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This paper aims to predict of the weather phenomenon in Kirkuk Governorate for the period 

between (January 1990–December 2022) by using the Vector Autoregressive (VAR) 

modeling. As this research deals with the presentation of a number of information criteria 

which are(AIC, SIC, HQC), we try to arrive the best Vector Autoregressive model and use it 

to predict the weather phenomena which are(maximum temperatures, minimum 

temperatures) in Kirkuk governorate for the next five years. The best model for maximum 

temperatures was found based on the value of the statistical criteria used. 
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1. Introduction: 

Choosing the best model from among the maximum and minimum temperatures available to 

represent any phenomenon is one of the main issues in time series analysis because doing so 

ensures that the model accurately describes the phenomenon and, on the other hand, that future 

predictions coming out of it are accurate and realistic. 

   In many situations, including predicting the weather, it is critical to use VAR to predict future 

behavior. The best model may be chosen and evaluated using a range of model types that 

researchers who are interested in time series analysis have developed. 

   The vector autoregressive (VAR) models for the study and modeling of the time series for 

the weather in Kirkuk Governorate for the period from (January 1990-December 2022) and 

predicting future values of the phenomenon studied were the most significant time series 

models used in this study. Using various statistical criteria that were appropriate in this 

discipline, the best model was also chosen. 

   The vector autoregressive (VAR) model is one of the most efficient, flexible, and 

straightforward approaches for the analysis of multivariate time series. The univariate 

autoregressive model is logically extended by dynamic multivariate time series. It has been 

demonstrated that the VAR model is very useful for predicting and describing the dynamic 

behavior of weather time series. It typically provides predictions that are more accurate than 

those produced by univariate time series models and complicated simultaneous equations 
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models. Forecasts utilizing VAR models may be quite flexible since they can be made 

conditional on the probable future courses of certain model variables. 

   Multivariate simultaneous equations models were frequently used for weather analysis until 

Sims (1980) offered vector autoregressive (VAR) models as alternatives. At the time, lengthier 

and more frequent observed weather time series were required, necessitating the need for 

models that reflected the dynamic structure of the variables. VAR models are ideal for this 

application. They frequently hold that all variables are endogenous from the start. They do this 

in order to respond to Sims' critique that several exogenous assumptions in simultaneous 

equations models are ad hoc and frequently not supported by well-developed theories. VAR 

models may be subject to limits based on statistical methods, such as the exogenous use of 

some variables. 

2. Theoretical aspect: 

 

2-1 Vector Autoregressive Model (VAR): 

VAR models were first introduced by Sims (1980). One of the most effective, adaptable, and 

simple methods for the study of multivariate time series is the vector autoregressive (VAR) 

model. Dynamic multivariate time series are a logical extension of the univariate 

autoregressive model. 

Let  {Yt = (Y1t, … YKt )′; t ∈ Z} be a K-variable random process. We say that the process 
{Yt; t ∈ Z} follows a p-order vector autoregressive model, or VAR(p), if: 

                      Yt = ν + ϕ1Yt−1 + ⋯ + ϕpYt−p + ut                               (2-1) 

   Where p is a positive integer, ϕi are fixed (K × K) coefficients matrices, ν = (ν1, … , νK)′ is 

a fixed (K × 1) vector of intercept terms, ut = (u1t, … , uKt)′ is a K-dimensional white noise 

with covariance matrix ∑ u. The covariance matrix ∑ u is assumed to be nonsingular. 

   The VAR model has shown to be particularly effective for forecasting and characterizing the 

dynamic behavior of economic and financial time series. It frequently offers forecasts that are 

better than those from complex simultaneous equations models and univariate time series 

models, because they can be made conditional on the likely future courses of certain model 

variables, also forecasts from VAR models can be highly flexible. VAR models follow three 

fundamental principles: 

• The system is devoid of both internal and external presuppositions. 

• The model is not founded on a rigorous core economic theory. 

• There is no zero-type restriction.  

   The fundamental goal of VAR modeling is to disclose connection between variables in terms 

of lags in addition to determining the one-way relationship between variables (Kearney and 

Monadjemi 1990): 

• The procedure is straightforward; it is not essential to distinguish between internal and 

external variables. In a VAR, every variable is endogenous. 

• Prediction is straightforward; each equation may be solved using the standard LS 

approach. 
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• In many instances, the estimates produced by this method is superior to those produced 

by simultaneous equation models with higher levels of complexity. 

