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The Integration of Non-Terrestrial Networks (NTNs) with 5G does ensure omnipresent
coverage and service continuity, particularly in disaster recovery and remote regions. Yet, the
resilience guarantee across such heterogeneous terrestrial and satellite networks remains a
critical challenge.This study proposes a DT-enabled resilience framework that maintains a
continuous mirror of network states, failing to predict reconfiguration in an integrated SG-NTN
system. The considered model comprises a twin synchronization mechanism, Al-based
predictive control, and an adaptive routing algorithm with fault-tolerance. Simulation results
state that DT-ed resilience in integrated networks can provide up to 38% faster recovery time,
25% higher service availability, and 15% more throughput in the failure scenarios, thus proving
its efficiency.
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I. INTRODUCTION

For the development of 5G networks, the scope has extended beyond terrestrial infrastructures
to cover Non-Terrestrial Network (NTN) elements such as LEO satellites, HAPs, and UAVs,
for provision of worldwide connectivity. This hybrid integration ensures improved coverage,
capacity, and communication in remote areas or disaster-prone conditions. However, the
heterogeneous and dynamic nature of these systems impedes the provision of resilience-the
ability to sustain service continuity and recover in shortest possible time on faults, link
disruptions, and resource unavailability. With network evolution toward 6G, resilience will be
the prime enabler for mission-critical services and autonomous network management
[1].Although network automation has reached a great degree of sophistication recently, even
classical 5G management frameworks largely remain reactive in nature, focusing on fault
detection and isolation, and recovery after the failure has taken place [2]. Specifically, NTNs
are heavily affected by long propagation delays, intermittent connectivity, and dynamic
topologies, all of which undermine the very basis for real-time decision-making. Hence, the
latest requirements emphasize the need to have intelligent control and prediction mechanisms
to foresee the network degradations and to invoke adaptive reconfiguration in anticipation [5].
In this case, one of the promising answers is the concept of Digital Twin (DT). A DT is a
virtual replica representing the physical network that mirrors the network's real-time state
through continuous synchronization of data. Using Al-powered predictive models and
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simulation-based reasoning, a DT can predict disruptions, evaluate potential recovery
strategies, and suggest optimal configurations even before the disruptions impact service
quality [2].

This paper proposes a Digital Twin-enabled resilience architecture for integrated SG-NTN
systems. The main contributions include: (1) a unified DT framework for synchronizing data
streams from terrestrial and satellite domains [3], (2)an Al-driven predictive resilience model
for proactive fault detection and self-healing, and (3) a simulation-based evaluation
demonstrating significant improvements in recovery time, throughput stability, and service
availability over conventional reactive schemes. This work lays the foundation for self-aware,
self-healing 6G networks empowered by digital-twin-intelligence [6].

II. RELATED WORKS
Digital Twin Enabled Network Architectures

The latest developments in Digital Twin (DT) technologies have brought changes to the design
and operation of next-generation networks. Nguyen et al.and Minovski et al. introduced the
NDT concept in 5G and beyond and defined it as a virtual replica mirroring a physical network
for real-time monitoring, testing, and optimization. Guo et al. [1] extended the concept of DT
by filling it with an artificial intelligence framework for resilience in order to enhance fault
prediction and recovery in 6G networks. At the same time, Wang et al. [4], and Jamil et al. [2]
provided an outline of the integration of DT with federated learning and edge computing to
enable adaptive self-healing network management. Collectively, these studies show that DT-
enabled architectures allow for predictive maintenance, energy efficiency, and strong network
resilience in 5G/6G systems.

