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The Integration of Non-Terrestrial Networks (NTNs) with 5G does ensure omnipresent 

coverage and service continuity, particularly in disaster recovery and remote regions. Yet, the 

resilience guarantee across such heterogeneous terrestrial and satellite networks remains a 

critical challenge.This study proposes a DT-enabled resilience framework that maintains a 

continuous mirror of network states, failing to predict reconfiguration in an integrated 5G-NTN 

system. The considered model comprises a twin synchronization mechanism, AI-based 

predictive control, and an adaptive routing algorithm with fault-tolerance. Simulation results 

state that DT-ed resilience in integrated networks can provide up to 38% faster recovery time, 

25% higher service availability, and 15% more throughput in the failure scenarios, thus proving 

its efficiency. 

KEYWORDS: 5G, Non-Terrestrial Networks (NTN), Digital Twin, Communications, Edge 

Computing, AI-Enabled Control, Simulation. 

I. INTRODUCTION 

For the development of 5G networks, the scope has extended beyond terrestrial infrastructures 

to cover Non-Terrestrial Network (NTN) elements such as LEO satellites, HAPs, and UAVs, 

for provision of worldwide connectivity. This hybrid integration ensures improved coverage, 

capacity, and communication in remote areas or disaster-prone conditions. However, the 

heterogeneous and dynamic nature of these systems impedes the provision of resilience-the 

ability to sustain service continuity and recover in shortest possible time on faults, link 

disruptions, and resource unavailability. With network evolution toward 6G, resilience will be 

the prime enabler for mission-critical services and autonomous network management 

[1].Although network automation has reached a great degree of sophistication recently, even 

classical 5G management frameworks largely remain reactive in nature, focusing on fault 

detection and isolation, and recovery after the failure has taken place [2]. Specifically, NTNs 

are heavily affected by long propagation delays, intermittent connectivity, and dynamic 

topologies, all of which undermine the very basis for real-time decision-making. Hence, the 

latest requirements emphasize the need to have intelligent control and prediction mechanisms 

to foresee the network degradations and to invoke adaptive reconfiguration in anticipation [5]. 

In this case, one of the promising answers is the concept of Digital Twin (DT). A DT is a 

virtual replica representing the physical network that mirrors the network's real-time state 

through continuous synchronization of data. Using AI-powered predictive models and 
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simulation-based reasoning, a DT can predict disruptions, evaluate potential recovery 

strategies, and suggest optimal configurations even before the disruptions impact service 

quality [2]. 

This paper proposes a Digital Twin-enabled resilience architecture for integrated 5G-NTN 

systems. The main contributions include: (1) a unified DT framework for synchronizing data 

streams from terrestrial and satellite domains [3], (2)an AI-driven predictive resilience model 

for proactive fault detection and self-healing, and (3) a simulation-based evaluation 

demonstrating significant improvements in recovery time, throughput stability, and service 

availability over conventional reactive schemes. This work lays the foundation for self-aware, 

self-healing 6G networks empowered by digital-twin-intelligence [6]. 

II. RELATED WORKS 

Digital Twin Enabled Network Architectures 

The latest developments in Digital Twin (DT) technologies have brought changes to the design 

and operation of next-generation networks. Nguyen et al.and Minovski et al. introduced the 

NDT concept in 5G and beyond and defined it as a virtual replica mirroring a physical network 

for real-time monitoring, testing, and optimization. Guo et al. [1] extended the concept of DT 

by filling it with an artificial intelligence framework for resilience in order to enhance fault 

prediction and recovery in 6G networks. At the same time, Wang et al. [4], and Jamil et al. [2] 

provided an outline of the integration of DT with federated learning and edge computing to 

enable adaptive self-healing network management. Collectively, these studies show that DT-

enabled architectures allow for predictive maintenance, energy efficiency, and strong network 

resilience in 5G/6G systems. 

Terrestrial and Non-Terrestrial Networks (NTN) Integration 

Any form of converging terrestrial and non-terrestrial network would be a landmark to 

achieving ubiquitous worldwide coverage. Rinaldi et al. [17] and Giordani et al. [15], [24] 

performed basic surveys regarding the architectural evolution, challenges, and standardization 

of 5G-NTN systems emphasizing satellite- and UAV-assisted communication frameworks. 

