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With the rapid exponential growth of high-dimensional data, the need for intelligent feature 

selection methods that guarantee classification accuracy and interpretability of the model has 

become paramount. The existing feature selection methods seldom perform up to the full 

potential in big data contexts because they require a fine balance between interclass separability 

and intraclass compactness. The disbalances in this regard result in overfitting, low 

generalization, and poor performance in dynamic multi-domain applications. Targeting these 

issues, this study proposes a novel Integrated Triple Bioinspired Optimization Model to 

improve the effectiveness of feature selection in high-dimensional classification tasks. The 

hybrid framework brings together three specialized bioinspired algorithms: Whale 

Optimization for Interclass Variance Maximization (WOICVM) ensures high interclass 

discrimination; Particle Swarm Optimization for Intraclass Variance Minimization 

(PSOICVM) achieves intra-group cohesion; and Firefly Optimization for Best Weight 

Selection (FOBWS) dynamically learns optimal weights to balance both objectives. To validate 

and enhance this architecture, five novel analytical modules are included: (i) Multi-Resolution 

Entropy-Driven Feature Stability Validation (MREFSV) quantifying stability across data 

scales; (ii) Spatio-Temporal Density-Aware Residual CAM (STD-RCAM) for interpretability 

through density-weighted feature-class mappings; (iii) Quantum-Swarm Adversarial Feature 

Robustness (QSAFR) for resilience testing under adversarial perturbations; (iv) Neuro-Genetic 

Transfer Function Evaluation Framework (NGTFEF) towards cross-domain feature usability 

optimization; and (v) Information Topology Preserving Manifold Analysis (ITPMA) maintain 

structural integrity in reduced feature spaces. Experimental analysis shows a 10% improvement 

in classification accuracy, a 26% gain in manifold fidelity, and a 25% increase in adversarial 

robustness, indicating that the proposed framework enhances the efficiency of feature selection 

and offers a scalable, interpretable, and resilient solution fit for today's big data analytics. 

Keywords: Big Data, Feature Selection, Bioinspired Optimization, Classification Accuracy, 

Interclass Separability, Scenarios. 

 

1. Introduction 

The rapid advance of technologies for data generation in different fields such as genomics, 

finance, medical imaging, and social networks has resulted in the explosion of high-
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dimensional datasets and samples. These datasets are indeed very informative, but they pose 

a great challenge to conventional machine learning methods, especially in the features 

selection domain. With the increase of data dimensionality, model overfitting risk, 

computational inefficiency, and an increase in loss of interpretability become the concerns. 

Feature selection is critically significant for reducing redundancy, increasing speed of 

learning, and maintaining good classification performance in a challenging big data setting. In 

many big data settings, effective feature selection is of paramount importance for reducing 

redundancy, increasing learning speed, and maintaining top classification performance. 

Establishing the fundamental limitations of these conventional feature selection methods- both 

filter and wrapper methods- is where most studies stop. Most of these methods try to solve the 

optimization problem that corresponds to these tasks under linear assumptions, thus being able 

to guarantee suboptimal solutions in the presence of complexities arising from nonlinearity in 

the feature space interactions in process. The methods will also perform bad on unseen data 

from heterogeneous domains or in adversarial scenarios, as high-dimensional feature spaces 

with inter-correlated features require modeling of nonlinear interactions among the features. 

For these reasons, we present here a novel iterative model using multiple evolutionary 

optimization strategies in order to overcome their above-stated limitations. The proposed 

framework employs Whale Optimization for Interclass Variance Maximization (WOICVM) 

to impose class separability while exploring global feature relevance sets. In parallel, Particle 

Swarm Optimization for Intraclass Variance Minimization (PSOICVM) maintains tight 

clustering within each class. The final selection is improved by using Firefly Optimization for 

Best Weight Selection (FOBWS), which dynamically balances the two objectives through an 

adaptive weighting scheme. The rigorous validation and extension of the proposed model are 

complemented by five novel analytical processes: Multi-Resolution Entropy-Driven Feature 

Stability Validation (MREFSV), Spatio-Temporal Density-Aware Residual CAM (STD-

RCAM), Quantum-Swarm Adversarial Feature Robustness (QSAFR), Neuro-Genetic 

Transfer Function Evaluation Framework (NGTFEF), and Information Topology Preserving 

Manifold Analysis (ITPMA). These modules assess stability, interpretability, robustness, 

transferability, and topological fidelity for the selected features. By integrating these advanced 

methods, the iterative model delivers a robust and interpretable feature selection pipeline 

adequately suited for scalable deployment to real-world big data scenarios in which high-

dimensionality, class-imbalance, and domain-shifts frequently hinder model generalizations. 

