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This study presents a data-driven attempt at developing an optimized machine learning platform 

for precise prediction of power conversion efficiency for photovoltaic solar cells. A RF 

regression algorithm was employed to accurately describe the nonlinear relationships that exist 

among semiconductor parameters such as bandgap, thickness, carrier mobility, and material 

composition with the conversion efficiency. The RF model achieved excellent performance, 

with an average R2 of 0.92 ± 0.03, RMSE of 1.45 ± 0.22, MAE of 1.02 ± 0.18, and MAPE of 

4.3 ± 0.7%, confirming the overall robustness of the model in accurately relating experimental 

values to predictions. Feature importance showed that short-circuit current density (Jsc), open-

circuit voltage (Voc), and fill factor (FF) are the most influential factors that govern PCE. To 

further improve the optimization design, GA was integrated with the RF predictions to expedite 

the exploration of parameter space. This hybrid RF–GA optimizes semiconductor 

configurations to maximize PCE while saving computational time and mitigating manual trial-

and-error iterations. This synergistic approach illustrates the ability of data-driven prediction 

and evolutionary optimization to come together for the advancement of solar cell design. These 

results highlight the capability of machine learning-guided optimization to speed up the 

realization of highly efficient, inexpensive photovoltaic devices, facilitating a contribution to 

sustainable and green energy technologies. 

Keywords- Photovoltaics, Power Conversion Efficiency, Random Forest, Genetic Algorithm, 

Machine Learning, Solar Cells. 

I. INTRODUCTION 

Photovoltaic solar cells are important for the production of electricity from solar energy, but 

their efficiency and life can be severely reduced by the presence of defects and hence economic 

losses result. Moreover, the manual inspection of EL images is very slow and takes very skilled 

persons; this motivates the setup of automatic, vision-based inspection systems. EL imaging 

is an effective method to pinpoint hidden flaws in solar cells, thereby enabling real-time, 

intelligent quality monitoring during production of solar cells [1]. Organic photovoltaics are 

rapidly evolving with efficiencies above 18%, nearing the 20%-level, and thus making 

flexible, lightweight, and transparent solar technologies no longer just a theorical possibility. 

Such an advancement came as a result of the development of low band gap donor polymers 

and, more recently, non-fullerene acceptors (NFAs), which improve light absorption and 
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energy level optimization toward yet higher performance [2]. The promise for OSCs lies in 

being flexible, transparent, lightweight, and cheap; yet, their design remains heavily a trial-

and-error synthesis and testing approach. Owing to the very complicated mechanisms of 

exciton formation, charge transport, and donor-acceptor morphology, one finds it really 

difficult to select materials to accompany one another, thereby rendering prediction using high-

speed computers a must for hastening their performance optimization [3]. 

The solar power is a topmost viable source of renewable energy; hence, silicon solar cells 

dominate the market but are challenged by the stranger blue of perovskite solar cells (PSCs). 

The exceptional photoelectric properties of PSCs having accelerated fabrication from an initial 

3.8% PCE to a certified 26.1% are driving industrialization. In contrast, the problems with 

long-term stability, large-area fabrication, cost, and sustainable life-cycle management remain 

as key barriers in their widespread adoption [4]. Prediction of solar cell efficiency by 

traditional means involves electrical or structural analyses or current–voltage (I–V) 

simulations. Nonetheless, these methods are often tedious and costly and are limited by the 

difficulty of obtaining precise parameters. Another challenge in predicting ultimate 

performance is material degradation and environmental instability. Machine Learning offers 

an alternative by accurately predicting PCE from minimal experimental data, increasing 

reliability, and decreasing costs and time taken in the optimization of organic and inverted 

solar cells [5]. With Machine Learning, the model can learn complex nonlinear relations out 

of raw data, making it more accurate for PV forecasting than standard statistical models. A 

statistical model requires visuals from the user for feature scaling, while an ML method such 

as ANN, SMV, or RF requires much less preprocessing and are self-optimizing. However, 

these ML methods act as black boxes with little interpretability [6]. 

II. LITERATURE REVIEW 

Being a lead-free absorber material for PSCs, cesium tin chloride (CsSnCl₃) has gained some 

attention; however, issues of defect-free fabrication and fine alignment of layers abound. A 

total of 96 different device configurations were simulated using SCAPS-1D, and ZnO, TiO₂, 

IGZO, WS₂, PCBM, and C₆₀ ETLs with CBTS HTL were identified as most efficient with 

greater than 22% efficiencies. wxAMPS was used for further validation of these results, while 

favorable structural and electronic properties were revealed by first-principle DFT 

calculations, putting CsSnCl₃ PSCs in the spotlight for inexpensive and sustainable 

photovoltaics [7]. Also negatively affecting PV performance are environmental factors such 

as dust. The dust model was tested with Omani dust (SiO₂, CaO, Fe₂O₃). In this model, adding 

30 g of dust gave an ideal model whose short-circuit current was 42.86% higher than measured. 