Truong et al. [20] and Liu et al. [25] studied the integration challenges in space-air-ground 

networks, especially those concerning interoperability, resource allocation, and latency 

reduction. Furthermore, Lin et al. [8] and Polese et al. [19] tackled energy-efficient resource 

allocation and dynamic spectrum sharing in 5G-NTN systems, emphasizing the requirement 

of intelligent and adaptive management by AI-based digital twins. 

Resilience, AI, and Resource Optimization 

The AI-driven resilience has now become a core issue of the recent 5G and 6G research. Dai 

et al. studied deep reinforcement learning (DRL) methods for stochastic computation 

offloading in DT networks, while Lu et al. [7] demonstrated how federated learning and 

blockchain can facilitate secure and low-latency edge association. Lee and Kim [9] discussed 

resilient network slicing emphasizing autonomous recovery and reconfiguration in 5G 

systems. Tataria et al. [14] and Hasan et al. explored wider-reaching goals of resilience, dealing 

with security, privacy, and adaptability challenges across various verticals. 
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Standards and Vision for Future Networks 

3GPP TR 38.811laid the foundation for NR-based NTN, whereas 5G Americas supplied the 

full industrial viewpoint of deployment of NTNs. As well, Uusitalo et al. and Saad et 

al.outlined the 6G vision integrating DTs with AI and NTNs into one framework for intelligent 

global connectivity. Together, they make the foundation for digital twin–enabled resilience in 

integrated 5G–NTN architectures, bringing to the forefront the convergence of AI, edge 

intelligence, and virtualization for self-sustaining networks.The latest developments in Digital 

Twin (DT) technologies have brought changes to the design and operation of next-generation 

networks. Nguyen et al.and Minovski et al. [6] introduced the NDT concept in 5G and beyond 

and defined it as a virtual replica mirroring a physical network for real-time monitoring, 

testing, and optimization. Guo et al. [1] extended the concept of DT by filling it with an 

artificial intelligence framework for resilience in order to enhance fault prediction and 

recovery in 6G networks. At the same time, Wang et al.and Jamil et al. [2] provided an outline 

of the integration of DT with federated learning and edge computing to enable adaptive self-

healing network management. Collectively, these studies show that DT-enabled architectures 

allow for predictive maintenance, energy efficiency, and strong network resilience in 5G/6G 

systems. 

III. PROPOSED MODEL DESIGN 

System Architecture Overview 

The Digital Twin–Enabled Resilience Framework seeks to join terrestrial 5G infrastructure 

with NTN components through a common control and data plane [7]. As is shown in Fig. 1, 

the system consists of three essential layers: the Terrestrial Segment, the NTN Segment, and 

the Digital Twin Layer.Here, the Terrestrial Segment comprises 5G gNodeBs, MEC servers, 

and the SDN controller responsible for real-time orchestration. The NTN Segment consists 

of LEO satellite constellations and UAV relays, extending from network coverage to 

backhaul connectivity in remote areas [10].The Digital Twin Layer mirrors a fully integrated 

5G–NTN network in virtualization, wherein it is kept in continuous sync with the real world 

through telemetry and monitoring data[11]. It models certain parameters like link quality, 

traffic load, and node health. The predictive engines in the DT are AI-based, e.g., LSTM and 

GNN, used for the prediction of link degradations or node failures.The Control and Data 

Plane Integration is yet another SDN-based orchestrator, which leverages information arising 

from the DT towards proactive decision-making such as self-healing, adaptive routing, 

dynamic resource allocation [13]. The multi-layer architecture allows for acquisition of real-

time situation awareness, situational prediction, and autonomous recovery actions that make 

for improved end-to-end resilience of heterogeneous 5G–NTN systems [7]. 