2-2 The First-Order Vector Autoregressive VAR(1): 

The first order VAR models for this bivariate system is  appeared the first time by Sims (1980), 

as in equation (2-2): 

                     (y1t
y2t

) = (ν1
ν2

) + (
ϕ11 ϕ12

ϕ21 ϕ22
) (y1t−1

y2t−1
) + (u1t

u2t
)                     (2-2) 

Or  

                      
y1t = ν1 + ϕ11y1t−1 + ϕ12y2t−1 + u1t

y2t = ν2 + ϕ21y1t−1 + ϕ22y2t−1 + u2t
                          (2-3)                                                                                                            

Where cov(u1t, u2s) = σ12 for t = s, 0 otherwise. That each equation has the same regressors 

— lagged values of y1tand y2t. Hence, the VAR(p) model is just a seemingly unrelated 

regression (SUR) model with lagged variables and deterministic terms as common regressors. 

The Condition of Stationary is: 

1. (y1t ; y2t ) are both stationary when the eigenvalues of ϕ are less than one in absolute 

value.  

2. (y1t ; y2t )  are cointegrated when one eigenvalue is unity and the other eigenvalue is 

less than one in absolute value. They are both integrated of order one.  

3. (y1t ; y2t ) are both integrated of order two if both eigenvalues of ϕ are unity. 

2-3 The General Vector Autoregressive VAR(p): 

The Vector Autoregressive model of order p is given by (Lütkepohl (2005): 

                                         yt =  ν + ∑ ϕi
p
i=1 yt−i + ut                            (2-4) 

Where yt = (y1t, … , yKt)′ is a vector of dimensions (K × 1), being K the number of variables, 

each ϕi is a matrix of autoregressive coefficients, of dimensions (K × K); ν =   (ν1, … , vK)′ 
is a vector of dimension (K × 1) that permits a non-zero mean E(yt); and ut = (u1t, … , uKt)′ 
is a K—dimensional white noise, also referred to as the creativity process or error, that must 

imply E(ut) = 0 ,  E(ut u′t) = ∑ u and E(ut u′s) = 0 for s ≠ t. 

   The VAR(p) model parameters are estimated in this work using the Least Square method. 

The model is written as: 

                                                  Y =  βZ + U                                       (2-5) 

In matrix notation for this: 

Y = (y1, … , yT), 

β = (ν, A1, … , Ap), 

Zt = [1, yt, … , yt−p+1]
′
, 

Z = (Z0, Z1, … , ZT−1) 

And 
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𝑈 = (𝑢1, … , 𝑢𝑇 ), 

   With 𝑇 the total number of accessible observations for estimation. Then, autoregressive 

parameters are estimated as: 

                                            𝛽̂ = (𝑍𝑍′)−1𝑍−1𝑌                                      (2-6) 

   The covariance matrix, meantime ∑ 𝑢 of the withe noise 𝑢𝑡 is estimated through the errors: 

                                                      𝑈̂ = 𝑌 − 𝛽̂𝑍                                     (2-7) 

 As 

                                                   ∑ 𝑢̂ =
𝑈̂𝑈̂′

𝑇−𝐾𝑃+1
                                      (2-8) 

2-4 Ordinary Least Square(OLS) for VAR(1) Model: 

To derive the estimation formulas we explain equation (2-3) as follow: 

                
𝑦1𝑡 = 𝜈1 + 𝜙11𝑦1𝑡−1 + 𝜙12𝑦2𝑡−1 + 𝑢1𝑡

𝑦2𝑡 = 𝜈2 + 𝜙21𝑦1𝑡−1 + 𝜙22𝑦2𝑡−1 + 𝑢2𝑡
  

Where 𝑐𝑜𝑣(𝑢1𝑡, 𝑢2𝑠) = 𝜎12 for 𝑡 = 𝑠, 0 otherwise.  

Two regressions with separate dependent variables and the same explanatory factors make 

up the model. By computing the ordinary least squares (OLS) estimator individually for 

each equation, we might estimate this model. It is assumed that a time series. 

