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The growing global burden of diabetes worldwide, especially amongst women, requires 

precision-driven predictive models from demographically-representative health data. This 

study proposes a female-circumscribed method of early diabetes prediction using Machine 

Learning (ML). The study utilizes a real dataset collected by Mohammed Mustafa on Kaggle 

applying preprocessing steps of label encoding, mean imputation, normalization, and SMOTE 

for missing data and class imbalance. A 70:30 split was used for the development and 

evaluation of six ML classifiers.  The top model among them was LightGBM, which achieved 

97% accuracy, 96.5% precision, 97.3% recall, 96.9% F1-score, and 98% ROC-AUC after 

GridSearchCV hyperparameter modifications. In addition to the model performance, the study 

helps interpret results by also implementing data visualization tools like Count Plots, 

Correlation heatmaps, and ROC curves. Female diabetes risk factors emerged only through the 

gender-specific filter, showing that demographics matter in healthcare AI. According to a 

comparative study with earlier research, the suggested LightGBM model performs better than 

other models including MLP, LSTM, CNN, and Random Forest. Our work thus not merely 

improves on prediction accuracy but also demonstrates the importance of gender-aware 

personalized machine learning solutions in clinical practice, clearly building on the existing 

literature in this space. These results underscore the importance of gender and socio-

demographic variables in future prediction models and support the clinical utility of 

explainable, real-world CDSS for precision diabetes health care. 

Keywords: Gender-specific, machine learning,  LightGBM , Diabetes prediction, SMOTE, 

Hyperparameter tuning,  

INTRODUCTION 

The medical disease known as diabetes, which is considered by raised blood glucose levels, 

has become a chronic worldwide well-being concern in recent decades.  The primary causes 

of diabetes are inadequate production and inefficient use of insulin, the hormone that regulates 

blood glucose levels.  Many different organs in the human body may be impacted by the 
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numerous health issues that diabetes may cause over time (Dutta et al., 2022).  An estimated 

452 million individuals worldwide have diabetes in 2017, and by 2045, that number is 

predicted to increase to 694 million (Lawrence et al., 2021).  According to another study, it 

will increase to 25 percent of the population by 2030 and reach 51 percent by 2045.   The three 

primary types of diabetes that may be differentiated are diabetes of the three types, diabetes of 

the two types, and pregnancy-associated diabetes (Gollapalli et al., 2022). “Type 1 diabetes 

results from the immune system inadvertently attacking the beta cells in the pancreas, which 

destroys the insulin-making mechanism.   Type 2 diabetes is the most common of the three 

types of the disease and is still linked to our lifestyle choices, how we eat, obesity, sedentary 

lives, and mental health (Asril et al., 2020; Galaviz et al., 2018).  When a person has type 2 

diabetes, their body becomes resistant to insulin because their pancreas cannot produce enough 

of it to meet their needs (Nolan & Prentki, 2019).  Thus, it can no longer control blood glucose 

levels, and people with type 2 diabetes must control their behavior and take several 

medications to stay on the right track (Qian et al., 2022).  Gestational diabetes is a condition 

that develops during pregnancy and usually goes away after birth.   It might increase the 

likelihood that the mother and the stillborn child would have problems.  Diabetic symptoms 

may vary greatly depending on the kind of diabetes.  However, common symptoms include 

increased appetite, fatigue, impaired vision, numbness, frequent urination, unexplained weight 

loss, and recurrent infections.  Increased thirst and urination are frequent early signs of 

diabetes, and people with the condition can experience weight loss despite their increased 

appetite (Dwivedi & Pandey, 2020).  High blood sugar affects the cornea of the eye, causing 

blurred vision.  Elevated blood glucose levels may decrease the body's defenses against 

infection, which increases the risk of infections and makes wounds and other injuries take 

longer to heal.  There are many ways to manage blood sugar, depending on the kind of diabetes.   

Insulin is often used to treat type 1 diabetes, although depending on its severity, type 2 diabetes 

may need insulin injections or oral medicines.  Diabetics may find that regular blood glucose 

checks and medication modifications help them manage blood glucose levels.  Another 

important factor in this case is diet.” 