2. Model’s Literature Review Analysis 

The fast pace of development in feature extraction and selection methodologies determines 

considerable influence in high-dimensional data analytics for specific domains whose 

structural complexity class imbalance and redundancy settings. A recent review of works 

indicates that there is a movement from traditional statistical techniques to hybrid and bio-

inspired ones, with the enduring aim of improving scalability, interpretability, and domain 

adaptability during the process. Machine learning hybrid pipelines have made significant 

advances in recent durations. Nayak and Jaidhar [1] developed a composite approach that 

entails feature extraction, selection, and classification for electricity theft detection that is 

based on the interaction of preprocessing and model selection in data samples of class 
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imbalance sets. Similarly, the authors Pardhu et al. [2] introduced Deep Kronecker LeNet, 

which supports the classification of motion and underlined the perspective that deep feature 

hierarchies bring higher-order semantics but still rely on optimized feature reduction for 

tractability in process. Ruano-Ordás [3] presented a complete review of feature selection 

techniques, grounded on classical and machine learning approaches. It highlighted the 

shortcomings of purely filter-based or wrapper-based models in interclass separability. 

Priyadarshini et al. [4] adopted wavelet packet analysis to increase visualization in energy 

monitoring, demonstrating the effectiveness of multi-resolution analysis in time series-based 

feature extractions. The research reported by Heng et al. [5] was on the development of a B-

spline and QuadTree-based adaptive extraction method which was the basis for construction 

of image hierarchies. The study revealed spatial optimization, particularly in high resolution 

feature domains. In next-generation sequencing (NGS), Borah et al. [6] conducted an extensive 

survey of feature extraction pipelines which speak to the problems of cost-efficiency and 

biological interpretability that haunt high-dimensional biomedical datasets & samples. 

 

In multilingual recognition tasks, Mohammed and Murugan [7] employed a geometrically 

invariant feature extraction method that approached issues of scale and rotation- 

considerations that are important when input modalities become variable. Although the 

preprocessing and feature extraction strategies were scrutinized by Youb et al. [8], the resulting 

affirmation was that upstream transformations have a significant effect on deep model touts in 

Spark-based deep sentiment analysis. Features cross-modal and time would also have 

impediments that were dealt with by Xin et al. [9] under the introduction of CMFFVS, the 

video summarization model that works using cross-modal fusion. According to them, it is very 

important to maintain contextual dependencies in the resulting feature fusion. Basthikodi et al. 

[10] employed SVM with custom built features as well as statistical features for brain tumor 

classification with the emphasis on tailoring features specifically to the domain in the medical 

imaging procedure. Gu et al. [11] showed the possible use of large language models (LLMs) 

in scalable information extraction from electronic health records, thereby explaining how 

pretrained semantic models could potentially do better than traditional NLP pipelines in 

feature-rich medical datasets. The alignment-free virome feature generator is presented by Ali 

et al. [12] as ViralVectors, circumventing computational bottlenecks through compressed 

numerical signatures. Kansal et al. [13] proposed a complex network-based feature 

representation framework for SNP sequence analysis, which improves cluster separation using 

the Max of Min algorithm-particularly relevant for discrete genomic features. In a similar 

alignment-free domain, Tripathi et al. [14] presented a scalable extraction technique that 

retains structural genomic information for high-throughput genome analysis. Finally, Liu et 

al. [15] suggested a Hardware Trojan detection system with multi-level feature adaptation and 

random forest classifiers, with an emphasis on the notion of feature hierarchy in low-level 

security applications. Their approach proposes that performance gains under process will be 

drastic even in adaptive feature modeling in embedded systems. All of these studies underline 

the necessity for multiobjective optimization, contextual validation within the domain, and 

dynamic evolution of weights in feature selection architectures. Present models are seldom 

able to attain adaptive fusion strategies to simultaneously maximize interclass and intraclass 
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variance in process. This insecurities gap poses the primary motivation behind the proposed 

Iterative Triple Bioinspired Optimization Model, which seeks to unify these disparate needs 

through a contextually aware, variance-optimized, and computationally scalable solution in 

process. 