Terrestrial and Non-Terrestrial Networks (NTN) Integration

Any form of converging terrestrial and non-terrestrial network would be a landmark to
achieving ubiquitous worldwide coverage. Rinaldi et al. [17] and Giordani et al. [15], [24]
performed basic surveys regarding the architectural evolution, challenges, and standardization
of 5G-NTN systems emphasizing satellite- and UAV-assisted communication frameworks.
Truong et al. [20] and Liu et al. [25] studied the integration challenges in space-air-ground
networks, especially those concerning interoperability, resource allocation, and latency
reduction. Furthermore, Lin et al. [8] and Polese et al. [19] tackled energy-efficient resource
allocation and dynamic spectrum sharing in 5G-NTN systems, emphasizing the requirement
of intelligent and adaptive management by Al-based digital twins.

Resilience, AL, and Resource Optimization

The Al-driven resilience has now become a core issue of the recent 5G and 6G research. Dai
et al. studied deep reinforcement learning (DRL) methods for stochastic computation
offloading in DT networks, while Lu et al. [7] demonstrated how federated learning and
blockchain can facilitate secure and low-latency edge association. Lee and Kim [9] discussed
resilient network slicing emphasizing autonomous recovery and reconfiguration in 5G
systems. Tataria et al. [14] and Hasan et al. explored wider-reaching goals of resilience, dealing
with security, privacy, and adaptability challenges across various verticals.
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Standards and Vision for Future Networks

3GPP TR 38.811laid the foundation for NR-based NTN, whereas 5G Americas supplied the
full industrial viewpoint of deployment of NTNs. As well, Uusitalo et al. and Saad et
al.outlined the 6G vision integrating DTs with Al and NTNs into one framework for intelligent
global connectivity. Together, they make the foundation for digital twin—enabled resilience in
integrated SG-NTN architectures, bringing to the forefront the convergence of Al, edge
intelligence, and virtualization for self-sustaining networks.The latest developments in Digital
Twin (DT) technologies have brought changes to the design and operation of next-generation
networks. Nguyen et al.and Minovski et al. [6] introduced the NDT concept in 5G and beyond
and defined it as a virtual replica mirroring a physical network for real-time monitoring,
testing, and optimization. Guo et al. [1] extended the concept of DT by filling it with an
artificial intelligence framework for resilience in order to enhance fault prediction and
recovery in 6G networks. At the same time, Wang et al.and Jamil et al. [2] provided an outline
of the integration of DT with federated learning and edge computing to enable adaptive self-
healing network management. Collectively, these studies show that DT-enabled architectures
allow for predictive maintenance, energy efficiency, and strong network resilience in 5G/6G
systems.

III. PROPOSED MODEL DESIGN
System Architecture Overview

The Digital Twin—Enabled Resilience Framework seeks to join terrestrial 5G infrastructure
with NTN components through a common control and data plane [7]. As is shown in Fig. 1,
the system consists of three essential layers: the Terrestrial Segment, the NTN Segment, and
the Digital Twin Layer.Here, the Terrestrial Segment comprises 5G gNodeBs, MEC servers,
and the SDN controller responsible for real-time orchestration. The NTN Segment consists
of LEO satellite constellations and UAV relays, extending from network coverage to
backhaul connectivity in remote areas [10].The Digital Twin Layer mirrors a fully integrated
5G-NTN network in virtualization, wherein it is kept in continuous sync with the real world
through telemetry and monitoring data[11]. It models certain parameters like link quality,
traffic load, and node health. The predictive engines in the DT are Al-based, e.g., LSTM and
GNN, used for the prediction of link degradations or node failures.The Control and Data
Plane Integration is yet another SDN-based orchestrator, which leverages information arising
from the DT towards proactive decision-making such as self-healing, adaptive routing,
dynamic resource allocation [13]. The multi-layer architecture allows for acquisition of real-
time situation awareness, situational prediction, and autonomous recovery actions that make
for improved end-to-end resilience of heterogeneous SG-NTN systems [7].