Digital Twin Synchronization Mechanism 

The Digital Twin synchronization mechanism is the ultimate real-time awareness and 

resilience provision within the integrated 5G–NTN architecture. It guarantees that the digital 

cybernetic twin of the physical network maintains an accurate, current reflection of the 

operational states across the terrestrial and non-terrestrial segments. The synchronization 

loop processes four major functions: data collection, state updating, prediction, and action-

feedback are executed in an ongoing harmonious manner with the network control plane [9]. 
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During the data collection phase, these telemetry parameters and KPIs are continuously 

retrieved in real-time from heterogeneous sources: gNodeBs, user equipment (UE), UAV 

relays, LEO satellites, etc. These parameters include signal-to-noise ratio (SNR), link delay, 

throughput, and node resource utilization. This multi-source data stream keeps the Digital 

Twin cognizant of the overall network performance and resource health.During the state 

updating phase, the Digital Twin updates its internal network graph using distributed data 

streams at fixed intervals, say t = 100 ms. In this way, the protocol helps reduce 

communication overhead by using edge-level caching and message compression to ensure 

low latency and efficiency [12]. 

The prediction-detection phase continuously runs in the background, facilitated by AI models 

(such as LSTM or GNN) that monitor temporal and spatial correlations in the incoming 

telemetry data. This phase allows the system to detect early anomalies, performance 

degradations, or potential faults, such as satellite beam misalignment or terrestrial link 

congestion [8]. As a consequence of such predictive alerts, the control system will have the 

opportunity to act in mitigation prior to the failure severely affecting the quality of service to 

the end user.At the action-and-feedback phase, the Digital Twin engages with the SDN 

controller for implementing proactive reconfiguration measures for adaptive routing, 

spectrum reallocation, and satellite beam switching, ensuring continued services [10]. 

Following implementations of corrective actions, the performance metrics are again fed into 

the Twin environment, thereby closing the synchronization cycle. The dynamic interaction 

converts the Digital Twin from a passive overseer into a resilience agent able, nearly in real-

time, to foresee, counteract, and learn from network disruptions [12]. 

Resilience Mechanism and Adaptive Control 

The Resilience Mechanism and Adaptive Control constitutes the intelligent decision unit 

within the framework [7]. Being provided within the Digital Twin environment, the 

Resilience Control Engine automatically looks into the recovery of networks and their 

optimization for performance through a chained sequence of interdependent stages consisting 

of fault detection and classification, decision optimization, and autonomous 

reconfiguration.For the fault detection and classification stage, RCE uses performance 

history and predictive analytics to detect abnormal behavior and classify faults in terms of 

severity [9]. The recognized faults are labeled as transient, persistent, or critical, depending 

on whether they are expected to impact service continuity. Such a hierarchical classification 

enables the system to target recovery action resources appropriately.The decision 

optimization phase determines the best control action in response to a given fault scenario 

using reinforcement learning (RL) algorithms [12]. These algorithms perform continuous 

learning from previous successful and unsuccessful recovery cases, enabling the RCE to 

arrive at an optimal strategy that shortens recovery time and offers high throughput and 

system stability. The RL-based agent thereby maintains resilience even when networks are 

distressed under unpredictable link dynamics inherent in NTNs [8]. 

The autonomous reconfiguration stage implements the selected reconfiguration scenario over 

the SDN controller [9]. A typical solution may reroute traffic flows through alternative 

satellite links and may also involve adjusting transmission power levels or triggering beam 

handovers among LEO satellites and UAV relays. The execution process is seamless, with 
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no human intervention required, which ensures the end-to-end service continuity even during 

fault scenarios.The proposed Digital Twin-enabled resilience framework brings a major 

improvement in network robustness by the tight integration of predictive AI and SDN-based 

orchestration [12]. The resilience framework simulations show up to 38% faster recovery 

from faults, service availability improved by the 25%, and throughput stability enhanced by 

15% over a classical reactive fault management approach. This synergy between prediction, 

optimization, and reconfiguration makes the system inherently adaptive and prepared for 

next-generation 6G oriented resilient network infrastructures [7]. 

 

Figure 1: System Architecture Overview 

 

IV. METHODOLOGICAL FRAMEWORK 

The methodology sets forth a systematic process to implement resilience considerations into 

integrated 5G–Non-Terrestrial Network (NTN) architectures through Digital Twin (DT) 

technology [13]. As such, considerations regarding modeling the physical network, twin 

synchronization, predictive control, adaptive routing, and simulation-based evaluation are 

carefully assessed in order to provide uninterrupted service during faults. Real-time mirroring 

of physical and virtual environments is given weight by this methodology while simultaneously 

considering fault occurrence and performance optimization. Each methodological step 

strengthens system reliability, reduces service recovery latency, and thereby guarantees service 

availability in heterogeneous network infrastructures [17]. 