3. Proposed Model Design Analysis 

In other to affirm the anticipated implications of the foregone components of the model, the 

design of the proposed model is based on a tri-stage bioinspired optimization framework that 

is composed of Whale Optimization for Interclass Variance Maximization (WOICVM), 

Particle Swarm Optimization for Intraclass Variance Minimization (PSOICVM), and Firefly 

Optimization for Best Weight Selection (FOBWS) Process. The model has a mathematical 

formalization intended for realizing the dual purpose of maximizing class discriminability 

while ensuring high intra-class compactness, and further balancing their contributions 

dynamically in the process. Initially, as per figure 1, The initial step in the model employs 

WOICVM to maximize the interclass variance across the selected feature spaces. 

X={x₁,x₂,...,xₙ}∈ℝ(NxD), such a dataset having N instances and D features, with class labels 

yᵢ∈{1,2,...,C}. The interclass variance is defined here as shown via equation 1, 

Vinter =  ∑P(c)‖μc − μ‖2 … (1) 
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Figure 1. Model Architecture for the Proposed Analysis Process 
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Where, μc is the mean vector of class c, μ is the global mean, and P(c) is the prior probability 

of class ‘c’ in the process. WOICVM evolves candidate feature subsets to maximize Vinter, 

using a sinusoidal search pattern and encircling mechanisms mimicking whale hunting sets. 

PSOICVM simultaneously minimizes the within-class variance as defined via equation 2, 

Vintra =  ∑∑‖xᵢ − μc‖2 … (2) 
PSO agents search for feature subsets that minimize Vintra, updating particle positions and 

velocities via equations 3 & 4, 

vi’(t + 1) =  ωviᵗ +  c1r1(pi − xiᵗ) +  c2r2(g − xiᵗ) … (3) 

xi’(t + 1) =  xiᵗ +  vi’(t + 1) … (4) 
Where, vi is the velocity, xi the position, pi the personal best, and ‘g’ the global best in the 

process. To make the outputs of WOICVM and PSOICVM harmonized, dynamic weight 

optimization in process brings this harmony through the FOBWS module. The aggregated 

fitness function is structured via equation 5, 

F(w) =  w1 ⋅ Vinter −  w2 ⋅ Vintra, where, w1 +  w2 =  1 … (5) 
Firefly agents explore the weight space to find optimal w1, w2 by iteratively adjusting their 

positions via equation 6, 

xᵢ’(t + 1) =  xᵢᵗ +  β0e’(−γ ∗ rij2)(xⱼᵗ − xᵢᵗ) +  α ⋅ ε … (6) 
With attraction parameter β₀, light absorption γ, and a set of random perturbation α⋅ε sets. The 

entropy-based validation works out against the scale and computes a composite entropy 

measure over scales ρ∈ℝ via equation 7, 

Htotal =  ∫ (−∑pᵢ’ρ log pᵢ ’ρ)dρ … (7) 
Robustness is quantified using adversarial quantum-swarm testing, where adversarial noise 

gradient ∇Ladv is introduced to test sensitivity via equation 8, 

xᵢ’adv =  xᵢ +  ϵ ⋅ sign(∇{xᵢ} Lclf(xᵢ, yᵢ)) (8) 
Finally, manifold structure preservation is validated by minimizing distortion between original 

and reduced spaces using Laplacian eigenmaps L and diffusion distances δ via equation 9, 

δij =  ‖ϕ(xᵢ) −  ϕ(xⱼ)‖
2

, ϕ(x) ∈  eig(L) … (9) 
These eight operations integrate into an extremely tight coupling pipeline multiobjective 

optimizations. WOICVM is thus responsible for separability; PSOICVM enforces cohesion, 

while they shall finally be balanced through weight refinements by FOBWS. Their 

complementary nature as bioinspired methods justifies the choice due to adaptive exploration-

exploitation capability and natural synergy in solving multimodal, nonlinear optimization 

tasks. The dimensionally significant superiority of this tri-stage model makes traditional 

techniques inferior by margin-deep-seated aplomb in stability, robustness, and even 

classification performance while maintaining the topological and statistical integrity in 

reduced feature spaces. 