The premise is that a time series: 

𝑦1 = [𝑦11, 𝑦21]′, … , 𝑦𝑇 = [𝑦1𝑇 , 𝑦2𝑇]′ 

availability of the 𝑦 variables. Moreover, a pre sample value: 

𝑦0 = [𝑦10, 𝑦20]′ 

is assumed to be a variable. Think about the first equation: 

                                𝑦1𝑡 = 𝜈1 + 𝜙11𝑦10 + 𝜙12𝑦2𝑡−1 + 𝑢1𝑡;   𝑡 =  1, … , 𝑇 

𝑦11 = 𝜈1 + 𝜙11𝑦10 + 𝜙12𝑦20 + 𝑢11 

𝑦12 = 𝜈1 + 𝜙11𝑦11 + 𝜙12𝑦21 + 𝑢12 

⋮ 

𝑦1𝑇 = 𝜈1 + 𝜙11𝑦1𝑇−1 + 𝜙12𝑦2𝑇−1 + 𝑢1𝑇 

We define: 

                                               𝑦1 = [𝑦11, … , 𝑦1𝑇]′, 

                                      𝑋1 = [

1 𝑦1,0 𝑦2,0

⋮ ⋮ ⋮
1 𝑦1,𝑇−1 𝑦2,𝑇−1

] , 

                                               𝜋1 = [𝜈1, 𝜙11, 𝜙12]′ , 
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                                               𝑢1 = [𝑢11, … , 𝑢1𝑇]′ , 
Thus: 

                                               𝑦1 = 𝑋𝜋1 + 𝑢1,                                    (2-9) 

The OLS estimator is 𝜋̂1: 

                                               𝜋̂1 = (𝑋′𝑋)−1𝑋′𝑦1                               (2-10) 

In the second equation: 

                        𝑦2𝑡 = 𝜈2 + 𝜙21𝑦10 + 𝜙22𝑦2𝑡−1 + 𝑢2𝑡;   𝑡 =  1, … , 𝑇 

𝑦21 = 𝜈2 + 𝜙21𝑦10 + 𝜙22𝑦20 + 𝑢21 

𝑦22 = 𝜈2 + 𝜙21𝑦11 + 𝜙22𝑦21 + 𝑢22 

⋮ 

𝑦2𝑇 = 𝜈2 + 𝜙21𝑦1𝑇−1 + 𝜙22𝑦2𝑇−1 + 𝑢2𝑇 

We define: 

                                               𝑦2 = [𝑦21, … , 𝑦2𝑇]′, 

                                               𝜋2 = [𝜈2, 𝜙21, 𝜙22]′ , 

                                               𝑢2 = [𝑢21, … , 𝑢2𝑇]′ , 

Thus: 

                                              𝑦2 = 𝑋𝜋2 + 𝑢2,                                    (2-11) 

The OLS estimator is 𝜋̂2: 

                                              𝜋̂2 = (𝑋′𝑋)−1𝑋′𝑦2                               (2-12) 

Therefore the OLS estimators: 

                            𝜋̂1 = (𝑋′𝑋)−1𝑋′𝑦1 ⇒ 𝜋1 = [𝜈1, 𝜙11, 𝜙12]′  

                            𝜋̂2 = (𝑋′𝑋)−1𝑋′𝑦2 ⇒ 𝜋2 = [𝜈2, 𝜙21, 𝜙22]′ 

2-5 Testing Stationary Time Series: 

There are several ways to test if a time series is stationary. One popular technique nowadays 

is the unit roots test, which determines whether the series is stationary when its unit roots are 

located inside the unit circuit. The Augmented Dickey-Fuller test (ADF) is a crucial tool for 

identifying time series stationary.  

   Autoregressive models of the rank (p), which are based on the following formula, are used 

in the Augmented Dickey-Fuller test. 

The constant term is not present in the initial equation 

                                   ∆𝑌𝑡 = 𝜙1𝑌𝑡−1 + ∑ 𝛽𝑗
𝑝
𝑗=1 ∆𝑌𝑡−𝑗 + 𝜀𝑡                     (2-13) 

The constant term appears in the second equation 

                            ∆𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + ∑ 𝛽𝑗
𝑝
𝑗=1 ∆𝑌𝑡−𝑗 + 𝜀𝑡                   (2-14) 

The constant term and the temporal trend are included in the third equation 

                    ∆𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + ∑ 𝛽𝑗
𝑝
𝑗=1 ∆𝑌𝑡−𝑗 + 𝛿𝑡 + 𝜀𝑡                   (2-15) 
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Where 

∆: The first difference coefficient , Which ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1. 

𝜙0: constant expression. 

𝛿𝑡: Trend in time. 