Diabetes requires careful monitoring of carbohydrate intake and portion management, as well 

as adherence to a healthy, balanced diet.   Exercise enhances insulin sensitivity, reduces body 

weight, and regulates blood sugar levels.  Diabetes mellitus, one of the most prevalent and 

fatal chronic medical conditions worldwide, harms millions of individuals and places a heavy 

burden on medical facilities.  For successful intervention and disease control, diabetes must be 

predicted early and accurately. ML algorithms have emerged as useful instruments for spotting 

trends and forecasting the course of diseases as healthcare data becomes more widely available 

(Davies et al., 2022).  Although several research has investigated the use of ML to predict 

diabetes, the majority of models now in use are generic and do not account for gender-specific 

differences, even though medical data indicates that diabetes damages men and women 

separately.  Diabetes impact and maintenance in females may be influenced by variables such 

as hormonal swings, gestational diabetes, and variations in fat metabolism. As a result, 

developing gender-aware prediction models are essential to enhancing diagnostic precision 

and guaranteeing individualized treatment. Adults are most at risk for diabetes because 90% 

of them live in middle-income nations and 40% have not received a diagnosis. Diabetes-related 
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medical costs are expected to reach USD 966 billion in 2021, a 316% increase from the 

previous ten years, based on statistics.  The “International Diabetes Federation” (IDF) reports 

that glucose intolerance affects more than 541 million individuals globally.   In their lifetime, 

10% of Americans will be at high risk of getting type 2 diabetes. An estimated 68% of 

individuals with diabetes live in countries with the greatest prevalence of the illness, such as 

the United States of America (World Health Organization (WHO), 2024) in Figure 1.  In the 

past, these nations had 27.9 million diabetics.   Nonetheless, diabetes affected one in ten people 

globally in 2021, with a predicted 537 million adults diagnosed with the condition.  Globally, 

there will be 643 million diabetics by 2030 and 784 million by 2045, according to research 

released by the IDF. The Western Pacific area now has the highest number of diabetes patients 

globally.” 

 

Figure 1: Number of diabetics in the world by region (World Health Organization 

(WHO), 2024). 

By modifying the model to gender-specific data, this research aims to enhance prediction 

performance by presenting an ML framework for predicting diabetes with an emphasis on 

female patients.  Using a real-world dataset including clinical and demographic data, the 

research balances the distribution of classes through such preprocessing techniques as feature 

selection, labeled encoding, and SMOTE.  Out of all the algorithms that were investigated, the 

Light Gradient Boosting Machine (Light-GBM) was chosen because of its exceptional 

performance and excellent effectiveness on tabular medical data.  Applying the model to data 

unique to women, it outperforms conventional models like RF, DT, and LR, achieving 97% 

accuracy and 98% ROC-AUC after hyperparameter optimization using Grid-Search-CV.  In 

addition, data visualization methods including heatmaps, count plots, and gender distribution 

charts were used to highlight significant feature correlations to enhance dataset 

comprehension.  The usefulness of Light-GBM for gender-specific forecasting of diabetes is 
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shown in this study, and it also shows the significance of using socioeconomic factors like 

gender in ML models for more accurate and individualized disease prediction.  

1. LITERATURE REVIEW 

Bölte et al. (2023) examined clinical aspects of autism, ADHD, and other neurodevelopmental 

disorders, emphasizing the roles of sex and gender in genetics, behavior, and epidemiology. 

Evidence shows that gender and sex significantly influence biological and behavioral 

variability, but research translation is limited by methodological issues, including confusion 

between sex and gender, inadequate evaluation, and underrepresentation of certain 

demographic groups. Future studies should incorporate sex and gender in mechanistic 

research, diagnostics, and clinical applications. 

Zheng et al. (2017) proposed a data-driven ML framework using feature engineering to 

identify type 2 diabetes (T2DM) from EHRs. Tested on 300 patient samples from a 23,281-

cohort repository, the framework compared common ML models (kNN, Naïve Bayes, LR) 

against expert algorithms using accuracy, precision, AUC, sensitivity, and specificity. The 

approach achieved an average AUC of ∼0.98, outperforming the expert algorithm (AUC 0.71) 

by reducing missed cases and selection biases, demonstrating more precise and effective 

identification of T2DM patients. 

Thotad et al. (2023) analyzed diabetes risk factors from the 2016 Indian Demographic and 

Health Survey using both continuous and categorical data. They applied Kernel Entropy 

Component Analysis (KECA) for dimensionality reduction and implemented ML models in 

three phases: feature extraction, classification, and prediction. Random Forest (RF) achieved 

the highest accuracy on both unbalanced (99.84%) and KECA-balanced (96.75%) datasets, 

with the balanced set also yielding 99.64% accuracy for Support Vector Classifier and 99% 

AUC for RF. These results demonstrate that KECA-enhanced training can improve ML model 

performance for diabetes prediction. 

Rahman et al. (2023) developed an automated ML model using socio-demographic variables 

to predict early-stage diabetes. Among six tested classifiers, Random Forest (RF) performed 

best with 99.36% accuracy. Using SHAP values, the study identified prolonged healing, 

polyuria, and polydipsia as the most important risk factors, demonstrating the model’s 

effectiveness for early diabetes prediction. 

