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Direction-of-Arrival (DOA) estimation is essential in array signal processing, aiding in 

pinpointing signal sources in systems such as radar and wireless communication networks. 

Coprime arrays have attracted interest in this area because they provide additional degrees of 

freedom (DOFs) while maintaining low hardware requirements due to their sparse sensor 

configurations. Over time, many algorithms have been developed to enhance these arrays, 

including popular subspace-based methods like MUSIC and ESPRIT. A comprehensive 

spectral search is necessary to achieve MUSIC’s renowned precision, but doing so demands 

additional processing power. In contrast, ESPRIT offers a more efficient, closed-form solution 

by utilizing the rotational invariance property of the coarray structure. In this study, we compare 

ESPRIT and MUSIC for DOA estimation using coprime arrays, highlighting their accuracy 

and processing efficiency under different conditions. 

Index Terms—Direction of Arrival (DOA) Estimation, Co- prime Array, Virtual Array 

Interpolation, FBSS. 

I. INTRODUCTION  

Accurate localization of signal sources is important in modern technological systems, making 

Direction-of-Arrival (DOA) estimation important in array signal processing, which involves 

finding the direction from which a signal arrives on an array of sensors. It plays a crucial role 

in several modern technological applications such as radar systems, sonar, wire- less 

communications, satellite tracking, navigation systems, radio astronomy, and speech signal 

enhancement. With the exponential rise in wireless data transmission, accurate and high-

resolution DOA estimation techniques have become nec- essary for resource allocation, target 

tracking, beamforming, and interference mitigation. 

There are various kinds of array structures, among which the Uniform Linear Array (ULA) 

is the most widely used due to its simplicity and ease of implementation. A ULA consists of 

sensors placed at uniform spacing, typically half the signal wavelength, to avoid spatial 

aliasing [5]. However, ULAs are limited in terms of the number of sources they can resolve, 

which is generally less than or equal to the number of sensors. To achieve a high spatial 

resolution, ULA requires a large number of sensors, which leads to increased hardware costs 

and complexity. These drawbacks motivate the use of sparse array configurations. 
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Coprime array is one having these sparse array configuration, which significantly enhances 

the degrees of freedom (DOFs) while using fewer physical sensors [7]. A coprime array is 

formed by combining two subarrays with sensor spacings that are integer multiples of a basic 

unit and are coprime to each other. For instance, if M and N are coprime integers, then one 

subarray places sensors at multiples of Nd and the other at multiples of Md. The resulting 

sensor positions create a non-uniform linear array with a larger virtual aperture, which enables 

the resolution of more sources than physical sensors [3] [4]. The coprime structure allows the 

formation of a virtual uniform linear array (coarray) with a dense set of lags, which is essential 

for high-resolution DOA estimation. 

The Moving Coprime Array (MCA) builds upon this conceptby incorporating array 

movement along a predetermined usually linear path, which enhances both the effective 

aperture and the quantity of distinct virtual lags. An augmented virtual array with greater DOFs 

and less spatial aliasing is created by gathering data at various time points during motion. The 

MCA is especially helpful in situations where there are few snapshots or coherent sources. 

Various algorithms have been proposed to estimate DOA using such arrays. These include 

classical beamforming, subspace-based methods like MUSIC (Multiple Signal Classification). 

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques), and 

optimization-based methods like sparse reconstruction and nuclear norm minimization. 

Among them MUSIC and ESPRIT stand out for their high-resolution capabilities and 

reliability under different scenarios [20]. 

The music algorithm is a subspace-bases technique that estimates DOAs by taking 

advantage of the orthogonality between the noise subspace and the signal subspace. 

Considering the coprime array, the received signal is first modelled, and the covariance matrix 

is formed from multiple time snapshots. For coherent signals, the spatial smoothing technique 

known as Forward/Backward Spatial Smoothing (FBSS) is used to restore the rank of the 

covariance matrix [1]. Additionally, Nuclear Norm Minimization (NNM) is used to interpolate 

missing elements in the virtual array, thereby enabling the formation of a complete Toeplitz 

matrix. The virtual coarray is transformed into a filled uniform array by interpolation, and the 

MUSIC spectrum is computed by scanning the angular domain to locate peaks, which 

correspond to the estimated DOAs. The algorithm offers very high resolution but it is 

computationally intensive due to its grid search mechanism. 