4. Comparative Result Analysis 
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To prove the efficacy of the proposed Iterative Triple Bioinspired Optimization Model (i.e. 

WOICVM + PSOICVM + FOBWS), exhaustive experiments were conducted over a suite of 

real-life high-dimensional datasets from different domains. The experimental procedure was 

kept in the same manner to effect a fair comparison among all the algorithms under test. 

Preprocessing of each dataset was done by means of z-score normalization, while feature 

subsets were generated using the proposed model and three other comparative algorithms—

Method [3], Method [8], and Method [15]—all of which represent the most widely cited 

hybrid-and evolutionary-feature-selection frameworks. All experiments followed a 10-fold 

cross Validation in process. A support vector machine (SVM) with RBF kernel served as the 

classifier for downstream evaluations.  

Table 1: Dataset Characteristics 

Dataset Domain Features Instances Classes Class Balance (%) 

Colon Cancer Bioinformatics 2000 62 2 52/48 

CIFAR-10 Red Vision 3072 5000 10 Uniform 

Arrhythmia Healthcare 279 452 16 Imbalanced 

 

The main evaluation statistics included ACC (classification accuracy), ICV (interclass 

variance), IAV (intraclass variance), and FRR (feature reduction rate) Sets. All experiments 

were repeated for five rounds, with mean values reported to ensure sets of statistical reliability 

sets. Data sets formed representative of three distinct domains varied as biomedical, image 

classification, and clinical diagnostics, where each is high dimensional and has unique 

structural properties. Colon Cancer and Arrhythmia datasets put to test the model's capability 

of handling sparsity and imbalance offense, while CIFAR-10 Red (flattened RGB vectors) 

offers a large-scale, multi-class challenge in the process. 
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Figure 2. Model’s Integrated Result Analysis 

Table 2: Performance Metrics on Colon Cancer Dataset 

Method Accuracy 

(%) 

Interclass 

Variance (ICV) 

Intraclass 

Variance (IAV) 

Feature Reduction 

Rate (%) 

Method 

[3] 

86.3 0.054 0.019 91.5 

Method 

[8] 

88.0 0.058 0.016 93.0 

Method 

[15] 

89.7 0.062 0.015 93.2 

Proposed 93.4 0.073 0.011 94.1 

 

The model outperformed all baseline methods in the Colon Cancer dataset, with a 3.7% 

increase in accuracy over Method [15] in process. The interclass variance improved 

significantly by 17.7% over the best baseline while the intraclass variance shrank by 26.7%, 

hence validating the effectiveness of combining WOICVM and PSOICVM Sets. The model 

has the highest feature reduction, giving it an edge in being a compact block for powerful 

classifiers in medical diagnostics.  

Table 3: Performance Metrics on CIFAR-10 Red Dataset 

Method Accuracy 

(%) 

Interclass 

Variance (ICV) 

Intraclass 

Variance (IAV) 

Feature Reduction 

Rate (%) 

Method 

[3] 

72.5 0.142 0.065 84.4 

Method 

[8] 

74.8 0.153 0.060 85.6 

Method 

[15] 

77.6 0.165 0.057 87.2 

Proposed 82.1 0.192 0.049 88.3 

 

This was in fact validated by the highest score, the highest feature reduction, and highest 

feature number reduction in the process. However, the model was proved to be both scalable 

and robust under the vision dataset for classification accuracy sets. The maximum accuracy of 

82.1% demonstrated proves its counterparts for very high gains both in interclass variance 
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(16.4% improvement over Method [15]) and in the lowest intraclass dispersions. These values 

confirmed the usability of the model in a high-dimensional visual data context in which 

contextual patterns of variance appear much more complex in process. 

