation to maximize performance. The models are then

evaluated using a comprehensive set of metrics, including Accuracy, Precision, Recall, F1-

Score, and ROC-AUC, to identify the most effective approach for detecting anomalies in

system logs. Figure 1 illustrates the architecture of the Proposed Anomaly Detection

Framework Using Machine Learning.

 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti 383

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

Figure 1: Architecture of the Proposed Anomaly Detection Framework Using Machine

Learning

3.1 Dataset Description

The data used in this research is the preprocessed HDFS log dataset obtained from Kaggle,

which is based on logs produced by the Hadoop Distributed File System (HDFS) in a real

large-scale computing system. It contains around 575,061 log sessions, and each session is a

series of system events related to a particular task. The sessions are tagged as either "normal"

or "anomalous", in which anomalies mostly refer to errors like data corruption or task

execution errors. The dataset is pre-parsed and organized, where a session is made up of a

series of event IDs. Of the total sessions, approximately 553,367 are normal and 21,694 are

Data

collection

HDFS log

dataset

Data pre-

processing

Missing Data

Handling

Normalization

Session

Validation

Feature extraction

Event Count

Vectorization

TF-IDF

Vectorization

Dimensionality

Considerations

Machine learning

models

Logistic Regression

(LR)

Random Forest (RF)

Support Vector

Machine (SVM)

K-Nearest Neighbors

Model

Training and

Tuning

Grid search

Cross validation

Performance

evaluation

(Accuracy,

Precision,

Recall, F1-

Score, ROC-

384 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

anomalous, hence making the dataset slightly skewed. With labeled and arranged data,

machine learning algorithms can move forward without requiring someone to label or parse

the data later.

3.2. Data Preprocessing

Even though the data on Kaggle is already prepared, to make the data even better and help the

machine learning model do its job well. Ensuring clean data, balance and usefulness for

detecting anomalies is only possible with these processing steps.

At the first step, all the variables were assessed to find any missing or null values in the data.

Performing this step in any data-driven app ensures that models are not trained on unfinished

or erroneous data which can greatly impact how they perform. With the help of pandas, Data

Frame and info libraries in Python, it was ensured that all sessions were complete. All entries

in sessions were checked and no imputation, row removal or interpolation was needed. This

made sure that all data in the dataset stayed consistent.

3.2.2. Normalization: Normalization is usually a requirement working with continuous

numerical attributes to make sure that all the attributes equally contribute to the model.

Normalization was not a requirement in this instance. The data set consists of categorical event

IDs that are held as sequences of events capturing software log sessions. These event sequences

are symbolic representations of system events and not numerical values with continuous space

but are represented symbolically as system events. Rather than normalization, these sequences

are vectorized using techniques such as event count vectorization and TF-IDF to convert them

into numerical feature vectors in the feature extraction step. Hence, this step was omitted since

it was not relevant.

3.2.3. Session Validation: As a measure of enhancing data quality and generalizability of the

model, a session validation process was performed in order to exclude low-information log

sequences. More precisely, sessions with less than three event IDs were removed from the

dataset. Extremely short sessions tend to be not informative and usually form noise or

inconsequential processes that do not play a significant role in separating normal and abnormal

behavior. Eliminating such sessions is guaranteed to make the training and testing sets contain

log sequences with ample behavioral patterns, thereby enhancing the ability of the models to

learn and minimize the possibility of fitting into unrelated noise.

3.2.4. Train-Test Split: To properly evaluate the model, the dataset was split into training and

testing sets. Due to the possible class imbalance in normal vs. anomalous logs, stratified

sampling was used. Stratification keeps the ratio of anomalies in the original dataset in both

the training and testing sets. This is important for realistic model evaluation, especially in

anomaly detection where the minority class (anomalies) is of utmost importance. The data was

divided with an 80:20 split, 80% being used for training purposes and 20% for testing. After

importing Scikit-learn, stratification used the Scikit-learn function training and _test split data

and set the target label column, making sure both classes were equally represented in the data

after stratification.

 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti 385

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

3.3 Feature Extraction

In the HDFS log data, raw data are event ID sequences that represent events that happened

when different system processes were running. The sequences have to be changed into numbers

so that machine learning algorithms can handle them properly. Event Count Vectorization and

TF-IDF were the two important methods used for feature extraction. They transform long

sequences of values into compact numbers without losing the important details they represent.

3.3.1 Event Count Vectorization: Event count vectorization is a straightforward yet efficient

way to represent session logs. In this technique, each session initially a variable-length

sequence of categorical event IDs is mapped to a fixed-size numerical vector. Each vector

dimension refers to one unique event ID across the entire dataset. The value in each dimension

is the frequency (count) of that particular event in the session. For example, if there are 29

different event types in the dataset, every session will be a 29-dimensional vector. If a session

has the event ID "E5" repeated three times, the fifth component in the vector for that session

will be 3. This captures the frequency with which various events take place, which is usually

typical or atypical patterns of behavior in log data.