On the other hand, ESPRIT offers a more efficient closed form solution by applying the 

rotational invariance property inherent in subarrays of the virtual ULA (Uniform Linear 

Array). For coprime arrays, the received data is vectorized and mapped into a coarray. After 

interpolation using NNM, the virtual ULA is partitioned into two overlapping subarrays with 

a known displacement. The signal subspaces corresponding to these subarrays are extracted, 

and a rotational operator is computed using least squares. The eigenvalues of this operator are 

then used to directly compute the DOAs. ESPRIT avoids spectral search and has lower 

computational complexity but typically performs better when the signal are uncorrelated. 

This research compares the performance of MUSIC and ESPRIT techniques by estimating 

signal directions utilizing coprime arrays and evaluates their performance by determining how 

much their predictions differ from the actual angles(using RMSE) under different 
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circumstances, including changing noise levels (SNR) and the quantities of data (snapshots). 

For MUSIC, methods such as FBSS and matrix completion are used to tackle difficult 

scenarios where signals intersect (coherent signals), while ESPRIT uses a coarray 

configuration to aid in computations [1] [2]. The findings indicate the optimal conditions for 

each approach, like MUSIC excels with overlapping signals, while ESPRIT offers improved 

speed and precision for non-overlapping signals. This helping users in selecting appropriate 

choice according to their requirements such as managing noise, signal types or time 

limitations. 

II. SIGNAL MODEL 

For a static coprime array with M + N-1 physical sensors, the received signal at time t, under 

K far-field narrowband signals from directions θ =  [θ1,θ2 . . . . θK]T , is modeled as, 

 

xS(t) = s(t) ∑

K

k=1

αkaS(θk) + nS(t) 

 

This equation shows the signal model for a coprime array that is receiving multiple signals 

from different directions. It describes how the total signal received at the array is formed by 

combining contributions from all incoming sources [16]. Each signal is affected by its 

direction of arrival and travels through the environment before reaching the sensors. This 

model assumes that signals are narrowband and coming from far-field sources, meaning the 

wavefronts can be treated as plane waves across the array. 

Where xS(t)  ∈  C|S| × 1is the received signal vector, s(t) is the reference waveform, ak 

represents the complex fading coefficient of the k-signal, and ns(t) ~ CN(0, σn
2I) is additive 

white gaussian noise with power σn
2. The steering vector is defined as: 

 

aS(θk) = [e−l|S|θk ,  e−l|S|−1θk ,  … ,  e−l1θk]
T

, 
 

Combines the phase shifts at each sensor position li  ∈  S, where l1 = 0, denotes the reference 

sensor. This steering vector plays a key role in modeling how a signal arriving from direction 

θk appears across the spatial positions of the array. Each term in the vector represents the phase 

shift induces by the corresponding sensor location due to the signal’s arrival angle. The sensor 

at the reference location l1 

sees the signal without delay, while sensors at other positions observe phase shifts that grow 

with distance. This phase relationship forms a spatial pattern that is unique to each direction, 

which is later used to estimate the DOA. The term 

 

θk =
j2π sin sin (θk) 

λ
 

 

This equation normalizes the DOA into a spatial frequency, with λ as the signal wavelength. 

The exponential term quantifies the phase delay at the i-th sensor due to the k-th signal’s angle 

of arrival. The normalized spatial frequency θkallows the steering vector to be expressed in 
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exponential form, which simplifies the mathematical analysis of phase delays across the array. 

By representing direction in terms of spatial frequency, standard array processing techniques 

such as Fourier-based and subspace-based algorithms can be more easily applied. This 

abstraction also helps in generalizing the model across various wavelength and sensor spacings 

without modifying the core formulation. The manifold matrix AS, aggregating all steering 

vectors is given as, 

 

AS = [aS(θ1), aS(θ2), … ,  aS(θK)], 
 

Serves as the foundation for subspace-based DOA estimation algorithms. The structure of the 

manifold matrix AS provides a compact and complete description of how all Ksources are 

received across the array aperture. Its columns span the signal subspace, which is separated 

from the noise subspace using techniques like eigenvalue decomposition. This separation is 

crucial for accurate direction finding, especially in scenarios where the number of sources is 

close to or exceeds the number of physical sensors as in coprime arrays. This model enables 

high-resolution angle estimation by leveraging the coprime array’s sparse geometry while 

addressing challenges like coherent signals through preprocessing techniques [4]. 