The proposed model's deviation was only 2.79%, implying high accuracy [8]. On the materials 

engineering side, PICs lower the surface recombination velocity from 64.2 to 9.2 cm/s and 

boost the carrier lifetime from 1.2 µs to 6.0 µs, which allows p-i-n devices with an efficiency 

of 25.5% (certified 24.7%) and Voc × FF product at 87.9% of the Shockley–Queisser limit 

[9]. 

Considering deep learning methodologies in PV fault diagnosis have considered stacked auto-

encoders, which have achieved a classification accuracy of 0.973 in simulation and 0.983 in 
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experimentation, avoiding all the limitations of manual feature extraction [10]. Empirical 

temperature prediction models were compared with different ML-based approaches, with 

Extra Trees regression taking the highest position (R² = 0.960 for PV1, 0.974 for PV2) [11]. 

Machine learning has been used in organic solar cells, where a random forest model (Pearson's 

coefficient = 0.93) detected new donor molecules with predicted power conversion efficiencies 

of greater than 11% [12]. Asset monitoring of huge renewable energy plants uses vision 

transformers (ViT) detecting surface defects in solar panels and wind turbine blades with an 

accuracy of > 97%, better than MobileNet, VGG16, and ResNet50 [13]. 

Solar forecasting is an essential aspect of medium- to large-scale solar integration into grids. 

CatBoost could achieve R² = 0.608 (train) and 0.46 (test), with an RMSE of 4.478 W for 

training and 4.748 W for testing, predicting PV output from weather and atmospheric features 

[14]. Random Forest was showing better forecasts of PV yield of MAE = 0.06 and RMSE = 

0.15, further able to improve with MAE = 0.03 and RMSE = 0.09 when used along with 

irradiation data [15]. In South Africa, GHI prediction underwent custom stackings for extreme 

magnification, with Double-Nested-Stacking reducing MAE and RMSE by 93.05% and 

88.54%, respectively, against the best ML model, and optimized DNS performing at 47.39% 

and 61.35% reductions [16]. On further terms, the 8-Stacking Regression Cross Validation (8 

STR-CV) ensemble obtained accuracies of around 98.8%, 98%, and 97.8% in Visakhapatnam, 

Nagpur, and the mountainous terrain of India, emphasizing the promise for AI-assisted solar 

irradiance forecasting as a large-scale energy-planning tool [17]. 

Table 1 collates a comparative summary of the latest work relating to solar photovoltaic (PV) 

research-the focus areas, methodology, and major findings. This includes works on perovskite 

solar cells, dust modeling, defect-reduction studies, fault diagnosis, temperature prediction, 

and machine learning applications in forecasting and materials screening. All these not 

reported results have showed improvements in efficiency, accuracy, and/or predictions from 

the specific PV technologies. 

Table 1: Comparative Summary of Recent Advances in Photovoltaic Research and Forecasting 

Models 

Ref. 

No. 

Focus Area Methods / 

Models 

Key Findings Results Obtained 

[7] Lead-free 

CsSnCl₃ 

perovskite SCs 

SCAPS-1D & 

wxAMPS 

simulations; 

DFT analysis 

Identified optimal 

ETL/HTL combos 

(ZnO, TiO₂, IGZO 

with CBTS) 

η ≥ 22% efficiency 

[8] Dust 

accumulation 

impact 

Modified one-

diode model 

with dust 

parameters 

Proposed dust-

aware model 

validated 

experimentally; 

improved I-V 

accuracy 

Short-circuit current 

error reduced to 2.79% 

(vs. 42.86% in ideal 

model) 
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[9] Reducing 

recombination 

in PSCs 

Porous Insulator 

Contact (PIC) + 

drift-diffusion 

simulations 

Reduced 

recombination 

losses; improved 

crystallinity and 

device stability 

Efficiency: 25.5% 

(certified 24.7%); Voc 

× FF = 87.9% SQ limit; 

τbulk: 6.0 μs 

[10] Fault diagnosis 

in PV arrays 

Deep learning 

(stacked 

autoencoder + 

clustering) 

Automated feature 

extraction; 

improved 

clustering-based 

fault detection 

Accuracy: 97.3% 

(simulated), 98.3% 

(experimental) 