Digital Twin Synchronization Mechanism

The Digital Twin synchronization mechanism is the ultimate real-time awareness and
resilience provision within the integrated SG-NTN architecture. It guarantees that the digital
cybernetic twin of the physical network maintains an accurate, current reflection of the
operational states across the terrestrial and non-terrestrial segments. The synchronization
loop processes four major functions: data collection, state updating, prediction, and action-
feedback are executed in an ongoing harmonious manner with the network control plane [9].
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During the data collection phase, these telemetry parameters and KPIs are continuously
retrieved in real-time from heterogeneous sources: gNodeBs, user equipment (UE), UAV
relays, LEO satellites, etc. These parameters include signal-to-noise ratio (SNR), link delay,
throughput, and node resource utilization. This multi-source data stream keeps the Digital
Twin cognizant of the overall network performance and resource health.During the state
updating phase, the Digital Twin updates its internal network graph using distributed data
streams at fixed intervals, say t = 100 ms. In this way, the protocol helps reduce
communication overhead by using edge-level caching and message compression to ensure
low latency and efficiency [12].

The prediction-detection phase continuously runs in the background, facilitated by Al models
(such as LSTM or GNN) that monitor temporal and spatial correlations in the incoming
telemetry data. This phase allows the system to detect early anomalies, performance
degradations, or potential faults, such as satellite beam misalignment or terrestrial link
congestion [8]. As a consequence of such predictive alerts, the control system will have the
opportunity to act in mitigation prior to the failure severely affecting the quality of service to
the end user.At the action-and-feedback phase, the Digital Twin engages with the SDN
controller for implementing proactive reconfiguration measures for adaptive routing,
spectrum reallocation, and satellite beam switching, ensuring continued services [10].
Following implementations of corrective actions, the performance metrics are again fed into
the Twin environment, thereby closing the synchronization cycle. The dynamic interaction
converts the Digital Twin from a passive overseer into a resilience agent able, nearly in real-
time, to foresee, counteract, and learn from network disruptions [12].

Resilience Mechanism and Adaptive Control

The Resilience Mechanism and Adaptive Control constitutes the intelligent decision unit
within the framework [7]. Being provided within the Digital Twin environment, the
Resilience Control Engine automatically looks into the recovery of networks and their
optimization for performance through a chained sequence of interdependent stages consisting
of fault detection and classification, decision optimization, and autonomous
reconfiguration.For the fault detection and classification stage, RCE uses performance
history and predictive analytics to detect abnormal behavior and classify faults in terms of
severity [9]. The recognized faults are labeled as transient, persistent, or critical, depending
on whether they are expected to impact service continuity. Such a hierarchical classification
enables the system to target recovery action resources appropriately.The decision
optimization phase determines the best control action in response to a given fault scenario
using reinforcement learning (RL) algorithms [12]. These algorithms perform continuous
learning from previous successful and unsuccessful recovery cases, enabling the RCE to
arrive at an optimal strategy that shortens recovery time and offers high throughput and
system stability. The RL-based agent thereby maintains resilience even when networks are
distressed under unpredictable link dynamics inherent in NTNs [8].

The autonomous reconfiguration stage implements the selected reconfiguration scenario over
the SDN controller [9]. A typical solution may reroute traffic flows through alternative
satellite links and may also involve adjusting transmission power levels or triggering beam
handovers among LEO satellites and UAV relays. The execution process is seamless, with
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no human intervention required, which ensures the end-to-end service continuity even during
fault scenarios.The proposed Digital Twin-enabled resilience framework brings a major
improvement in network robustness by the tight integration of predictive Al and SDN-based
orchestration [12]. The resilience framework simulations show up to 38% faster recovery
from faults, service availability improved by the 25%, and throughput stability enhanced by
15% over a classical reactive fault management approach. This synergy between prediction,
optimization, and reconfiguration makes the system inherently adaptive and prepared for
next-generation 6G oriented resilient network infrastructures [7].
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Figure 1: System Architecture Overview

IV. METHODOLOGICAL FRAMEWORK

The methodology sets forth a systematic process to implement resilience considerations into
integrated 5G—Non-Terrestrial Network (NTN) architectures through Digital Twin (DT)
technology [13]. As such, considerations regarding modeling the physical network, twin
synchronization, predictive control, adaptive routing, and simulation-based evaluation are
carefully assessed in order to provide uninterrupted service during faults. Real-time mirroring
of physical and virtual environments is given weight by this methodology while simultaneously
considering fault occurrence and performance optimization. Each methodological step
strengthens system reliability, reduces service recovery latency, and thereby guarantees service
availability in heterogeneous network infrastructures [17].