𝛽, 𝜙: Parameters testing. 

𝜀𝑡: White noise.  

   And the following hypothesis is tested: 

𝐻0: 𝜙1 = 0          (There is a unit root) Non-stationary. 

𝐻1: 𝜙1 = 0          (There is not a unit root) stationary. 

   The test statistics are as follows, please take not 

𝑡 =
𝜙1

𝑆𝐸(𝜙1)
 

The test statistic and the tabular values (Dickey-Fuller tables) are contrasted. The alternative 

hypothesis is accepted and the null hypothesis is rejected if the computed (t) value is higher 

than the tabular value, indicating that the series is stationary. The alternative hypothesis is 

accepted, indicating that the series is stationary, if the p-value is smaller than the designated 

level of significance. 

2-6 Impulse Response Function (IRF): 

We can demonstrate that the MA(∞) representation for the VAR(1) is: 

                                 (𝑦1𝑡
𝑦2𝑡

) = (
𝜙11 𝜙12

𝜙21 𝜙22
) (𝑦1𝑡−1

𝑦2𝑡−1
) + (𝑢1𝑡

𝑢2𝑡
)                     (2-16) 

Or 

                                    𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝑤𝑡 (Reduced Forms)                     (2-17) 

Where 𝑧𝑡 = (𝑦1𝑡
𝑦2𝑡

), 𝜙 = (
𝜙11 𝜙12

𝜙21 𝜙22
), and 𝑤𝑡 = (𝑢1𝑡

𝑢2𝑡
) 

Then the MA(∞) representation for the VAR(1) is: 

                                  𝑧𝑡 = 𝑤𝑡+𝜙1wt-1+𝜙2 wt-2+……+𝜙𝑗 𝑤𝑡−𝑗+…         (2-18)    

The MA representation's coefficient quantifies the impulse response 

                                                         𝜙𝑗= 
𝒅𝒛𝒕

𝑑𝑤𝑡
                                           (2-19)  

Where 𝜙𝑗 is a 2×2 matrix for a bivariate system. More generally, the (𝑚, 𝑛) − 𝑡ℎ component 

of  𝜙𝑗 by 𝜙𝑗 = (𝑚, 𝑛) . Then 𝜙𝑗 = (𝑚, 𝑛) measures the response of 𝑚 − 𝑡ℎ variable to the 

𝑛 − 𝑡ℎ error after 𝑗 periods. There are four impulse responses plots for a bivariate system. In 

general 𝑢1𝑡 and 𝑢2𝑡 are contemporaneously correlated (not-orthogonal), i.e., 𝜎12 ≠ 0. 

However, we can always find a lower triangular matrix 𝐴 so that: 

                                     𝛺 = 𝐴𝐴′    (Cholesky Decomposition)              (2-20) 

Then define a new error vector 𝑤̃𝑡 as (linear transformation of old error vector 𝑤𝑡) 

                                                   𝑤̃𝑡 = 𝐴−1𝑤𝑡                                         (2-21) 
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The new error is by design orthogonal since the variance-covariance matrix is diagonal: 

𝑣𝑎𝑟( 𝑤̃𝑡) = 𝐴−1(𝑤𝑡)𝐴−1′
= 𝐴−1𝛺𝐴−1′

= 𝐴−1𝐴𝐴′𝐴−1′
= 𝐼 

2-7 Cholesky Decomposition: 

   Let 𝐴 = (
𝑎 0
𝑏 𝑐

). The Cholesky decomposition tries to solve: 

(
𝑎 0
𝑏 𝑐

) (
𝑎 𝑏
0 𝑐

) = (
𝜎1

2 𝜎12

𝜎12 𝜎2
2 ) 

The solutions for 𝑎, 𝑏, 𝑐 always exist and they are: 

                                                         𝑎 = √𝜎1
2                                          (2-22) 

                                                         𝑏 =
𝜎12

√𝜎1
2
                                           (2-23) 

                                                        𝑐 = √𝜎2
2 −

𝜎12
2

𝜎1
2                                  (2-24) 

Where 𝑐 is always a real number since 𝛺 is a variance-covariance matrix, and so is positive 

definite (i.e., 𝜎2
2 −

𝜎12
2

𝜎1
2  is always positive because the determinant of 𝛺, or the second leading 

principal minor, is positive). 