[11] PV cell 

temperature 

prediction 

25 empirical 

models + ML 

regression 

(Decision Trees, 

SVR, Extra 

Trees) 

Found strong 

radiation 

correlation; Extra 

Trees best 

performer 

R² = 0.960 (PV1), R² = 

0.974 (PV2) 

[12] Organic solar 

cells screening 

ML models; 

Random Forest 

+ molecular 

descriptors 

RF best for donor 

screening; 

identified high-

PCE candidates 

Pearson’s r = 0.93; 

Predicted PCE > 11% 

[13] Renewable 

asset defect 

detection 

Vision 

Transformer 

(ViT) vs CNNs 

Outperformed 

CNNs in defect 

classification 

Accuracy > 97% 

[14] Solar energy 

forecasting 

Gradient 

Boosting, 

XGBoost, 

KNN, LGBM, 

CatBoost 

CatBoost best 

performer; 

humidity & 

temperature most 

influential 

Train: R² = 0.608, 

RMSE = 4.478 W, 

MAE = 3.367 W; Test: 

R² = 0.46, RMSE = 

4.748 W, MAE = 3.583 

W 

[15] PV yield 

prediction 

ANN, RF, 

LSTM with 

weather data 

Random Forest 

consistently best 

model 

MAE = 0.03%, RMSE 

= 0.09% 

[16] GHI 

forecasting 

RNN, SVR, 

GB, RF, 

stacking & 

Double Nested 

Stacking (DNS) 

DNS stacking 

significantly 

improved accuracy 

MAE reduction = 

93.05%, RMSE 

reduction = 88.54% 

[17] Solar 

irradiance 

prediction 

8-model 

stacking 

ensemble (8 

STR-CV) 

High-accuracy 

ensemble 

forecasting across 

India 

Accuracy: 98.8% 

(Visakhapatnam), 98% 

(Nagpur), 97.8% 

(mountain region) 
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While there has been ample progress in perovskite solar cell research and predictive modeling, 

significant gaps yet remain. For instance, barrier-free realization of defects, enhanced stability, 

and varying layer alignment in CsSnCl₃-based lead-free PSCs remain a problem, thus 

inhibiting any industrial application. Environmental elements such as dust accumulation on 

the surface and surface degradation are still not very well accommodated in present 

performance models. ML-based techniques are good with forecasting and fault detection but 

suffer from non-scalability, dependence on data, and robustness across varied climates. These 

considered materials, environments, and the present computational state must be addressed for 

sustainable, reliable, and large-scale solar energy applications. 

III. OBJECTIVES 

1. To analyze the impact of semiconductor parameters (e.g., material type, bandgap, thickness) 

on solar cell performance. 

2. To evaluate environmental influences (temperature, light intensity) on solar cell efficiency. 

3. To simulate solar cell models using varied semiconductor materials including SiGe alloys 

and perovskites. 

4. To develop a Random Forest model for predicting solar cell performance and identifying 

parameter importance. 

5. To apply a Genetic Algorithm on the RF results to optimize semiconductor parameters for 

enhanced efficiency, thereby reducing manual design iterations. 

IV. METHODOLOGY 

 

4.1 Data Collection and Preprocessing 

This study aims to build a dataset for solar cell modeling using simulated parameters and 

covering a wide range of semiconductor and environmental conditions. The key inputs are 

material type, effective bandgap, layer thickness, and interface mobility; external conditions 

like temperature and irradiance constitute the other inputs. The dataset required preprocessing, 

which included data normalization, wherein uniform scaling was made for all parameters. 

Redundant or irrelevant features were removed to minimize computational time. The resulting 

dataset was divided into training- and testing-related test training-testing, model-building, 

strengthened results validation, and enhanced evaluation performance. 

4.2 Prediction Framework Using Random Forest (RF) 

The solar cell performance was predicted with the random forest model, with accuracy and 

robustness. The training features considered included vital input parameters like the material 

composition, bandgap, thickness, and mobility. The main output parameter considered was the 

power conversion efficiency. Being an ensemble technique that is composed of numerous 

decision trees, the RF reduces variance and consequently increases prediction stability. The 

model performance was assessed based on regression evaluation metrics like the coefficient 

of determination (R²), root mean squared error (RMSE), mean absolute error (MAE), and mean 
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absolute percentage error (MAPE). In addition to this, the RF model ranked feature importance 

and revealed that the parameters really affecting solar cell efficiency were Voc, Jsc, and FF. 