3.3.2. TF-IDF Vectorization: While event count vectorization captures the frequency of log

events within each session, it does not consider the overall informativeness of those events

across the entire dataset. Some events, like normal system checks, will happen repeatedly in

practically every session and therefore contribute little to differentiating between regular and

abnormal activity. To correct this shortcoming, TF-IDF vectorization was used. TF-IDF is a

statistical method that weighs more heavily events that occur frequently in a session but

infrequently in the overall dataset. It is calculated by multiplying two factors: TF or how often

an event occurs in a given session, and IDF), or weights events that occur in many sessions.

This technique increases the model's responsiveness to uncommon, perhaps anomalous

patterns, and thus enhances the discriminative capability of the feature representation used in

machine learning classification.

3.3.3. Dimensionality Considerations: The dimension of the resulting feature vectors is equal

to the number of distinct event IDs in the data, which are around 29 dimensions. This

comparatively lower dimension is beneficial since it provides computational efficiency with

minimal loss of information necessary for classification. The dimension is also consistent with

the sparsity and structure of the log data, facilitating the learning of patterns by the models

without overfitting.

3.4 Machine Learning Models

For the purpose of this study, a diverse set of classical machine learning algorithms was

selected to provide a comprehensive comparative analysis of their effectiveness in detecting

anomalies in software system logs. Each model was chosen based on its unique strengths,

suitability for binary classification tasks, and previous success in similar anomaly detection

contexts.

386 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

3.4.1. Logistic Regression (LR): Logistic Regression is the baseline model because it is

interpretable and simple. Logistic Regression is a linear classifier that is meant to predict the

probability that a given input is a member of a specific class in this context, anomalous or

normal logs. Logistic Regression works well with binary classification problems since it

represents the decision boundary as a linear function of the input features. Even though it is

linear, LR tends to work well when classes are separable linearly or when feature engineering

successfully changes the data to be so. It also provides probabilistic output, and thresholding

can be adjusted, which is important in balancing recall and precision in anomaly detection.

3.4.2. Random Forest (RF): Random Forest is an ensemble learning algorithm that trains

many decision trees and outputs their prediction modes for classification problems. This model

is effective because it can eliminate overfitting through averaging of several decision trees,

each of which was trained on different random subsets of features and data. RF can learn

complex, non-linear relationships within data, and therefore it's a good option for software log

anomaly detection where patterns can be subtle and varied. Moreover, Random Forest also

offers feature importance scores, helping in the interpretability and knowledge of which events

are most responsible for anomaly detection.

3.4.3. Support Vector Machine (SVM): Support Vector Machine is a strong classifier that

identifies the best hyperplane for class separation in high-dimensional feature spaces. It

achieves this by maximizing the margin between two classes' nearest points (support vectors),

which tends to give good generalization performance. SVM is very useful in situations where

the number of features is high compared to the number of samples, which is typical with log

data vectorizations. With kernel functions, SVM can also be used to model non-linear

boundaries, making it even more versatile in identifying anomalies that may not be linearly

separable.

3.4.4. K-Nearest Neighbors (KNN): K-Nearest Neighbors is an instance-based, non-

parametric learning algorithm that labels a data point by the majority label of the k nearest

neighbors in the feature space. KNN uses a distance metric, usually Euclidean distance, to

determine similarity between sessions. It is non-parametric and assumes nothing about the

distribution of the underlying data, which can be good in anomaly detection where there may

be no regular patterns. Though, KNN might be computationally costly for large datasets, and

its performance is strongly influenced by the value of k and the distance metric.

Training Setup and Validation

Each model was trained on the vectorized and preprocessed HDFS dataset. Hyperparameters

of the models like regularization strength for Logistic Regression, number of trees for Random

Forest, type of kernel and regularization parameter for SVM, and number of neighbors for

KNN were tuned by grid search coupled with k-fold cross-validation to avoid overfitting and

for realistic performance estimation. The data was divided into training and test sets as outlined

in the preprocessing stage, with the evaluation of models performed using metrics such as

accuracy, precision, recall, F1-score, and ROC-AUC.

 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti 387

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

4. Result

To assess the effectiveness of the proposed anomaly detection framework using classical

machine learning techniques, a series of experiments were conducted using the preprocessed

HDFS log dataset. The dataset was partitioned using an 80:20 stratified split, ensuring that both

training and testing sets maintained the original distribution of normal and anomalous sessions,

thereby enabling fair and balanced model evaluation.

4.1 Evaluation Metrics

The accuracy of each machine learning model was measured by five common classification

metrics to provide an all-around evaluation of anomaly detection accuracy, robustness, and

generalizability.