2-8 Orthogonal Errors and Impulse Response: 

The MA(∞) representation should be rewritten as: 

                               𝑧𝑡 = 𝑤𝑡 + 𝜙𝑤𝑡−1 + ⋯ + 𝜙𝑗𝑤𝑡−𝑗 + ⋯                     (2-25) 

                   = 𝐴𝐴−1𝑤𝑡 + 𝜙𝐴𝐴−1𝑤𝑡−1 + ⋯ + 𝜙𝑗𝐴𝐴−1𝑤𝑡−𝐽 + ⋯          (2-26) 

                               = 𝐴𝑤̃𝑡 + 𝜙𝐴𝑤̃𝑡−1 + ⋯ + 𝜙𝑗𝐴𝑤̃𝑡−𝑗 + ⋯                 (2-27) 

The impulse response to the orthogonal error 𝑤̃𝑡 after 𝑗 periods 𝑗 = (1, 2, 3, … ) is implied by 

this: 

                  𝑗 − 𝑡ℎ 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝜙𝑗𝐴                   (2-28) 

where 𝐴 satisfies (2-20). 

2-9 Fitting model: 

The selection of a particular model from among a variety of models is an important element 

of the analysis of the data since it helps us determine which model is best. The following 

statistical criteria are used: 

• AKaike Information Criterion (AIC): The concept of penalizing the addition of 

regressors to the model has been expanded upon in the AIC criteria, which is defined 

as: 

                         𝐴𝐼𝐶 = 𝑒2𝑘 𝑛⁄ ∑ 𝑢̂𝑖
2

𝑛
= 𝑒2𝑘 𝑛⁄ 𝑅𝑆𝑆

𝑛
                            (2-29) 
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Where 

𝑘: The intercept is included in the total number of regressors. 

𝑛: The total number of observations. 

Eq. (2-29) is conveniently represented mathematically as follows: 

                                  𝑙𝑛 𝐴𝐼𝐶 = (
2𝑘

𝑛
) + 𝑙𝑛(

𝑅𝑆𝑆

𝑛
)                                  (2-30) 

Where 

𝑙𝑛 𝐴𝐼𝐶: is the natural log of AIC. 

2𝑘/𝑛: is penalty factor. 
The best model is the one with the lowest AIC. 

• Schwarz Information Criterion (SIC): The AIC and SIC are identical in spirit, 

according to the definition of the SIC criteria. 

                            𝑆𝐼𝐶 = 𝑛𝑘 𝑛⁄ ∑ 𝑢̂2

𝑛
= 𝑛𝑘 𝑛⁄ 𝑅𝑆𝑆

𝑛
                               (2-31) 

or using a log: 

                                 𝑙𝑛 𝑆𝐼𝐶 =
𝑘

𝑛
𝑙𝑛 𝑛 + 𝑙𝑛(

𝑅𝑆𝑆

𝑛
)                                 (2-32) 

   When the penalty factor [(𝑘/𝑛) 𝑙𝑛 𝑛] is present. It is clear from comparing Eqs. (2-32) and 

(2-30) that SIC imposes a higher penalty than AIC. Similar to AIC, the better the model, the 

lower the value of SIC. SIC may be used to compare a model's in-sample or out-of-sample 

predicting ability, just as AIC. 

• Hannan - Quinn Criterion (HQC): The Hannan-Quinn Criterion, denoted by the sign 

(HQC), was developed by Hannan and Quinn to evaluate the rank of the model under 

study. Its formula is as follows: 

                    𝐻 − 𝑄 = 𝑙𝑛 𝜎̂2 + 2𝑀𝐶 𝑙𝑛 (𝑙𝑛 𝑛) 𝑛⁄ ;  𝑐 > 2             (2-33) 

Where 

𝑀: The quantity of model parameters. 

𝐶: Is constant. 

   When the rank is constant, the repeating logarithm and the suitable model that yields the 

lowest value of the criteria HQC cause the second term of the aforementioned formula to 

decline as rapidly as feasible. 

3. Practical aspect: 

we take the data of weather in Kirkuk Governorate for the period between (January 1990–

December 2022) which are ( maximum temperatures(MAT), minimum temperatures(MIT)) 

are used to illustrate the  vector autoregressive of time series data in the Figure(1) for the 

original data below. Through statistical analysis and visual representation, time series data can 

self-regress to reveal their fundamental characteristics. The data were assessed, and the 

model's parameters were estimated, using the Eviews program. 
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Figure (1) The original time series of weather phenomena data 

3-1 Time Series Stationary Tests: 

We use the Dickey - Fuller test to check if a chain is stable. Shows from the tables below the 

result of testing the null hypothesis that the series is not constant and then computed for the 

purpose of testing the original constant data.  