4.3 Optimization Framework Using Genetic Algorithm (GA) 

Based on certain RF-based predictions, additional optimization was performed via Genetic 

algorithms for enhancements to device-level parameters and performance. Candidate solutions 

in the form of chromosomes contained material type, band gaps, thicknesses, and mobility 

values. A fitness function was defined as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑉𝑂𝐶
1.00 × |𝐽𝑆𝐶

1.00| ×  𝐹𝐹                                                                                                                (1) 

based on the fundamental photovoltaic characteristics of the device. Selection was set to 50, 

with 100 generations allowed for increased exploration of the solution space. Crossover and 

mutation probabilities were set to 0.8 and 0.05, respectively, to encourage exploration and 

keep the algorithm from getting stuck at local optima prematurely. The optimization was 

allowed to proceed iteratively until convergence was reached on these robust parameter 

configurations, allowing for maximum efficiency of the device. 

4.4 Integrated Workflow (RF → GA Sequential Model) 

The overall approach was an ordered pipeline that combined predictive modeling with 

optimization. In Stage One, the RF regression model predicted device performance and found 

critical factors affecting efficiency. Second, GA optimization nurtured these particular 

parameter combinations by RF inferences with the intent to reduce unproductive trial and error 

observations. In this manner, the integrated RF → GA framework underwent both predictive 

modeling and optimized design implementation, providing a powerful strategical arm to propel 

solar cell material and structural design under actual problem definition. 

V. RESULT AND DISCUSSION 

In this section, the results from the sequential system proposed, where the Random Forest (RF) 

regression is used for prediction and the Genetic Algorithm (GA) for optimization, are 

presented. Analysis considers the PCE prediction of solar cells, performing model accuracy 

evaluations, identifying the key parameters of the semiconductor, and optimizing them with 

maximum performance. 

5.1 Regression Results (Random Forest) 

The Random Forest model was trained with semiconductor features like bandgap, thickness, 

material composition, and interface mobility. 

Table 2: Regression Performance Metrics (Final Model) 

Metric Value (Mean ± Std) 

R² 0.92 ± 0.03 

RMSE (PCE %) 1.45 ± 0.22 

MAE (PCE %) (optional) 1.02 ± 0.18 

MAPE (% error) (optional) 4.3 ± 0.7 
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The Random Forest regression model was tested over the solar cell PCE to evaluate the 

performance metrics as shown in Table 2. The high R² (with an average value of 0.92 ± 0.03) 

signifies that the model has strong predictive accuracy, hence establishing a good correlation 

between predicted and actual values. The very low values of the RMSE (1.45 ± 0.22) and MAE 

(1.02 ± 0.18) imply that prediction errors were considerably low, with MAPE of 4.3 ± 0.7% 

endorsing the model's ability to be deployed in photovoltaic optimization. 

The close alignment of predicted vs. actual PCE values confirms the robustness of the model. 

 

Figure 1: Predicted vs Actual PCE Plot 

Figure 1illustrates the correlation between predicted and actual PCE values using the Random 

Forest model can be viewed. A close clustering of data points along the diagonal red line 

denotes that the predictions are incredibly accurate and shows the model's ability to describe 

the trend of solar cell performances. This, therefore, avers the Random Forest as an apt choice 

for guiding any further optimization. 

Feature Importance Analysis identified Voc, Jsc, and FF as the most influential drivers of solar 

cell performance. 

 

Figure 2: Feature Importance Plot 
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Figure 2 illustrates the relative importance of different input parameters in contributing to solar 

cell performance. The results illustrate that the short-circuit current density (Jsc) is the one that 

largely mattered; this is followed by Voc and FF. Least contributions are made by mobilities 

and layer thicknesses. This insight will help prioritize variables through the optimization, thus 

allowing for more efficient design strategies. 

5.2 Optimization Results (Genetic Algorithm) 

The GA utilized the RF-predicted outputs to optimize semiconductor parameters. 

• GA Configuration: 

• Population size = 50 

• Generations = 100 

• Crossover rate = 0.8 

• Mutation rate = 0.05 

Table 3: Optimal Parameter Set Identified 

Parameter Optimal Value 

Material SiGe Alloy 

Thickness (L) ~0.5 μm 

Bandgap (Effective) ~1.2 eV 

Interface Mobility (mob_IL) 0.00003 

Predicted PCE ~23–24 % 

The results of the optimization technique using Genetic Algorithm are furnished in Table 3. 