 

III. MUSIC ALGORITHM ON MOVING COPRIME ARRAYS 

The MUSIC (Multiple Signal Classification) algorithm has long been recognized for its 

accuracy and ability to resolve closely spaces signals in high-resolution direction of arrival 

(DOA) estimation but conventional MUSIC implementations frequently suffer from 

limitations in the quantity of physical sensors and from their inability to manage coherent 

signals without using decorrelation methods. Coprime arrays are utilized to create a virtual 

array with higher aperture and degrees of freedom in order to overcome these limitations which 

results in higher resolution with fewer physical components. The rank of the observed signal 

space also may be improved by introducing motion to these arrays that allows for the capture 

of snapshots with temporal diversity. The MUSIC method can be successfully adapted to 

moving coprime arrays by combining these ideas, allowing for accurate DOA estimation even 

when these is signal coherence and sparse sampling. 

The MUSIC algorithm leverages the extended degrees of freedom (DOFs) of the coprime array 

through virtual coarray processing. For a moving coprime array (MCA), the covariance matrix 

is constructed from snapshots collected at multiple time instantsti [7]. Let xms(ti) denote the 

signal received at time ti modeled as: 

 

xmS(ti) = s(ti)BmSα + nS(ti), 
 

Where BmS = [eliδ1aS(θ1), … , eliδKaS(θK)] incorporates motion-induced phase shifts li = vti 

and δk = j2π sin sin θk /λ[8]. The covariance matrix Rms is derived as: 

 

RmS = ASΦAS
H, 

 

Where Φ = diag(ϕ1, … , ϕK) contains source powers and As is the manifold matrix of the 

static coprime array. 
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      To resolve coherent signals, vectorization maps Rms to a virtual array: 

𝑦𝑣 = 𝑣𝑒𝑐(𝑅𝑚𝑆) = 𝐴𝑣𝑝 

 

Where𝐴𝑣 = 𝐴𝑆
∗ ⊙ 𝐴𝑆 spans the virtual sensors 𝑉 = {𝑙𝑖2 − 𝑙𝑖1 ∣ 𝑖1, 𝑖2 = 1,2, … , |𝑆|}. The 

discontinuous virtual array V is interpolated into a hole-free uniform linear array (ULA) I with 

sensor positions 𝑙𝑤 ∈ [(𝑉) , (𝑉) ][5]. Missing virtual lags are filled via nuclear norm 

minimization (NNM) [3] [13] 
1

2
 |𝐹̂ ∘ 𝐵 − 𝐹|𝐹

2 + 𝜇|𝐹̂|∗, 

 

Where F is the Toeplitz matrix of the incomplete data 𝑦𝐼 , 𝐵 is a binary mask, and 𝜇 balances 

data fidelity and low rank constraints. 

The restored Toeplitz matrix 𝐹̂ is rearranged into a full rank ULA signal 𝑦𝐼̂. Forward/backward 

spatial smoothing (FBSS) is applied to 𝑦𝐼̂ to decorrelate coherent sources: 

𝑅𝑓𝑏 =
1

2𝑄
∑

𝑄

𝑞=1

(𝑦̂𝐼
𝑞

(𝑦̂𝐼
𝑞

)
𝐻

+ 𝛱(𝑦̂𝐼
𝑞

)
∗
(𝑦̂𝐼

𝑞
)

𝑇
𝛱𝐻), 

 

Where 𝛱is the exchange matrix. Eigen-decomposing 𝑅𝑓𝑏seperates the noise subspace 𝑈𝑁. The 

MUSIC spatial spectrum is computed as: 

 

𝑃(𝜃) =
1

𝑎𝐻(𝜃)𝑈𝑁𝑈𝑁
𝐻𝑎(𝜃)

, 

 

Where 𝑎(𝜃)is the steering vector of the interpolated ULA. Peaks in 𝑃(𝜃) correspond to 

estimated DOAs. The spatial spectrum is evaluated over a predefined angular grid that spans 

over the entire field of view. Each point on the grid corresponds to a possible signal arrival 

angle. For each angle𝜃, the corresponding steering vector 𝑎(𝜃) is projected onto the noise 

subspace 𝑈𝑁. Since true signal directions lie in the signal subspace and are orthogonal to the 

noise subspace, the projection yields minimal energy at these directions. The MUSIC 

algorithm identifies the DOAs by locating the angles 𝜃 at which the denominator 

𝑎𝐻(𝜃)𝑈𝑁𝑈𝑁
𝐻𝑎(𝜃) is minimized, resulting in sharp peaks in the spectrum. 