3-1-1 Max Temperature and Min Temperature: 

To explain and illustrate the maximum temperature and minimum temperature data in order to 

achieve the research's goal, we must build a timeline for the time series in order to determine 

if it is stationary or non-stationary. For this reason, a graph showing the highest temperatures 

in Kirkuk Governorate from January 1990 to December 2022 was created. As seen in figure 

(1) above, the time series suffers from a seasonal component, indicating that it is non-

stationary. As a result, we conduct stationary tests to confirm that the time series is non-

stationary. And a graph of the lowest temperatures in Kirkuk Governorate . As seen in figure 

(1) above, the series is non-stationary because of the time series' increasing seasonal 

component and general trend component. Therefore, we conduct stationary tests on the time 

series to ensure that they are not stationary.  

 

Table (1) : Dickey-Fuller test result (ADF) for MAT 

ADF t-Statistics P-value
 

Log likelihood AIC SIC HQC 

Level -3.560411  0.0070 -782.7633 4.192983 4.358560 4.258678 

1st difference -16.78767 0.0000 -801.3157 4.236019 4.359477 4.284988 
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Figure (2) the series after taking the differences for MAT 

Table (2) : Dickey-Fuller test result (ADF) for MIT 

ADF t-Statistics P-value
 

Log likelihood AIC SIC HQC 

Level  -4.140423  0.0009 -863.9297 4.567342 4.701088 4.620392 

1st difference -17.11953 0.0000 -872.6027 4.607306 4.730764 4.656275 
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Figure (3) the series after taking the differences for MIT 

We note from the above table(1) and table(2) that the p-value for each level and the first 

difference of the test result is smaller than the level of importance, and therefore we reject the 

null hypothesis that the series is constant, and then accept the alternative hypothesis that the 

time series is stationary. 

3-2 Model Estimation (VAR): 

After the series has stationary, we have to choose the degree of the model and in such a step 

to initially know the diagnosed model and then a number of models close to the diagnosed 

model are tested to choose the best ones based on some statistical criteria and it has been 

shown. The diagnostic model is VAR(MAT), and the table (3) shows the comparison between 

these models according to the criteria for choosing the model (Note the bold number indicates 

the best value for the criterion and thus the best model for the time series). 

 

Table (3) : Comparison of VAR models estimated to represent a series of weather 

phenomena 

Model Log likelihood AIC SIC 

VAR(MAT) -984.5437 5.023064 5.073526 

VAR(MIT) -995.6602 5.079493 5.129955 
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By the criteria (AIC), and (SIC) Which have the smallest value. We find that the model 

VAR(MAT) is the best among the proposed models for the above criteria. 

3-3 Determine the degree of delay using the VAR model: 

We select the lowest value of the four criteria because it is the criterion for the model's 

applicability to the given data.  

 

Table (4) : VAR Lag Order Selection Criteria 

Lag Log L LR FPE AIC SIC HQ 

0 -2364.794 NA 583.4734 12.04475 12.06498 12.05277 

1 -2092.636 540.1601 149.0572 10.68008 10.74075 10.70413 

2 -1837.095 504.5812 41.43895 9.399973 9.501087 9.440043 

3 -1763.254 145.0512 29.04371* 9.044549* 9.186109* 9.100647* 

Given that we selected the lowest value of the four criteria, we will utilize lag3 in the 

estimation of the VAR model. In the following table (5). 

 

Table (5) : Comparison of VAR models estimated to represent a series of weather 

phenomena 

Model AIC SIC 

VAR(MAT) 4.701477 4.772258 

VAR(MIT) 4.810265 4.881045 

By the criteria (AIC), and (SIC) Which have the smallest value. We find that the model 

VAR(MAT) is the best among the proposed models for the above criteria.  

 

3-3-1 Estimate MAT model: 

Thus, it was concluded that the appropriate model for weather series data is VAR (MAT), as 

table (6) shows the model's estimated coefficients. The above model is a two-variable model 

that we can describe in the other model with a system of equations, using the method of least 

squares. 