System Initialization and Architecture Design 

In the first step of the method, an initialization of the integrated 5G-NTN architecture is 

conducted, which is composed of three hierarchical layers, namely the Physical Network Layer, 
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the Digital Twin Layer, and the Resilience Intelligence Layer [18]. The physical layer 

represents the operational communication infrastructure from terrestrial and non-terrestrial 

standpoints, including terrestrial 5G components such as gNodeB, UE, core networks, and non-

terrestrial components such as LEO satellites and UAV-based relay nodes [19]. These entities 

provide end-to-end communication and data exchange over wide geographic areas. The Digital 

Twin Layer provides a near-real-time virtual mirror of the physical infrastructure, receiving 

telemetry updates describing the network status, topology, operating parameters, etc. The 

Resilience Intelligence Layer is an entity that takes decisions about monitoring, fault detection, 

and adaptive recovery actions [13]. Such layered architecture allows the system to be efficiently 

managed and to dynamically coordinate between physical and virtual entities. The initialization 

phase also includes the configuration of different simulation parameters, threshold values for 

monitoring performance, and the definition of a communication interface between terrestrial 

and non-terrestrial segments [15]. Serving as the function-based architecture design, this 

structured architecture design paves the way for developing an operational synchronized, fault-

tolerant, and reconfigurable 5G–NTN communication environment that facilitates real-time 

resilience operations [16]. 

Twin Synchronization Mechanism  

The twin synchronization mechanism ensures that the DT has a proper and continuous 

representation of the 5G–NTN physical system [17]. Telemetry data measuring SNR, 

throughput, latency, packet error rate, and link quality are streamed to the DT environment from 

the physical network elements. The synchronization module detects any deviation in 

performance or status in terms of these metrics in both domains. Whenever the deviation crosses 

the chosen value, generally around 5–10%, the digital model updates its parameter 

automatically according to what it sees from the real world so as to synchronize with it. This 

guarantees real-time synchronization, and the DT can thus be used as a trustworthy simulation 

platform for resilience analysis [13]. On the other hand, the synchronization enables "what-if" 

analysis, whereby simulated scenarios are put into effect to understand the consequence of a 

potential fault or change before carrying out such a change in the live system. Data exchange 

between the two domains is handled through standard APIs and message brokers, thereby 

keeping latency minimal [15]. Thus, maintaining the synchronization mechanism ensures that 

the resonance strategies, once proven in the twin, can be executed within the real network 

without any harm. This synchronization chain, therefore, elevates fault management and 

dynamic optimization inside the integrated architecture [17]. 

Fault Detection and Predictive Control 

Fault detection and predictive control are concerned with finding instances of disruption and 

measuring the effects this might have on the overall network performance [18]. The DT keeps 

a continuous watch on KPIs such as latency, packet loss, link availability, and bandwidth 

utilization. When KPIs cross threshold limits set beforehand, it refers to the situation as a fault 

or degradation scenario [20]. The fault detection unit uses deterministic threshold-based logic 

with the support of a straightforward predictive control procedure that predicts how the fault 

might propagate in network layers. For instance, reduction in satellite link quality may be 

predicted to affect ground user throughput so that remedial measures may be initiated. The 

predictive control module, instead of using complex machine learning, performs model-based 
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estimation to reduce computational costs and provide real-time decision support. It forecasts 

degradation trends in performance and switches to resilience controller for reconfiguration. 

Predictions are validated by the DT environment according to the simulation of the predicted 

fault scenario with confirmed severity and impact. Once confirmed, a switch is made by the 

controlling system that leads to adaptive routing to treat the faults. Hence, such a model-based 

approach aids technique leads in preventing cascading failures with minimum service 

interruptions. Hence the stage of fault detection and predictive control allows early recognition 

of anomalies and fast intervention to sustain network resilience under dynamically changing 

operational conditions [19[. 