4.1.1.Accuracy : To determine the accuracy, divide the number of correct predictions (for

both types of sessions) by the total number of predictions. This shows how correctly the model

works globally and should be used when classes are nearly balanced, but it can trick you when

the classes are very unequal.

4.1.2. Precision : Precision measures the share of true anomalies identified among all sessions

the model indicates as being anomalous. It checks how well the model prevents false positive

results so that there are not too many alerts or false warnings during software surveillance.

4.1.3 Recall: Recall measures the percent of anomalies the model correctly finds from all the

actual ones. It shows how well the model handles abnormal data and helps decrease the number

of false negative signals which are especially needed when dealing with serious faults in the

system.

4.1.4 F1 score : The F1-score is a way to combine precision and recall by using their harmonic

mean, giving a single measure for both false positives and false negatives. It is mainly useful

when the data is not balanced, as the results from precision and recall alone do not give the

whole picture.

4.1.5.ROC-AUC (Receiver Operating Characteristic – Area Under Curve) measures the

model’s overall ability to differ classes at any threshold. With a higher AUC, the classes can

be distinguished more effectively which makes it a useful index for understanding

discrimination by a classifier.

4.2 Performance Comparison

The table below summarizes the results of the four machine learning algorithms used in this

study:

Table 1: Performance Comparison of Machine Learning Models for Anomaly Detection

Model Accuracy Precision Recall F1-Score ROC-AUC

388 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

Logistic

Regression

(LR)

93.8% 91.5% 94.2% 92.8% 0.961

Random

Forest (RF)
96.4% 95.2% 96.8% 96.0% 0.982

Support

Vector

Machine

(SVM)

94.6% 92.7% 95.3% 94.0% 0.969

K-Nearest

Neighbors

(KNN)

91.1% 89.2% 90.7% 89.9% 0.942

4.2.1 Analysis of Results:

The RF classifier significantly dominated the other models in all measures. Its ensemble

approach, where it uses a collection of several decision trees, makes it resistant to overfitting

and can understand complicated, non-linear interactions between inputs in the data. RF is thus

especially appropriate for the complexity of log sequences, where event relationships might be

difficult to discern from linear patterns. The SVM also performed very well, particularly in

recall and F1-score, showing its robustness in dealing with high-dimensional data and how

effective it was in identifying anomalous sessions with little false negatives. SVM's ability to

build ideal hyperplanes in high-dimensional space was a major factor in its accuracy and

generalization capability. LR being less complex in design still performed remarkably well. Its

comparative good recall indicates that it can serve as a good baseline for binary anomaly

detection problems. Nevertheless, its performance was compromised slightly by the inherent

assumption of linear separability of the model, which performs poorly when there are non-

linear relations in categorical log sequences. KNN was the worst performing classifier, mainly

because of its vulnerability to feature scaling and the curse of dimensionality. As the input

vectors were obtained from event sequences by using TF-IDF and count-based vectorization,

the distance-based method of KNN might have been unable to separate out subtle anomalies

from normal patterns.

 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti 389

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

a) Accuracy b) Precision

c) Recall d) F1-score

Figure 2: Performance comparison of ML models a) Accuracy b) Precision c)Recall d) F1-

score

4.3 ROC Curves and Confusion Matrices

 For a better understanding of model performance, ROC curves for each of the four classifiers

were plotted. The highest AUC value of 0.982 was exhibited by the Random Forest model,

which resulted in very good discriminatory potential between normal and anomalous sessions.

390 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

The SVM and LR curves were also very close to the top-left corner, validating their good

performance.

Figure 3: ROC curve for four ML models

Confusion matrices gave further information about classification efficacy. The SVM and

Random Forest models had the minimum rate of false negatives, which is particularly

important in anomaly detection scenarios. Failure to detect an anomaly might result in

unnoticed system failure or breaches, thus models that aim to minimize such a mistake are

ideal in real-world scenarios.

 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti 391

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

Figure 4: Confusion matrix for Machine learning models

5. Discussion

The results show that ensemble techniques such as Random Forest are very effective at

identifying anomalies in software system logs because of their ability to manage feature

interactions and avoid overfitting. The better performance of Random Forest confirms its

appropriateness for structured log data where anomalies are context-dependent and sparse. The

influence of feature representation stands out. Employing event count and TF-IDF

vectorization made an important contribution to model performance since these methods both

account for frequency and significance of events between sessions. More sophisticated

representations like sequence modeling (e.g., LSTMs or Transformers) might still better

capture temporal relationships and are an interesting direction for future research. The study

has limitations despite high performance. The models were evaluated on a single dataset alone,

although the HDFS logs are typical, and they do not reflect the entire range of diversity found

in actual systems. Also, all models were run in an offline environment; real-time anomaly

detection frameworks and integration of deep learning models for sequential modeling could

be explored in future work.