The estimated model used for weather forecasts (series) is:  

MAT = C(1)*MAT(-1) + C(2)*MAT(-2) + C(3)*MAT(-3) + C(4)*MIT(-1) + C(5)*MIT(-2) 

+ C(6)*MIT(-3) + C(7) 

 

Table (6) : The estimated values of the model parameters  for the weather phenomena 

for MAT 

Models Coefficient Std. error t-Statistic P-value 
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C(1) 
0.948935 0.061367 15.46317 0.0000 

C(2) 
-0.046943 0.078299 -0.599535 0.5490 

C(3) 
-0.271967 0.059941 -4.537246 0.0000 

C(4) 
0.227934 0.059627 3.822668 0.0001 

C(5) 
0.010446 0.063291 0.165054 0.8689 

C(6) 
-0.304723 0.059925 -5.085086 0.0000 

C(7) 
11.98762 0.736188 16.28337 0.0000 

 

By substituting the values of the coefficients into the above formula, we get the following: 

MAT = 0.948935124298*MAT(-1) - 0.0469431304173*MAT(-2) - 0.271967323898*MAT(-

3) + 0.227934032183*MIT(-1) + 0.0104464424505*MIT(-2) - 0.30472346821*MIT(-3) + 

11.9876244205 

3-3-2 Estimate MIT model: 

The estimated model used for weather forecasts (series) is: 

MIT = C(8)*MAT(-1) + C(9)*MAT(-2) + C(10)*MAT(-3) + C(11)*MIT(-1) + C(12)*MIT(-

2) + C(13)*MIT(-3) + C(14) 

Table (7) : The estimated values of the model parameters  for the weather phenomena 

for MiT 

Models Coefficient Std. error t-Statistic P-value 

C(8) 
0.451053 0.064798 6.960915 0.0000 

C(9) 
0.076554 0.082676 0.925945 0.3548 

C(10) 
-0.315789 0.063292 -4.989417 0.0000 

C(11) 
0.465435 0.062960 7.392540 0.0000 

C(12) 
0.068446 0.066829 1.024195 0.3061 

C(13) 
-0.234950 0.063275 -3.713169 0.0002 

C(14) 
5.781733 0.777341 7.437832 0.0000 

 

By substituting the values of the coefficients into the above formula, we get the following: 

MIT = 0.451052649571*MAT(-1) + 0.0765536222174*MAT(-2) - 0.315789126751*MAT(-

3) + 0.465435139147*MIT(-1) + 0.0684459357695*MIT(-2) - 0.23494988664*MIT(-3) + 

5.78173304166 
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3-4 Model Diagnoses: 

At this stage, errors (residuals) are examined and diagnosed to find out the extent of the 

preference of the proposed model that has been identified and its parameters estimated. 

 The residual distribution has a normal distribution that matches with assumptions that 

𝜀𝑡~𝐼𝐼𝐷(0, 𝜎𝜀
2). This can be known from the residual drawing by using the histogram drawing 

of model errors closer to the normal distribution which indicates its randomness and this is 

confirmation of the quality of the model which is shown by the figure (4). 
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Figure (4) Test for the residuals' correlograms for a number of weather phenomena 

variables 

 

With the exception of variables that are outside the confidence domains, we observe that the 

all of the residuals we have are not inside them. The confidence contain all of the residuals. 

 

Table (8) : VAR Residual Normality Tests 

Component Jarque-Bera df P-value 

1 46.98730 2 0.0000 

2 20775.78 2 0.0000 
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Figure (5) VAR Residuals 

3-5 Analysis of  Impulse Response: 

After reviewing the steps for determining the appropriate model for the atmospheric series 

data, estimating its parameters, and examining the model, we use impulse response analysis. 

Always (VAR) is associated with the impulse response function. Here, we need research on 

the influence of other factors on (MAT), as shown in table (9). 

 

Table (9) : Effect of cholesky (d.f adjusted)  MAT innovation 

Period MIT 

1 
1.623531 

2 
1.890842 

3 
2.427997 

4 
1.623806 

5 
0.762018 

6 
-0.477585 

7 
-1.408035 

8 
-1.993230 

9 
-1.962820 

10 
-1.431194 
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Figure (6) The impact of other factors on (MAT) 

3-6 Analysis of Variance: 

After reviewing the steps to determine the appropriate model for the data of the weather 

conditions chain, estimating its coefficients, examining the model, and analysis of the impulse 

response, we use the analysis of variance. Here, we need a research on the influence of the 

factors for analysis (MIT) on (MAT, MIT), as shown in table (10). 