Adaptive Routing and Network Reconfiguration  

The detection of a fault or an event causing degradation triggers the activation of the adaptive 

routing and reconfiguration mechanism inside the operational environment of the DT. The 

mechanism assesses various alternative connectivity options, including being re-routed through 

nearby 5G cells, LEO satellites, or UAV-assisted relay nodes, according to the origin of the 

fault. With the Digital Twin, all these potential reconfiguration scenarios are simulated for their 

impact on performance metrics such as delay, jitter, packet delivery ratio, and throughput. The 

scenario that attains the optimum simulation results, generally interpreted as lowest delay and 

highest throughput, is the one selected to become the preferred recovery setup [16]. Hence, the 

chosen configuration from the simulation will then be deployed into the physical network 

through the SDN controller, which proceeds to implement routing-tables updates, as well as the 

reallocation of resources, in real time. The reconfiguration is designed to be as quick and 

dynamic as possible, and it also reduces any kind of disruption to the user really well. It hence 

maintains the consistency of user experience amidst satellite link handovers, terrestrial node 

failures, or the repositioning of UAV relays. Upon implementation, the DT, in turn, verifies the 

production of restored performance and updates the synchronization to ensure confirmation of 

recovery. Hence, the adaptive operation ensures the continuous continuity and stability of the 

network upon dynamic or adverse conditions, and thus it is indeed vital for the resilience of 

integrated 5G–NTN architectures [13]. 

Simulation and Performance Evaluation 

Simulation and the performance evaluation of the whole stage is employed to quantify the 

resilience improvements offered by the proposed DT-enabled framework. The integrated 5G–

NTN system gets simulated under multiple failure and recovery scenarios using realistic 

network parameters like propagation delay, link capacity, and mobility pattern [15]. It 

particularly evaluates the recovery time (T_r), service availability (A_a), and throughput (Th) 

when nodes or links fail [16]. Comparative experiments are conducted between the proposed 

DT-enabled model and a base non-DT configuration. The results show that the DT-assisted 

model exhibits respectively 38% faster recovery rate, 25% more service availability, and 15% 

more throughput. Such improvements validate the proposed resilience framework's 

effectiveness. The simulation further proves that synchronizations assisted by the twin and 

adaptive routing enable the reduction of downtime and optimization of spectrum usage in 

terrestrial and non-terrestrial domains concurrently [20]. Additionally, when sensitivity analysis 

is carried out, the system's performance is stable despite changes in fault density and link 

uncertainty. This stage henceward confirms the functionality of the proposed architecture and 

demonstrates that the insertion of the Digital Twin in hybrid 5G–NTN systems significantly 
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improves their operational resilience, adaptability, and sustainability of operational 

performance end-to-end [14]. 

V. ALGORITHMS USED 

Twin Synchronization Algorithm 

The Twin Synchronization Algorithm aims to maintain an ongoing, uninterrupted real-time 

mirror of the physical 5G–NTN network in the Digital Twin. The algorithm first collects 

telemetry data from all the network components, such as gNodeBs, UAV relays, and LEO 

satellites, including signal-to-noise ratio, latency, throughput, and packet loss [20]. The Digital 

Twin then updates its internal network graph at fixed intervals to mimic the real-time state of 

the network [21]. Once deviations in performance in contrast with expected thresholds are 

detected, the Digital Twin's parameters are thus adjusted. Furthermore, a feedback loop is 

incorporated whereby simulation-based forecasts are fed back to the network control plane, 

facilitating proactive reconfiguration and a greater degree of service continuity even in the face 

of faults [22]. 

 

                                𝑺(𝒕 + 𝟏) = 𝑺(𝒕) + ∑ 𝒇𝒊(𝑻𝒊(𝒕)) ⋅ 𝟏{∣𝑻𝒊(𝒕)−𝑺𝒊(𝒕)∣>𝝐}

𝑵

𝒊=𝟏
                     -------(1) 

 

Predictive Fault Detection Algorithm 

The Predictive Fault Detection Algorithm monitors network performance metrics in the Digital 

Twin to ascertain indicators of degradation at its earliest. It predicts the spread of a fault 

amongst the sometimes various layers of the network through model predictive control or 

artificial intelligence models such as LSTM and GNN. After an anomaly is detected, the 

algorithm classifies it as either transient, persistent, or critical, depending upon its degree of 

severity and therefore the implications upon service continuity. These predictions are then 

passed on to the Resilience Control Engine to carry out preventative measures prior to the faults 

impairing the end-user experience, thereby cutting downtime and avoiding cascading failures 

[24]. 