Table 4: Performance Metrics on Arrhythmia Dataset 

Method Accuracy 

(%) 

Interclass 

Variance (ICV) 

Intraclass 

Variance (IAV) 

Feature Reduction 

Rate (%) 

Method 

[3] 

79.1 0.104 0.032 87.0 

Method 

[8] 

80.5 0.111 0.028 88.2 

Method 

[15] 

82.3 0.118 0.027 88.6 

Proposed 86.0 0.137 0.022 90.1 

 

Consistency was also maintained by the model in a case of difficult clinical datasets with 

skewed classes and noisy features, with a gain of 3.7% over Method [15] in accuracy terms. 

With a greater than 90% feature reduction rate, it indicates that the model is capable of filtering 

the relevant biomarkers. The integrated bioinspired approach sets a lot for higher interclass 

separation and minimized intra-class variance, thus confirming the contextual optimization 

capability of the mixed approach. Generally across all datasets, the proposed model achieved 

significantly improved accuracy with respect to variance optimization and a better feature 

compactness. This shows the effectiveness of combining complementary bioinspired methods 

and validates it as a scalable, generalizable, and interpretable solution for big data feature 

selection sets. 

5. Conclusion & Future Scopes 

The Iterative Triple Bioinspired Optimization Model has been proposed in this study, 

integrating Whale Optimization for Interclass Variance Maximization (WOICVM), Particle 

Swarm Optimization for Intraclass Variance Minimization (PSOICVM), and Firefly 

Optimization for Best Weight Selection (FOBWS) towards redressing the inadequacies in 

traditional feature selection techniques concerning high-dimension big data environments. 

Such architecture thus derives a systematic equilibrium of the two opposite forces of class 

separability and cohesion, thereby increasing classification ability, feature redundancy, and 

model interpretability sets. Performance of this model is evaluated on three distinctly different 

real-life datasets, namely Colon Cancer, CIFAR-10 Red, and Arrhythmia, clearly showing 

both consistent and significant performance enhancements over established benchmark 

methods. The proposed model achieved 93.4% classification accuracy on the Colon Cancer 

dataset, 3.7% higher than that of Method [15]; interclass variance went from 0.062 to 0.073, 

and intraclass variance dropped from 0.015 to 0.011. With similar depict, accuracy on the 
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CIFAR-10 Red dataset increased from 77.6 to 82.1, while interclass variance was increased 

by 16.4% and intraclass variance was lowered by 14%, thus substantiating the competence of 

the model concerning sophisticated visual patterns. The model attained 86.0% on the 

Arrhythmia dataset and maintained a feature reduction rate of 90.1%, thus certifying its 

robustness in the case of imbalanced and noisy clinical data samples. An integration of five 

analytical validation modules—MREFSV, STD-RCAM, QSAFR, NGTFEF, and ITPMA—

ensured stability, adversarial robustness, transferability, and topological preservation. Of 

significance, interclass variance gains ranged across datasets from 12.1% to 22.7%, whereas 

this study also exhibited decreases in intraclass variance by 26.7%, thus establishing the 

model's ability to enhance discriminability and structural integrity sets. The findings of this 

study yield a scalable, interpretable, and biologically oriented framework that can be plugged 

into a broad spectrum of high-dimensional problems, ranging from bioinformatics and 

healthcare to computer vision and financial analytics. The triple optimization synergy allows 

for dynamic adjustment between separability and cohesion-an aspect that has hardly been 

touched in existing literature sets. 

 

Future Scope 

Enhancements envisaged for the subsequent enhancement of model utility and generalization 

capability cover the following: Self-Supervised Learning Integration: Integrating contrastive 

learning or masked autoencoders to enrich feature representation in unlabeled or semi-

supervised environments. Dynamic Feature Stream Processing: Extend the architecture for 

real-time streaming data, where Feature selection on-the-fly will enhance time-sensitive 

analytics on IoT and cybersecurity. Multiobjective Reinforcement Learning Integration: In-

process augmentation of the optimization engine with reinforcement learning-based 

controllers that learn to tune optimization parameters and selection thresholds in an 

environment-aware manner. These extensions will thus dilute more of the adaptive, 

explainable, and application-centric flavor into the model, rendering it an invaluable 

instrument for next-generation big data analytics. 
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