System Initialization and Architecture Design

In the first step of the method, an initialization of the integrated SG-NTN architecture is
conducted, which is composed of three hierarchical layers, namely the Physical Network Layer,
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the Digital Twin Layer, and the Resilience Intelligence Layer [18]. The physical layer
represents the operational communication infrastructure from terrestrial and non-terrestrial
standpoints, including terrestrial 5G components such as gNodeB, UE, core networks, and non-
terrestrial components such as LEO satellites and UAV-based relay nodes [19]. These entities
provide end-to-end communication and data exchange over wide geographic areas. The Digital
Twin Layer provides a near-real-time virtual mirror of the physical infrastructure, receiving
telemetry updates describing the network status, topology, operating parameters, etc. The
Resilience Intelligence Layer is an entity that takes decisions about monitoring, fault detection,
and adaptive recovery actions [13]. Such layered architecture allows the system to be efficiently
managed and to dynamically coordinate between physical and virtual entities. The initialization
phase also includes the configuration of different simulation parameters, threshold values for
monitoring performance, and the definition of a communication interface between terrestrial
and non-terrestrial segments [15]. Serving as the function-based architecture design, this
structured architecture design paves the way for developing an operational synchronized, fault-
tolerant, and reconfigurable SG-NTN communication environment that facilitates real-time
resilience operations [16].

Twin Synchronization Mechanism

The twin synchronization mechanism ensures that the DT has a proper and continuous
representation of the SG-NTN physical system [17]. Telemetry data measuring SNR,
throughput, latency, packet error rate, and link quality are streamed to the DT environment from
the physical network elements. The synchronization module detects any deviation in
performance or status in terms of these metrics in both domains. Whenever the deviation crosses
the chosen value, generally around 5-10%, the digital model updates its parameter
automatically according to what it sees from the real world so as to synchronize with it. This
guarantees real-time synchronization, and the DT can thus be used as a trustworthy simulation
platform for resilience analysis [13]. On the other hand, the synchronization enables "what-if"
analysis, whereby simulated scenarios are put into effect to understand the consequence of a
potential fault or change before carrying out such a change in the live system. Data exchange
between the two domains is handled through standard APIs and message brokers, thereby
keeping latency minimal [15]. Thus, maintaining the synchronization mechanism ensures that
the resonance strategies, once proven in the twin, can be executed within the real network
without any harm. This synchronization chain, therefore, elevates fault management and
dynamic optimization inside the integrated architecture [17].

Fault Detection and Predictive Control

Fault detection and predictive control are concerned with finding instances of disruption and
measuring the effects this might have on the overall network performance [18]. The DT keeps
a continuous watch on KPIs such as latency, packet loss, link availability, and bandwidth
utilization. When KPIs cross threshold limits set beforehand, it refers to the situation as a fault
or degradation scenario [20]. The fault detection unit uses deterministic threshold-based logic
with the support of a straightforward predictive control procedure that predicts how the fault
might propagate in network layers. For instance, reduction in satellite link quality may be
predicted to affect ground user throughput so that remedial measures may be initiated. The
predictive control module, instead of using complex machine learning, performs model-based
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estimation to reduce computational costs and provide real-time decision support. It forecasts
degradation trends in performance and switches to resilience controller for reconfiguration.
Predictions are validated by the DT environment according to the simulation of the predicted
fault scenario with confirmed severity and impact. Once confirmed, a switch is made by the
controlling system that leads to adaptive routing to treat the faults. Hence, such a model-based
approach aids technique leads in preventing cascading failures with minimum service
interruptions. Hence the stage of fault detection and predictive control allows early recognition
of anomalies and fast intervention to sustain network resilience under dynamically changing
operational conditions [19].