Formula: 

𝑭̂(𝒕 + 𝟏) = 𝑷(𝑲(𝒕), 𝑲(𝒕 − 𝟏), . . . , 𝑲(𝒕 − 𝒏)                             --------(2)  

                                           𝑺𝒆𝒗𝒆𝒓𝒊𝒕𝒚(𝑭𝒊) = 𝒘𝒔 ⋅∣ 𝑭̂𝒊(𝒕 + 𝟏) − 𝑲𝒊(𝒕)
∣                              − − − − (𝟑) 

Classification: 

                                Fi∈ {
Transient,
Persistent,

Critical,

Severity(Fi)<θ1

θ1≤Severity(Fi)<θ2

Severity(Fi)≥θ2

                              − − − −

(𝟒) 
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Adaptive Routing and Network Reconfiguration Algorithm 

The Adaptive Routing and Network Reconfiguration Algorithm reroutes traffic and assigns 

resources depending on particular faults detected in the network. The algorithm will determine 

the affected nodes or links using the Digital Twin and then generate candidate routing paths 

through terrestrial and non-terrestrial segments [22]. Each route is simulated in the Digital Twin 

to estimate performance metrics of delay, throughput, and jitter. The best candidate is thus 

applied to the physical network by the SDN controller, minimizing disruptions to service and 

stabilization of throughput. This adaptive mechanism thus guarantees end-to-end continuity of 

the service across heterogeneous 5G–NTN deployments [23]. 

Cost function for path selection: 

 

                                              𝑪(𝑷𝒋) = 𝜶 ⋅ 𝑫(𝑷𝒋) − 𝜷 ⋅ 𝑻𝒉(𝑷𝒋)                                     --------(5) 

Optimal path selection: 

                                          𝑷∗ = 𝐚𝐫 𝐠 𝒎𝒊 𝒏.
𝒋

𝑪(𝑷𝒋)                                                    -------(6) 

 Resilience Control Engine (RCE) Optimization Algorithm 

The Resilience Control Engine (RCE) Optimization Algorithm selects the most efficacious 

recovery strategy in relation to actual network states and historical performance information. 

When faults are predicted by the Digital Twin, the RCE then uses reinforcement learning or 

rule-based optimization approaches to decide on recovery actions [21]. The execution of these 

actions is then carried out through SDN controllers and edge intelligence involving measures 

such as traffic rerouting, resource reallocation, and UAV repositioning. Following the 

reconfiguration, the RCE then monitors network performance again, feeding this information 

back into the Digital Twin to enable continuous blending of knowledge for better resilience 

within the integrated 5G–NTN platform [24]. 

Optimal recovery action: 

                                                     𝒂∗ = 𝐚𝐫𝐠 𝐦𝐚𝐱 
𝒂∈𝑨

𝑹(𝑺(𝒕), 𝒂)                                                   -------

(7) 

State update: 

                                               𝑺(𝒕 + 𝟏) = 𝒇(𝑺(𝒕), 𝒂∗)                                                     -------

(8) 

Where f(.) represents network dynamics after applying action a∗. 
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VI. RESULTS AND FINDINGS 

The proposed Digital Twin (DT)–enabled framework was investigated through extensive 

simulations in an integrated 5G–NTN environment, comprising terrestrial 5G gNodeBs, LEO 

satellites, and UAV relay nodes. The simulations analyzed the resilience of the system under 

heterogeneous failure scenarios, including terrestrial base station failures, satellite link 

degradations, UAV mobility impairments, and network congestion events [24]. The parameters 

of consideration included recovery time, service availability, throughput stability, and control 

overhead, which were then compared to a baseline system without DT-based synchronization 

and adaptive routing mechanisms. The results indicate that the DT model is very effective in 

maintaining constant connectivity and minimizing service degradation with dynamically 

environment and fault-induced scenarios. The simulation setup incorporated realistic network 

parameters in terms of link propagation delays, channel capacities, and mobility patterns to 

guarantee that the results accurately represent a real-world scenario [26]. 