 

Table (10) : Analysis of Variance Using Cholesky (d.f adjusted) Factors 

Analysis of 

Variance  MIT 

Period S.E MAT MIT 

1 2.516766 37.32414 62.67586 

2 3.764614 53.56187 46.43813 

3 4.832075 66.67456 33.32544 

4 5.257044 70.58436 29.41564 

5 5.334932 71.37438 28.62562 

6 5.407383 70.90754 29.09246 

7 5.754756 71.98205 28.01795 

8 6.316612 74.59446 25.40554 

9 6.788203 76.95705 23.04295 

10 7.007844 78.20154 21.79846 
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Figure (7) of the factors for analysis (MIT) on (MAT, MIT) 

3-7 Forecasting: 

After going through the steps of identifying the appropriate model for the data of the weather 

phenomena series estimating its parameters and examining the model we use the model to 

predict future values of the weather conditions rates for the coming period from ( 2023 -  2027), 

as in table (11) showing the results of the monthly rates of weather conditions where the table 

includes new forecasts for five years and they were compared with the original values and 

build 95% confidence limits for these predictions. Figure (8) illustrates the time series drawing 

of the real data, the limits of confidence and new predictions. 

 

Table (11) : Monthly averages of the predicted weather phenomena series with 95% 

confidence limits for 5 years 

Period MAT-Forecast MIT- Forecast  t 

 

2023M01 16.0 5.8 

2023M02 17.4 7.3 
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2023M03 21.4 10.4 

2023M04 27.8 15.7 

2023M05 34.1 20.8 

2023M06 38.9 24.8 

2023M07 40.9 26.5 

2023M08 39.7 25.6 

2023M09 35.7 22.4 

2023M10 30.2 17.9 

2023M11 24.7 13.5 

2023M12 20.7 10.2 

2024M01 19.3 8.9 

2024M02 20.6 9.9 

2024M03 24.3 12.9 

2024M04 29.2 16.8 

2024M05 33.8 20.6 

2024M06 37.1 23.3 

2024M07 38.1 24.2 

2024M08 36.6 23.1 

2024M09 33.3 20.5 

2024M10 29.0 16.9 

2024M11 25.1 13.7 

2024M12 22.4 11.6 

2025M01 21.8 10.9 

2025M02 23.2 12.1 

2025M03 26.3 14.5 

2025M04 29.9 17.5 

2025M05 33.4 20.3 

2025M06 35.5 22.1 

2025M07 35.8 22.4 

2025M08 34.4 21.3 

2025M09 31.7 19.1 

2025M10 28.4 16.5 

2025M11 25.6 14.1 

2025M12 23.8 12.7 

2026M01 23.8 12.6 

2026M02 25.1 13.6 

2026M03 27.6 15.6 

2026M04 30.4 17.9 

2026M05 32.8 19.9 

2026M06 34.1 20.9 

2026M07 34.1 21.0 

2026M08 32.8 19.9 
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2026M09 30.6 18.2 

2026M10 28.2 16.2 

2026M11 26.2 14.6 

2026M12 25.1 13.7 

2027M01 25.3 13.8 

2027M02 26.5 14.8 

2027M03 28.5 16.3 

2027M04 30.6 18.1 

2027M05 32.2 19.4 

2027M06 33.0 20.1 

2027M07 32.8 19.9 

2027M08 31.6 19.0 

2027M09 29.9 17.6 

2027M10 28.1 16.2 

2027M11 26.7 15.0 
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Figure (8) the original values of weather phenomena time series with predicted for the 

next five years 

Therefore in Figure(8) appear that the forecasting values will decreasing for MAT and MIT 

per month during the year (2023-2027) and by using the model VAR, as it's shown in table(11) 

and Figure(8) fitting the model by original data and forecasting for years (2023-2027). 

4. Conclusions: 

1. For the application results for the maximum temperature data indicated that the 

information criteria, AIC=(4.701477) and SIC=(4.772258), and for the minimum 

temperature data indicated that the information criteria, AIC= (4.810265), and SIC= 

(4.881045), and we choose VAR (MAT) because it is the lowest value between AIC 

and SIC. 

2. In this study, utilizing the model VAR, maximum temperature is found to be the best 

model for predicting compared to other models. 
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3. In general, maximum temperature and minimum temperature forecasts show a decline 

for the upcoming months in 2023 and 2027. 
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