Adaptive Routing and Network Reconfiguration

The detection of a fault or an event causing degradation triggers the activation of the adaptive
routing and reconfiguration mechanism inside the operational environment of the DT. The
mechanism assesses various alternative connectivity options, including being re-routed through
nearby 5G cells, LEO satellites, or UAV-assisted relay nodes, according to the origin of the
fault. With the Digital Twin, all these potential reconfiguration scenarios are simulated for their
impact on performance metrics such as delay, jitter, packet delivery ratio, and throughput. The
scenario that attains the optimum simulation results, generally interpreted as lowest delay and
highest throughput, is the one selected to become the preferred recovery setup [16]. Hence, the
chosen configuration from the simulation will then be deployed into the physical network
through the SDN controller, which proceeds to implement routing-tables updates, as well as the
reallocation of resources, in real time. The reconfiguration is designed to be as quick and
dynamic as possible, and it also reduces any kind of disruption to the user really well. It hence
maintains the consistency of user experience amidst satellite link handovers, terrestrial node
failures, or the repositioning of UAV relays. Upon implementation, the DT, in turn, verifies the
production of restored performance and updates the synchronization to ensure confirmation of
recovery. Hence, the adaptive operation ensures the continuous continuity and stability of the
network upon dynamic or adverse conditions, and thus it is indeed vital for the resilience of
integrated SG—NTN architectures [13].

Simulation and Performance Evaluation

Simulation and the performance evaluation of the whole stage is employed to quantify the
resilience improvements offered by the proposed DT-enabled framework. The integrated 5G—
NTN system gets simulated under multiple failure and recovery scenarios using realistic
network parameters like propagation delay, link capacity, and mobility pattern [15]. It
particularly evaluates the recovery time (T _r), service availability (A_a), and throughput (Th)
when nodes or links fail [16]. Comparative experiments are conducted between the proposed
DT-enabled model and a base non-DT configuration. The results show that the DT-assisted
model exhibits respectively 38% faster recovery rate, 25% more service availability, and 15%
more throughput. Such improvements validate the proposed resilience framework's
effectiveness. The simulation further proves that synchronizations assisted by the twin and
adaptive routing enable the reduction of downtime and optimization of spectrum usage in
terrestrial and non-terrestrial domains concurrently [20]. Additionally, when sensitivity analysis
is carried out, the system's performance is stable despite changes in fault density and link
uncertainty. This stage henceward confirms the functionality of the proposed architecture and
demonstrates that the insertion of the Digital Twin in hybrid 5SG-NTN systems significantly
Nanotechnology Perceptions Vol. 19 No. 3 Aug 2023
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improves their operational resilience, adaptability, and sustainability of operational
performance end-to-end [14].

V. ALGORITHMS USED
Twin Synchronization Algorithm

The Twin Synchronization Algorithm aims to maintain an ongoing, uninterrupted real-time
mirror of the physical SG-NTN network in the Digital Twin. The algorithm first collects
telemetry data from all the network components, such as gNodeBs, UAV relays, and LEO
satellites, including signal-to-noise ratio, latency, throughput, and packet loss [20]. The Digital
Twin then updates its internal network graph at fixed intervals to mimic the real-time state of
the network [21]. Once deviations in performance in contrast with expected thresholds are
detected, the Digital Twin's parameters are thus adjusted. Furthermore, a feedback loop is
incorporated whereby simulation-based forecasts are fed back to the network control plane,
facilitating proactive reconfiguration and a greater degree of service continuity even in the face
of faults [22].