Recovery Time  

Recovery time (Tᵣ) denotes an important resilience indicator for the network and measures how 

long it takes the service to be restored after a fault occurs. In the simulations, the baseline system 

without a digital twin took an average of 2.6 seconds to recover from failures such as terrestrial 

gNodeB outages and satellite link disruptions [25].  

 

Fig 2: Average Recovery Time Comparison 

By comparison, the DT-enabled framework was able to reduce the average recovery period to 

1.6 seconds, which accounts for a 38% improvement. This improvement, however, can mostly 

be attributed to the DT pang selecting one approach out of many possible reconfigurations that 

have been pre-validated in a virtual environment prior to being enacted on the physical network 

by using its real-time mirroring of the network state [25]. It could be elaborated such as: when 

a satellite link degradation occurred, the twin would simulate rerouting through UAV relay and 

terrestrial backhaul alternatives, determining the configuration that yielded the smallest 

downtime. This preemptive detection of the best recovery routes gets rid of the reaction delays 

present in the usual network management [26]. Also, the DT-awareness of the physical network 
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ensures that the telemetry updates get immediately available to take end-fast decisions on the 

failures, further bringing down the latency in fault handling. To conclude, all these results 

clearly indicate that DT-enabled recovery provides restoration of connectivity at a faster pace 

with minimal disruptions and increased operational robustness in the case of integrated 5G–

NTN networks, which are of paramount importance to mission-critical and remote access 

scenarios [27]. 

Scenario Baseline (s) DT-enabled (s) 

Link Failure 2.6 1.6 

Satellite Outage 3.1 1.9 

Table 1: Recovery Time Comparison 

Service Availability  

The availability of a service, Aᵥ, is a measure of the percentage of the time network services 

remain accessible to and operated for end users, thus reflecting uninterrupted connectivity 

provided by the system during disruptions [25]. During the scenarios, the simulations revealed 

an availability of 86% for the baseline network without the digital twin, meaning disruptions 

occurred rather frequently due to link or node failures. The introduction of the DT-enabled 

framework increased availability to approximately 96%, marking a 25% increment. The 

increment results from the twin continuously monitoring network KPIs, such as link quality, 

traffic load, and latency, to foresee failures that could appear in the users' perspective. The twin 

simulates different fault-mitigation strategies in real time like rerouting traffic on a different 

satellite path, adjusting UAV positions for optimum coverage, or using terrestrial nodes near 

the fault zone to ensure redundancy [27]. From these simulations, the best configuration is 

selected to maintain connectivity proactively; hence, service outages are minimized. Also, 

continuous twin synchronization keeps the virtual model updated and accurate, enabling fault 

prediction and recovery actions to be timely and precise. This increased availability is, however, 

critical concerning remote, disaster-stricken, and high-mobility scenarios where the very core 

value is to keep the communication uninterrupted. These confirm that the DT framework is an 

adequate solution to strengthen network resilience and provide robust service continuity in 

heterogeneous 5G–NTN environments [25]. 

 

Scenario Baseline (%) DT-enabled (%) 

Link Failure 85 95 

Satellite Outage 82 94 

UAV Failure 90 98 

Table 2:Service Availability 
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Fig 3: Service Availability Under Different Fault Scenarios 

Throughput and Traffic Stability  

Network throughput Th and traffic stability are indicators of performance under dynamics or in 

failure-prone conditions. The simulations compared the throughputs between the baseline 

network and the DT-enabled 5G–NTN system across several failure scenarios, including 

satellite handovers, UAV relay outages, and terrestrial congestion events. The baseline 

configuration attained a throughput of some 78 Mbps on average, which the DT-enabled system 

upheld and even improved by 15% to 89.5 Mbps. The reason rests in the twin assisting the 

evaluation of several arrangements of routing and resource allocation in the virtual environment 

prior to their application in the real network. The adaptive routing algorithm within the DT 

prioritizes those paths that lessen packet loss, latency, and congestion: hence, traffic is balanced 

between the terrestrial and non-terrestrial parts. Furthermore, although fluctuations in 

throughput were heavily reduced from the DT-enabled system, engagements, or traffic, stability 

was greatly enhanced. The twin continuously observes the traffic pattern and forecasts the 

bottleneck, permitting proactive interventions: redistribution, rerouting, and dynamic 

allocation; hence sudden performance degradation is prevented and ensures uninterrupted high-

priority services, e.g. URLLC or eMBB. In contrast, the DT-enabled framework strives for 

increased throughput average accompanied by stable performance risen by disruptions. It is 

proof to maintain consistent QoS and reliability in integrated 5G–NTN deployments. 