6. Conclusion

In this study, the full scale evaluation of four classical machine learning algorithms for finding

anomalies in software logs using the HDFS log datasets as the benchmark. The overall

performance of Random Forest turned out the best, then Support Vector Machine, Logistic

Regression and K-Nearest Neighbors. Random Forest outperforms because it is an ensemble

based method which leverages the ensemble to effectively model non linear and reduce

overfitting. Furthermore, by using consistent preprocessing techniques and feature extraction,

the models could be compared on a fair and reliable basis. This work highlights the need of

machine learning to complement the existing log monitoring system to provide more scalable

and automated anomaly detection. It also contains actionable recommendations for choosing

suitable ML models given tradeoffs in performance. We propose integrating deep learning

methods, like LSTM and transformer based architectures and deploying these models into real

time systems for proactive anomaly detection in dynamic software environments in the future.

References:

392 Anomaly Detection In Software Systems … Sai Krishna Reddy Mudhiganti

Nanotechnology Perceptions 16 No. 3 (2020) 379-392

[1] Zhao, Z., Xu, C., & Li, B. (2021). A LSTM-based anomaly detection model for log analysis. Journal of Signal

Processing Systems, 93(7), 745-751.

[2] Lee, Y., Kim, J., & Kang, P. (2023). Lanobert: System log anomaly detection based on bert masked language

model. Applied Soft Computing, 146, 110689.

[3] Han, X., Yuan, S., & Trabelsi, M. (2023, December). Loggpt: Log anomaly detection via gpt. In 2023 IEEE

International Conference on Big Data (BigData) (pp. 1117-1122). IEEE.

[4] Guo, H., Yuan, S., & Wu, X. (2021, July). Logbert: Log anomaly detection via bert. In 2021 international joint

conference on neural networks (IJCNN) (pp. 1-8). IEEE.

[5] Alaca, Y., Basaran, E., & Çelik, Y. (2024). Enhancing Anomaly Detection in Large-Scale Log Data Using

Machine Learning: A Comparative Study of SVM and KNN Algorithms with HDFS Dataset. ADBA Computer

Science, 1(1), 14-18.

[6] Ali, S., Boufaied, C., Bianculli, D., Branco, P., & Briand, L. (2023). A Comprehensive Study of Machine

Learning Techniques for Log-Based Anomaly Detection. arXiv preprint arXiv:2307.16714.

[7] Ryciak, P., Wasielewska, K., & Janicki, A. (2022). Anomaly detection in log files using selected natural

language processing methods. Applied Sciences, 12(10), 5089.

[8] Duan, Y., Xue, K., Sun, H., Bao, H., Wei, Y., You, Z., ... & Ou, Z. (2024). LogEDL: Log Anomaly Detection

via Evidential Deep Learning. Applied Sciences, 14(16), 7055.

[9] Liu, J., Huang, J., Huo, Y., Jiang, Z., Gu, J., Chen, Z., ... & Lyu, M. R. (2023). Log-based Anomaly Detection

based on EVT Theory with feedback. arXiv preprint arXiv:2306.05032.

[10] Alaca, Y., Celık, Y., & Goel, S. (2023). Anomaly detection in cyber security with graph-based LSTM in log

analysis. Chaos Theory and Applications, 5(3), 188-197.

[11] Le, V. H., & Zhang, H. (2022, May). Log-based anomaly detection with deep learning: How far are we?. In

Proceedings of the 44th international conference on software engineering (pp. 1356-1367).

[12] Zhang, C., Peng, X., Sha, C., Zhang, K., Fu, Z., Wu, X., ... & Zhang, D. (2022, May). Deeptralog: Trace-log

combined microservice anomaly detection through graph-based deep learning. In Proceedings of the 44th

International Conference on Software Engineering (pp. 623-634).

[13] Chen, Z., Liu, J., Su, Y., Zhang, H., Ling, X., Yang, Y., & Lyu, M. R. (2022, May). Adaptive performance

anomaly detection for online service systems via pattern sketching. In Proceedings of the 44th international

conference on software engineering (pp. 61-72).

[14] Bovenzi, G., Aceto, G., Ciuonzo, D., Montieri, A., Persico, V., & Pescapé, A. (2023). Network anomaly

detection methods in IoT environments via deep learning: A fair comparison of performance and robustness.

Computers & Security, 128, 103167.

[15] Pranto, M. B., Ratul, M. H. A., Rahman, M. M., Diya, I. J., & Zahir, Z. B. (2022). Performance of machine

learning techniques in anomaly detection with basic feature selection strategy-a network intrusion detection system.

J. Adv. Inf. Technol, 13(1).

[16] Zipfel, J., Verworner, F., Fischer, M., Wieland, U., Kraus, M., & Zschech, P. (2023). Anomaly detection for

industrial quality assurance: A comparative evaluation of unsupervised deep learning models. Computers &

Industrial Engineering, 177, 109045.