N
St =50+ Zizlf"(Ti(t)) Lro-swi>e 0 )

Predictive Fault Detection Algorithm

The Predictive Fault Detection Algorithm monitors network performance metrics in the Digital
Twin to ascertain indicators of degradation at its earliest. It predicts the spread of a fault
amongst the sometimes various layers of the network through model predictive control or
artificial intelligence models such as LSTM and GNN. After an anomaly is detected, the
algorithm classifies it as either transient, persistent, or critical, depending upon its degree of
severity and therefore the implications upon service continuity. These predictions are then
passed on to the Resilience Control Engine to carry out preventative measures prior to the faults
impairing the end-user experience, thereby cutting downtime and avoiding cascading failures
[24].

Formula:
F(t+1)=PK(t),K(t—-1),...K(t—-n) - (2)
Severity(F;) = wg | F;(t+1) — K;(t)
| -——-®
Classification:
Transient, Severity(F;)) <6,
F {Persistent, 0, <Severity(F;)<6, -—— ==
Critical, Severity(F)=>0,
4)

Nanotechnology Perceptions 19 No. 3 (2023) 514-529



522 Digital Twin—Enabled Resilience IN ... Bhaskara Raju Rallabandi

Adaptive Routing and Network Reconfiguration Algorithm

The Adaptive Routing and Network Reconfiguration Algorithm reroutes traffic and assigns
resources depending on particular faults detected in the network. The algorithm will determine
the affected nodes or links using the Digital Twin and then generate candidate routing paths
through terrestrial and non-terrestrial segments [22]. Each route is simulated in the Digital Twin
to estimate performance metrics of delay, throughput, and jitter. The best candidate is thus
applied to the physical network by the SDN controller, minimizing disruptions to service and
stabilization of throughput. This adaptive mechanism thus guarantees end-to-end continuity of
the service across heterogenecous SG-NTN deployments [23].

Cost function for path selection:
c(Pj)=a-D(Pj)—-B-Th(P)) - 3
Optimal path selection:

P*=argminc(P;)) 000 e (6)
J

Resilience Control Engine (RCE) Optimization Algorithm

The Resilience Control Engine (RCE) Optimization Algorithm selects the most efficacious
recovery strategy in relation to actual network states and historical performance information.
When faults are predicted by the Digital Twin, the RCE then uses reinforcement learning or
rule-based optimization approaches to decide on recovery actions [21]. The execution of these
actions is then carried out through SDN controllers and edge intelligence involving measures
such as traffic rerouting, resource reallocation, and UAV repositioning. Following the
reconfiguration, the RCE then monitors network performance again, feeding this information
back into the Digital Twin to enable continuous blending of knowledge for better resilience
within the integrated SG-NTN platform [24].

Optimal recovery action:
a*=arg max R(S(t),y -
a€cA
@)
State update:
se+1 =fS®,a)
®)

Where f(.) represents network dynamics after applying action a™.
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VI. RESULTS AND FINDINGS

The proposed Digital Twin (DT)—enabled framework was investigated through extensive
simulations in an integrated SG-NTN environment, comprising terrestrial 5G gNodeBs, LEO
satellites, and UAV relay nodes. The simulations analyzed the resilience of the system under
heterogeneous failure scenarios, including terrestrial base station failures, satellite link
degradations, UAV mobility impairments, and network congestion events [24]. The parameters
of consideration included recovery time, service availability, throughput stability, and control
overhead, which were then compared to a baseline system without DT-based synchronization
and adaptive routing mechanisms. The results indicate that the DT model is very effective in
maintaining constant connectivity and minimizing service degradation with dynamically
environment and fault-induced scenarios. The simulation setup incorporated realistic network
parameters in terms of link propagation delays, channel capacities, and mobility patterns to
guarantee that the results accurately represent a real-world scenario [26].