 

Time (s) 
Baseline Throughput 

(Mbps) 

DT-enabled 

Throughput (Mbps) 

0 78 89.5 

500 76 88 

1000 77 90 

1500 79 89 

2000 78 89.5 

Table 3: Throughput Comparison 
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Fig 4: Throughput Stability Over Simulation Time 

 

Control Overhead and Scalability  

The integration of Digital Twins imposes additional control signaling load and processing 

overhead; however, the simulation results suggest that the rise is manageable and justified by the 

improved performance [25]. Constant telemetry updates and state synchronization between real 

and twin entities, along with simultaneous real-time simulation within the digital twin, present 

an approximately 6% increase in control overhead when compared to the baseline. Such 

overhead involves bandwidth and processing to shift network state information from the physical 

nodes to the twin, execute the simulation logic, and propagate reconfiguration commands back 

to the network. Nevertheless, these costs are more than justified by the gains in recovery time, 

service availability, and throughput [27]. Furthermore, the framework also indicated scalability 

potential: performance improvements were consistent in simulations featuring several UAV 

relays with an augmented number of satellites and high user densities, whilst barely affecting 

latency or synchronization. Moreover, the modular nature of the DT architecture lends itself well 

to a distributed deployment where edge-based twins govern localized segments of the network, 

thereby alleviating the central processing pressure and fostering better responsiveness [24]. 

These findings substantiate that the proposed method is not only efficient but also realistic for 

deployment in the field, providing a workable balance between resilience gains and operational 

overhead. Consequently, the DT-enabled control approach delivers a scalable and reliable means 

to uphold robust connectivity over heterogeneous 5G–NTN networks [28]. 

 

VI. CONCLUSION 

A DT-enabled resilience framework for integrated 5G–NTN architectures is proposed in the 

study, offering a solution to preventing communication from going bad across the 

heterogeneous terrestrial and satellite systems. The said framework uses a continuous digital 

twin of the physical network for real-time monitoring, fault prediction, and network 

reconfiguration [28]. The system itself combines a twin synchronization mechanism, AI-

driven predictive control, and adaptive routing algorithms to provide robust fault tolerance 
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performance even within the confines of network dynamics and unforseen disruptions.The 

simulations over a 5G–NTN integrated testbed consisting of terrestrial gNodeBs, LEOs, and 

UAV relays show the effectiveness of the DT-enabled framework. The DT-enabled framework 

showed faster recovery by 38%, higher service availability by 25%, and improved throughput 

by 15% as opposed to conventional reactive approaches to network management, thus proving 

that real-time digital mirroring and predictive control can strengthen resilience in network 

settings [29]. The tests also confirmed the importance of the reconfiguration strategies being 

prioritised in a virtual environment before implementation on a physical network, which cuts 

down on downtime immensely while maintaining service continuity [30]. Further, this 

approach is scalable and adaptable enough to be used in future 6G networks that anticipate 

providing resilient, autonomic, and mission-critical communication services. The confluence 

of digital twin technology with fifth generation and NTNs leads to the possibility of 

constructing self-aware and self-healing network infrastructures able to confront highly 

dynamic, and failure-centric, operational environments [31].In the end, it was proved that 

substantial recovery time improvements, service reliability, and throughput stability could be 

realized with DT-enabled resilience mechanisms in integrated 5G-NTN architectures. The 

findings broaden the scope of earlier studies [32] by deploying MEC orchestration, accurate 

time synchronization, and closed-loop observability concepts to the hybrid terrestrial satellite 

networks and proving the unified resilience and adaptive recovery performance [33]. 
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