This grid-based search method allows the estimation of multiple DOAs simultaneously even 

when signals are closely spaced or partially coherent, provided that the spatial smoothing and 

matrix completion steps are effectively applied. Even if this method is computationally 

intensive, this exhaustive search over the angle grid ensured high-resolution performance 

which makes MUSIC suitable for scenarios where accuracy in angular discrimination is 

critical. 

 

IV. ESPRIT ALGORITHM IN COPRIME ARRAYS 

While the MUSIC algorithm relies on exhaustive grid search over a defined angular spectrum. 

It can suffer from high computational cost and sensitivity to overcome mismatches in the 

estimation of direction accurately, especially when the true direction of arrival (DOAs) do not 

align with the sampling grid. To overcome these limitations subspace-based techniques such 
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as Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) have been 

proposed. ESPRIT eliminates the need for spectral search by directly utilizing the rotational 

invariance between subarrays with identical structures [11]. When applied in the coarray 

domain of a coprime array, ESPRIT can extract this invariance from virtually generated shift-

invariant subarrays, enabling high-resolution and off-grid DOA estimation with reduced 

complexity [14]. This section presents the coarray domain formation of the ESPRIT algorithm 

considering coprime arrays. 

       The received signal covariance matrix 𝑅𝑥𝑥 for the static coprime array is computed as: 

 

𝑅𝑥𝑥 = 𝐸[𝑥𝑆(𝑡)𝑥𝑆
𝐻(𝑡)] = 𝐴𝑆𝛷𝐴𝑆

𝐻 + 𝜎𝑛
2𝐼 

 

Where 𝛷 = 𝑑𝑖𝑎𝑔(𝜙1, … , 𝜙𝐾)  contains source powers. Vectorizing /// generates the coarray 

signal: 

 

𝑦𝑣 = 𝑣𝑒𝑐(𝑅𝑥𝑥) = 𝐴𝑣𝑝, 
 

Where 𝐴𝑣   =  𝐴𝑆
∗   ⊙  𝐴𝑆 spans the virtual sensors 

 

𝑉 = {𝑙𝑖2
− 𝑙𝑖1

∣ 𝑙𝑖1
, 𝑙𝑖2

∈ 𝑆}. 

 

The virtual coarray𝑉 is interpolated into a uniform linear array (ULA) 𝐼 using nuclear norm 

minimization (NNM) to fill missing lags, yielding the completed covariance matrix [15]. The 

interpolated ULA 𝐼 is partitioned into two overlapping subarrays 𝑆𝑋 with a displacement 𝛥𝑑 =
 𝑑 

 

𝑆𝑋 = {0, 𝑑, … , (𝐿 − 1)𝑑},  𝑆𝑌 = {𝑑, 2𝑑, … , 𝐿𝑑}, 
 

Where 𝐿 = |𝐼| − 1. The corresponding manifold matrices(𝐴𝑋)𝑎𝑛𝑑(𝐴𝑌) satisfy 

 

𝐴𝑌 = 𝐴𝑋𝛷 

with: 

 

𝛷 = 𝑑𝑖𝑎𝑔(𝑒−𝑗2𝜋𝛥𝑑𝑠𝑖𝑛𝑠𝑖𝑛 𝜃1 /𝜆, … , 𝑒−𝑗2𝜋𝛥𝑑𝑠𝑖𝑛𝑠𝑖𝑛 𝜃𝐾 /𝜆) 

 

The spatially smoothed covariance matrix //// is eigen decomposed: 

 

𝑅𝑠𝑠̂ = 𝑈𝑆𝛬𝑆𝑈𝑆
𝐻 + 𝑈𝑁𝛬𝑁𝑈𝑁

𝐻 , 
 

Where𝑈𝑆(signal subspace) and 𝑈𝑁(noise subspace) are orthogonal. The signal subspaces 

𝑈𝑆,𝑋 𝑎𝑛𝑑 (𝑈𝑆,𝑌 for 𝑆𝑋 𝑎𝑛𝑑 𝑆𝑌 are extracted by selecting rows corresponding to each subarray: 

 

𝑈𝑆,𝑋 = 𝑈𝑆(1: 𝐿, : ),  𝑈𝑆,𝑌 = 𝑈𝑆(2: 𝐿 + 1, : ) 

 

The rotational invariance relationship is: 
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𝑈𝑆,𝑌 = 𝑈𝑆,𝑋𝛹 

 

where 𝛹is the rotational operator. The eigenvalues 𝜓𝑘}𝑘=1 
𝐾 of the estimated rotational operator 

𝛹 directly encode the angular information of the sources. The DOAs are obtained in closed 

form as  

𝜃𝑘 =𝑎𝑟𝑐𝑠𝑖𝑛 𝑎𝑟𝑐𝑠𝑖𝑛 (−
𝜆

2𝜋𝛥𝑑
⋅ 𝐼(𝑙𝑛 𝑙𝑛 𝜓𝑘 )) . 