Recovery Time

Recovery time (T;) denotes an important resilience indicator for the network and measures how
long it takes the service to be restored after a fault occurs. In the simulations, the baseline system
without a digital twin took an average of 2.6 seconds to recover from failures such as terrestrial
gNodeB outages and satellite link disruptions [25].

31
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Fig 2: Average Recovery Time Comparison

By comparison, the DT-enabled framework was able to reduce the average recovery period to
1.6 seconds, which accounts for a 38% improvement. This improvement, however, can mostly
be attributed to the DT pang selecting one approach out of many possible reconfigurations that
have been pre-validated in a virtual environment prior to being enacted on the physical network
by using its real-time mirroring of the network state [25]. It could be elaborated such as: when
a satellite link degradation occurred, the twin would simulate rerouting through UAV relay and
terrestrial backhaul alternatives, determining the configuration that yielded the smallest
downtime. This preemptive detection of the best recovery routes gets rid of the reaction delays
present in the usual network management [26]. Also, the DT-awareness of the physical network
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ensures that the telemetry updates get immediately available to take end-fast decisions on the
failures, further bringing down the latency in fault handling. To conclude, all these results
clearly indicate that DT-enabled recovery provides restoration of connectivity at a faster pace
with minimal disruptions and increased operational robustness in the case of integrated 5G—
NTN networks, which are of paramount importance to mission-critical and remote access
scenarios [27].

Scenario Baseline (s) DT-enabled (s)
Link Failure 2.6 1.6
Satellite Outage 3.1 1.9

Table 1: Recovery Time Comparison
Service Availability

The availability of a service, A., is a measure of the percentage of the time network services
remain accessible to and operated for end users, thus reflecting uninterrupted connectivity
provided by the system during disruptions [25]. During the scenarios, the simulations revealed
an availability of 86% for the baseline network without the digital twin, meaning disruptions
occurred rather frequently due to link or node failures. The introduction of the DT-enabled
framework increased availability to approximately 96%, marking a 25% increment. The
increment results from the twin continuously monitoring network KPIs, such as link quality,
traffic load, and latency, to foresee failures that could appear in the users' perspective. The twin
simulates different fault-mitigation strategies in real time like rerouting traffic on a different
satellite path, adjusting UAV positions for optimum coverage, or using terrestrial nodes near
the fault zone to ensure redundancy [27]. From these simulations, the best configuration is
selected to maintain connectivity proactively; hence, service outages are minimized. Also,
continuous twin synchronization keeps the virtual model updated and accurate, enabling fault
prediction and recovery actions to be timely and precise. This increased availability is, however,
critical concerning remote, disaster-stricken, and high-mobility scenarios where the very core
value is to keep the communication uninterrupted. These confirm that the DT framework is an
adequate solution to strengthen network resilience and provide robust service continuity in
heterogeneous SG—NTN environments [25].

Scenario Baseline (%) DT-enabled (%)
Link Failure 85 95
Satellite Outage 82 94
UAV Failure 90 98

Table 2:Service Availability
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Fig 3: Service Availability Under Different Fault Scenarios
Throughput and Traffic Stability

Network throughput Th and traffic stability are indicators of performance under dynamics or in
failure-prone conditions. The simulations compared the throughputs between the baseline
network and the DT-enabled SG-NTN system across several failure scenarios, including
satellite handovers, UAV relay outages, and terrestrial congestion events. The baseline
configuration attained a throughput of some 78 Mbps on average, which the DT-enabled system
upheld and even improved by 15% to 89.5 Mbps. The reason rests in the twin assisting the
evaluation of several arrangements of routing and resource allocation in the virtual environment
prior to their application in the real network. The adaptive routing algorithm within the DT
prioritizes those paths that lessen packet loss, latency, and congestion: hence, traffic is balanced
between the terrestrial and non-terrestrial parts. Furthermore, although fluctuations in
throughput were heavily reduced from the DT-enabled system, engagements, or traffic, stability
was greatly enhanced. The twin continuously observes the traffic pattern and forecasts the
bottleneck, permitting proactive interventions: redistribution, rerouting, and dynamic
allocation; hence sudden performance degradation is prevented and ensures uninterrupted high-
priority services, e.g. URLLC or eMBB. In contrast, the DT-enabled framework strives for
increased throughput average accompanied by stable performance risen by disruptions. It is
proof to maintain consistent QoS and reliability in integrated SG-NTN deployments.