The GA favored SiGe alloy at 0.5-μm thickness, having a bandgap of 1.2 eV, and high 

interface mobility under these nominal conditions. This combination would provide for power 

conversion efficiency (PCE) predictions of the order of 23–24% from the base. In low series 

resistance and high shunt resistance conditions, the optimization further increased the power 

conversion efficiency for a promising application in stability. 

 

Table 4: GA Convergence Summary 

Generation Best Fitness (PCE %) Average Fitness (%) Std. Dev. 

0 16.3 10.5 4.1 

20 20.8 18.6 2.0 

40 22.7 21.4 0.9 

60 23.3 22.5 0.5 

80 23.4 22.7 0.3 

100 23.4 22.8 0.2 

Table 4 highlights the Genetic Algorithm efficiency in generating upgrades for solar cell 

performances. From its baselining, the GA managed drastic improvements of PCE, stepping 

from 16.3% to about 23.4% for 60 generations only. Suddenly, the results stabilized, 

promoting the highest convergence and robust optimization. The slightest variance in the far 

generations witnessed strengthened the reliability of the optimized configuration. 
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Figure 3: GA Convergence Curve 

Figure 3 tracks the landscape across generations during solar cell PCE optimization phases. 

The best fitness curve steadily climbs from around 15% at the start to about 23.5%, the average 

fitness evolution following a similar trend, thereby giving an essence of population 

improvement. Convergence in the later generations points towards the capability of the 

Genetic Algorithm to attain a steady-state higher configuration. 

 

Figure 4: Histogram of Interface Mobility 

Right-side skewness can be seen in the distribution of mob_IL as featured in Figure 4. Most 

of the samples show very little mobility, while just a few can go to greater levels. This means 

that, in rare instances, high mobility is of utmost importance in the solar cell's amelioration in 

efficiency. 

5.3 Visual Interpretations 
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Figure 5: Scatter plot (𝑉𝑂𝐶  𝑣𝑠 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) 

In Figure 5 we noticed the relationship between the open-circuit voltage (𝑉𝑂𝐶) and the 

efficiency of a solar cell. It is positively correlated: higher 𝑉𝑂𝐶 values increase the efficiency. 

The top 10 highlighted points indicate the most efficient configurations, so it is critical to have 

the 𝑉𝑂𝐶 maximized in order to achieve better device performance. 

 

Figure 6: Confusion matrix (classification) 
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Figure 6 considers the capacity of the model to recognize high- and low-efficiency solar cells. 

The model correctly classified 43 low-efficiency instances from the entire set but classified 15 

high-efficiency samples as lows. The low true-positive scenarios emphasize the fact about 

high-efficiency cases being difficult to predict, hence, suggesting that the model is subject to 

more improvements. 

The sequential RF-GA pipeline is truly a boon in perusing the conceptualization and design of 

solar cells. RF provides good prediction results, while it also can point out the relative 

importance of the parameters that guide the optimization process. Equipped with this 

knowledge, the GA efficiently traverses through the often-convoluted configuration/design 

space to reach an optimum design with a predicted PCE at around 23-24%, which can be a 

great leap from the initial baseline PCE of just about 16%. This convoluted package reduces 

the need for manual trial-and-error, promoting material and structure choices based on data 

though. Furthermore, this also ensures an efficient yet robust and scalable approach toward 

the optimization, making the design crackdown of photovoltaic devices fast. 

VI. CONCLUSION 

The present study reveals that Random Forest (RF) regression is a very efficient technique to 

predict the PCE of photovoltaic solar cells by grasping complex nonlinear dependencies 

among semiconductor parameters. With an R² value of 0.92 ± 0.03 and an RMSE and MAE 

of 1.45 ± 0.22 and 1.02 ± 0.18, respectively, this RF model had impressive generalizing 

abilities and reliability. Analysis of the feature importances confirmed that Jsc, Voc, and FF 

were the most important parameters affecting the efficiency. These findings, thus, attest to the 

ability of RF to guide solar cell modeling very precisely and interpretably. Considering the 

practical optimization of the predictions, the model RF was coupled with GA, so as to choose 

the parameters giving the best values of PCE. With the hybrid RF-GA platform, the design 

space can be explored successfully for searching the optimal semiconductor configurations 

that maximize efficiency, thus further alleviating the heavy dependence on expensive and 

time-consuming laboratory trials. Accordingly, the fusion of ML with evolutionary 

optimization enhances prediction of performance and also enables speeding up solar cell 

design and development. Therefore, the study established RF-GA as a powerful and scalable 

approach toward making high-efficiency photovoltaics and thus providing a pathway toward 

cost-efficient, sustainable, and environmentally friendly solar energy solutions. 
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