 

Where 𝛥𝑑 denoted the known inter-element spacing between the shift invariant subarrays. 

This method avoids the need for grid search or spatial spectrum evaluations which was 

required in MUSIC-based techniques. The ESPRIT algorithm is implemented in the coarray 

domain and utilizes the full-rank coarray covariance matrix derived from second-order signal 

statistics and exploits the rotational invariance between two overlapping virtual ULAs [11]. 

BY performing eigen decomposition of the signal subspace and solving a generalized 

eigenvalue problem, the algorithm efficiently estimates multiple off-grid DOAs. The approach 

benefits from the enhanced aperture and degrees-of-freedom which improves the efficiency of 

the estimated directions. 

 

V. SIMULATION RESULTS 

The performance of MUSIC and ESPRIT algorithms for Direction of Arrival (DOA) 

Estimation on coprime array is evaluated through Monte Carlo simulations under varying SNR 

levels and snapshot counts using CVX toolbox [9]. The coprime array configurations include 

a moving coprime array (MCA) for MUSIC(𝑀 = 2, 𝑁 = 5) with physical sensors at 

{−8𝑑, −6𝑑, −4𝑑, −3𝑑, −2𝑑, 0}  and a static coprime array for ESPRIT (𝑀 = 3, 𝑁 = 5) with 

sensors at {0, 3𝑑, 5𝑑, 6𝑑, 9𝑑, 10𝑑, 12𝑑, 15𝑑, 20𝑑, 25𝑑} where 𝑑 =  𝜆/2. MUSIC processes 

five coherent signals at 𝜃 = {0∘, 10∘, 20∘, 30∘, 40∘} using nuclear norm minimization (NNM) 

and forward/backward spatial smoothing (FBSS), while ESPRIT resolves two uncorrelated 

signals at 𝜃 = {−10∘, 15∘} via coarray interpolation and rotational invariance. 

The RMSE is computed for MUSIC as: 

 

𝑅𝑀𝑆𝐸 = √
1

200𝐾
∑

200

𝑜=1

∑

𝐾

𝑘=1

(𝜃𝑘̂(𝑜) − 𝜃𝑘)
2

, 

 

And for ESPRIT as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑄𝐾
∑

𝑄

𝑞=1

∑

𝐾

𝑘=1

(𝜃𝑘,𝑞̂ − 𝜃𝑘)
2

. 
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Fig.1 RMSE vs SNR for MUSIC and ESPRIT 

 

 
 

Fig.2 RMSE vs Number of Snapshots (SNR = 10dB) 

 

For RMSE vs SNR (Fig.1), ESPRIT achieves superior performance compared to MUSIC, 

especially as the SNR increases. Specifically, ESPRIT stabilizes at a RMSE of approximately 

4.00∘ for 𝑆𝑁𝑅 ≥  10 𝐷𝑏. This indicates that ESPRIT provides consistent and accurate 

Direction of Arrival Estimation even in moderately noisy environments. The reason behind 

this strong performance lies in ESPRIT’s closed form solution, which directly computes the 

DOAs without requiring a spectral search over the angle domain. This characteristic 

significantly reduces the computational complexity, making ESPRIT highly efficient for real-

time or low latency applications 

In contrast, MUSIC’s performance becomes stable at an RMSE of about 8.40∘, primarily due 

to residual errors introduced during the matric completion process. MUSIC requires a grid-

based spectral search, where the spatial spectrum is scanned to detect peaks corresponding to 

source directions. This not only increases computational cost but also introduces 

approximation errors due to finite grid resolution. Additionally, MUSIC relies heavily on 

preprocessing techniques such as forward/backward spatial smoothing (FBSS) and matrix 

completion to handle coherent sources. While these techniques enable MUSIC to work in more 

complex signal environments, they also introduce estimation variance, particularly at lower 

SNRs where the signal components are weaker and more susceptible to noise. 
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On the other hand, ESPRIT leverages the rotational invariance property of the virtual coarray 

structure, allowing it to form a shift-invariant pair of subarrays. This structural advantage 

simplifies the estimation process and makes  ESPRIT robust against noise in uncorrelated 

signal scenarios, hence achieving better performance under high SNR conditions with fewer 

snapshots and less computational burden. 