Bozkurt et al. (2020) reviewed 164 ML studies (2015–2019) using EHR data for clinical 

decision support. Many studies inconsistently reported demographic information: 24% omitted 

gender, 21% age, 64% race/ethnicity, and 92% socioeconomic status. Only 12% validated 

models on external populations, and 17% shared their code. The reviewed populations 

overrepresented White and Black individuals while underrepresenting Hispanics, highlighting 

limitations in generalizability. 

Abu-Shareha (2024) proposed a comprehensive framework for diabetes prediction using 

laboratory, demographic, and historical data. The system applied feature selection, data 

imputation, oversampling, and parameter tuning, with ML models including RF, SVM, LR, 
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and neural networks. Evaluated on the Pima Indian Diabetes dataset using accuracy, recall, 

precision, and F-measure, Random Forest achieved the highest performance (99% accuracy) 

with Grid Search Cross-Validation, demonstrating the framework’s reliability and efficiency. 

Ahmed et al. (2021) highlighted the use of label-encoding, normalization, and feature selection 

to enhance ML model accuracy for diabetes prediction. Tested on two datasets, their approach 

improved accuracy by 2.71–13.13% over previous studies. The most effective ML model was 

integrated into a Python Flask web application, demonstrating that proper preprocessing 

combined with ML classification can reliably predict diabetes from clinical data. 

Tuppad and Patil (2022) reviewed ML applications for type 2 diabetes treatment and 

prevention, highlighting gaps in medical knowledge, guidelines, and practice. They 

categorized ML use into three areas: risk assessment (ML-based risk scores), evaluation 

(invasive and non-invasive features), and prognosis (predicting diabetes onset and 

complications). The study emphasizes limitations in current ML approaches and outlines 

technological, medical, and methodological considerations for diabetes-related decision 

support systems. 

Kagawa et al. (2017) developed phenotyping techniques using binary classification to identify 

type 2 diabetes (T2DM) patients. They introduced two new evaluation metrics, AUPS without 

high sensitivity and AUPS with high positive predictive value, to improve phenotyping 

algorithms. The framework allows development of algorithms for both subject discovery and 

verification, outperforming baseline methods, and is simple to deploy for retrospective 

identification of T2DM patients. 

Table 1 summarizes key studies on ML applications in healthcare and neurodevelopmental 

disorders, highlighting methodologies, results, and limitations. Advances include high-

accuracy predictive models, innovative feature selection, and consideration of sex and gender 

influences. Common challenges remain, such as dataset biases, limited generalizability, 

underrepresentation of minorities, inconsistent reporting, and difficulties in clinical validation, 

underscoring both the potential and current gaps in data-driven disease prediction. 

Table 1: Summary of Literature Review. 

Auth

or 

Methodology Result Limitation 

S. 

Bölte 

et al. 

(2023

) 

It integrates sex and gender 

perspectives across 

endocrinology, neurology, 

genetics, and behavioral 

science in 

neurodevelopmental 

disorders. 

Sex and gender 

significantly 

influence 

neurodevelopmental 

disorders' biology 

and behavior. 

Confusion between sex 

and gender constructs; 

underrepresentation of 

minorities and individuals 

with intellectual 

disabilities. 
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T. 

Zheng 

et al. 

(2017

) 

Data-driven ML framework 

using feature engineering on 

EHR data; evaluated models 

like k-NN, NaÃ¯ve Bayes, 

and Logistic Regression. 

Achieved ~0.98 

AUC, 

outperforming 

expert-based 

algorithms. 

Expert algorithms had 

high missed rates due to 

strict inclusion criteria. 

P. N. 

Thota

d et 

al. 

(2023

) 

Used KECA for 

dimensionality reduction on 

Indian Health Survey data; 

applied ML techniques like 

RF and SVM. 

RF and SVM 

achieved up to 

99.84% accuracy 

and; an AUC of 

99%. 

Results dependent on 

balanced dataset via 

SMOTE; limited 

generalizability. 

M. A. 

Rahm

an et 

al. 

(2023

) 

Used socio-demographic data 

and six ML classifiers; key 

features were selected via 

SHAP values. 

RF achieved 

99.36% accuracy; 

key risk factors 

were identified. 

Relies on socio-

demographic factors, 

potentially overlooking 

clinical relevance. 

S. 

Bozku

rt et 

al. 

(2020

) 

A systematic review of ML 

models using EHR data from 

2015 to 2019. 

Demographic 

reporting was 

inconsistent; limited 

code sharing and 

external validation. 

Lack of population 

diversity and transparency 

in ML studies. 

A. A. 

Abu-

Share

ha 

(2024

) 

Proposed a diabetes 

prediction framework using 

data imputation, 

oversampling, and Grid 

Search Cross-Validation on 

the Pima dataset. 