Time (s) Baseline Throughput DT-enabled
(Mbps) Throughput (Mbps)
0 78 89.5
500 76 88
1000 77 90
1500 79 89
2000 78 89.5

Table 3: Throughput Comparison
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Fig 4: Throughput Stability Over Simulation Time

Control Overhead and Scalability

The integration of Digital Twins imposes additional control signaling load and processing
overhead; however, the simulation results suggest that the rise is manageable and justified by the
improved performance [25]. Constant telemetry updates and state synchronization between real
and twin entities, along with simultaneous real-time simulation within the digital twin, present
an approximately 6% increase in control overhead when compared to the baseline. Such
overhead involves bandwidth and processing to shift network state information from the physical
nodes to the twin, execute the simulation logic, and propagate reconfiguration commands back
to the network. Nevertheless, these costs are more than justified by the gains in recovery time,
service availability, and throughput [27]. Furthermore, the framework also indicated scalability
potential: performance improvements were consistent in simulations featuring several UAV
relays with an augmented number of satellites and high user densities, whilst barely affecting
latency or synchronization. Moreover, the modular nature of the DT architecture lends itself well
to a distributed deployment where edge-based twins govern localized segments of the network,
thereby alleviating the central processing pressure and fostering better responsiveness [24].
These findings substantiate that the proposed method is not only efficient but also realistic for
deployment in the field, providing a workable balance between resilience gains and operational
overhead. Consequently, the DT-enabled control approach delivers a scalable and reliable means
to uphold robust connectivity over heterogeneous SG-NTN networks [28].

VI. CONCLUSION

A DT-enabled resilience framework for integrated SG-NTN architectures is proposed in the
study, offering a solution to preventing communication from going bad across the
heterogeneous terrestrial and satellite systems. The said framework uses a continuous digital
twin of the physical network for real-time monitoring, fault prediction, and network
reconfiguration [28]. The system itself combines a twin synchronization mechanism, Al-
driven predictive control, and adaptive routing algorithms to provide robust fault tolerance
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performance even within the confines of network dynamics and unforseen disruptions.The
simulations over a SG-NTN integrated testbed consisting of terrestrial gNodeBs, LEOs, and
UAYV relays show the effectiveness of the DT-enabled framework. The DT-enabled framework
showed faster recovery by 38%, higher service availability by 25%, and improved throughput
by 15% as opposed to conventional reactive approaches to network management, thus proving
that real-time digital mirroring and predictive control can strengthen resilience in network
settings [29]. The tests also confirmed the importance of the reconfiguration strategies being
prioritised in a virtual environment before implementation on a physical network, which cuts
down on downtime immensely while maintaining service continuity [30]. Further, this
approach is scalable and adaptable enough to be used in future 6G networks that anticipate
providing resilient, autonomic, and mission-critical communication services. The confluence
of digital twin technology with fifth generation and NTNs leads to the possibility of
constructing self-aware and self-healing network infrastructures able to confront highly
dynamic, and failure-centric, operational environments [31].In the end, it was proved that
substantial recovery time improvements, service reliability, and throughput stability could be
realized with DT-enabled resilience mechanisms in integrated SG-NTN architectures. The
findings broaden the scope of earlier studies [32] by deploying MEC orchestration, accurate
time synchronization, and closed-loop observability concepts to the hybrid terrestrial satellite
networks and proving the unified resilience and adaptive recovery performance [33].
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