For RMSE vs snapshots (Fig.2), ESPRIT maintains stable accuracy 2.65∘ to 3.44∘ even at 𝐿 =
10 snapshots, while MUSIC requires 𝐿 ≥ 300 to achieve comparable precision 3.07∘ at 𝐿 =
500. MUSIC’s erratic performance below 𝐿 = 300 from insufficient data for covariance 

matrix completion [10], whereas ESPRIT leverages the full-rank coarray covariance matrix 

for robust estimation. 

 

CONCLUSION 

This study presents an in- depth comparative analysis of the MUSIC and ESPRIT algorithms 

for Direction of Arrival (DOA) Estimation using coprime arrays [19]. The performance was 

assessed across varying conditions of signal to noise ratio (SNR) and number of snapshots and 

the simulation results clearly indicate that ESPRIT significantly outperforms MUSIC for 

uncorrelated sources, particularly in scenarios with high SNR. Specifically, as shown in Figure 

1, ESPRIT achieves a Root Mean Square Error (RMSE) as low as 4.00 for 𝑆𝑁𝑅 ≥  10, 

maintaining accuracy with minimal computational effort. However, the limitations of ESPRIT 

become evident when handling coherent sources, such as those arising from multipath 

propagation or closely spaced angles [18]. In such cases, MUSIC demonstrates more accuracy 

due to its forward/backward spatial smoothing (FBSS) and matrix completion techniques that 

help decorrelate sources. Figure 2 shows that MUSIC achieves comparable precision 

(𝑅𝑀𝑆𝐸 ≈  3.07) only when the number of snapshots exceeds 300, reflecting its higher 

sensitivity to data volume and noise. Even at high SNR, MUSIC exhibits a high RMSE of 

around 8.4 mainly due to imperfections in matrix completion under practical conditions. 

Hence, the trade-off between computational efficiency and capability to resolve coherent 

signals becomes apparent. ESPRIT is preferable in low-latency environments and when 

signals are uncorrelated, due to its simplicity and speed. MUSIC, though computationally 

heavier it makes this technique useful in scenarios involving coherence, such as urban 

multipath environments or congested spectrum bands [6]. 

 

FUTURE SCOPE 

This comparative study Highlights the strengths and limitations of both MUSIC and ESPRIT 

algorithms. However, there are several ways future research can improve these methods to 

make them useful and practical in real-world scenarios 

One promising method is to develop hybrid algorithms that combine the fast, closed-form 

processing of ESPRIT with the ability of MUSIC to handle coherent signals (like multipath or 

overlapping sources). For example, ESPRIT can be enhanced with preprocessing techniques 

such as Forward/Backward Spatial Smoothing (FBSS) or matrix completion [17]. This would 

allow ESPRIT to work better with coherent signals, without needing the complex spectral 

search used by MUSIC. 

Another important area is to adapt these algorithms for real time and dynamic environments. 

In actual radar and wireless systems, signals come from moving sources and experience time-

varying changes due to noise, fading or reflections. Adding features like motion tracking, 
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adaptive interpolation would allow MUSIC and ESPRIT to perform well in practical systems 

like automotive radars, 5G/6G base stations, or indoor tracking systems. 

Machine learning also offers new possibilities. Using deep learning models, it is possible to 

estimate missing elements in the coarray, decide the best smoothing parameters or 

automatically detect when signals are coherent. A smart system could then choose the most 

suitable algorithm (MUSIC or ESPRIT) or switch between them as needed, on the real time 

data it receives. 

In addition, future work should test these algorithms on other types on arrays beyond coprime 

arrays. This includes nested arrays, minimum redundancy arrays or custom geometries used 

in practice. Creating a standard benchmarking system to compare different algorithms across 

factors like accuracy (RMSE), resolution, computation time and adaptability world be very 

valuable  

Finally, it’s important to study how hardware issues affect these algorithms. Things like small 

errors in sensor positions, mismatches in gain or phase, or limited digital precision can reduce 

performance. Understanding and correcting for these real-world imperfections will help make 

the algorithms more robust. 

By exploring these directions, future research can create DOA estimation methods that are not 

only accurate and fast but also flexible enough to handle real-world challenges combining the 

best features of both MUSIC and ESPRIT  
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