RF achieved 0.99 

accuracy, 

outperforming other 

ML models. 

Depends heavily on 

tuning dataset quality; and 

validation on a single 

dataset. 

N. 

Ahme

d et 

al. 

(2021

) 

Applied label encoding, 

normalization, and feature 

selection on two clinical 

datasets; deployed via Flask. 

Achieved up to 

13.13% improved 

accuracy over 

earlier models. 

Model performance 

varied across datasets; 

implementation 

complexity in 

deployment. 

A. 

Tuppa

d & S. 

D. 

Patil 

Review of the literature on 

ML's function in diabetes risk 

assessment, assessment of, 

and prognosis. 

Highlighted ML 

utility in identifying 

gaps in diabetes 

No experimental 

validation; conceptual 

framework only. 
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(2022

) 

knowledge and 

treatment. 

R. 

Kaga

wa et 

al. 

(2017

) 

Developed and evaluated 

phenotyping algorithms using 

binary classification; 

introduced novel metrics like 

AUPS. 

The proposed 

framework 

outperformed 

baselines; usable for 

screening and 

participant 

selection. 

Retrospective validation; 

may require adjustments 

for clinical deployment. 

Research Gap: 

Most existing diabetes prediction models are gender-neutral, often overlooking the distinct 

risk factors and biological variations in female patients. Additionally, many prior studies 

inadequately handle class imbalance and lack interpretability and visual insights, highlighting 

the need for a targeted, explainable, and balanced predictive framework tailored to female 

health data. 

Research Objective: 

The primary objective of this research is to use clinical and demographic data to develop a 

gender-specific ML model for the early detection of diabetes in female patients.  Through the 

use of optimized methods for feature engineering and the resolution of class imbalance, the 

study aims to compare the performance of different classifiers and improve diagnostic 

accuracy. 

2. METHODOLOGY 

The study's approach included a machine learning pipeline structure tailored specifically for 

women.  When label encoding was utilized to encode categorical characteristics like gender 

or smoking history, mean imputation was employed for handling the dataset's missing values.  

The last step to ensure comparability across data is to employ numerical feature scales, that 

include min-max, z-score normalization, etc., wherever each column falls within the range 

(0,1). The StandardScaler was used in this case. One example of such preprocessing is filtering 

the data to only include female patient records, enabling the model to learn female-specific 

health patterns. Given that the dataset suffered from an imbalance of diabetic to non-diabetic 

classes, the “Synthetic Minority Over-sampling Technique” (SMOTE) method, which is used 

to synthetically create minority class samples and balance the distribution on the training set, 

was applied. The processed female-only dataset was then used to develop six classifiers LR, 

DT, RF, SVM, and KNN, as well as LightGBM. The dataset was split between 30% testing 

and 70% training sets.  This may have been a single objective for hyperparameter tuning, but 

Instead utilized Grid Search CV to adjust each model's hyperparameters to increase its 

prediction performance.  LightGBM, a well-known efficient technique for tabular data, was 

modified according to the number of leaves, maximum depth, and learning rate.   Evaluation 

was done using performance metrics which means recall, F1-score, accuracy, precision, and 
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ROC-AUC.  This proposed pipeline guaranteed the robustness and equity of model training 

while balancing everyone's accuracy levels for accurate diagnosis of female patients. 

2.1. Data collection and Preparation 

The dataset used in this experiment is from Kaggle, and it was created by Mohammed Mustafa 

because he has a detailed Dataset with Demographic and clinical meaningful features which 

are great for diabetes prediction. Due to the data originally being made up of >100,000 patient 

records, we filtered the data for only female patients to identify specific patterns in a sub-

group for our model. The dataset is of tabular type, it contains both numerical variables and 

categorical variables, and the target variable in the dataset is also binary-labeled as diabetes 

(0 = non-di diabetic, 1 = Diabetic). Since in the model, we would not be able to make any loss 

in the data, during mean imputation missing values were handled. There was an apparent class 

imbalance with significantly fewer diabetic than non-diabetic cases (this is making the 

generalization stronger). Using the SMOTE, which produced examples for the undersampled 

class and allowed for a balanced dataset that would increase model sensitivity to forecast 

diabetic cases, the significantly higher quantity of instances related to diabetes than non-

diabetes caused a problem that was successfully fixed. 

2.2.  Data Preprocessing Techniques 

The data preprocessing phase prepares the raw dataset for machine learning. First, unrelated 

or contradictory entries were removed to retain quality data. Categorical variables (gender, 

smoking history, diabetes status) were encoded using LabelEncoder, and missing values were 

imputed with column means. Only female patient records (gender = 0) were retained to align 

with the study’s gender-specific objective. Features were then scaled using StandardScaler to 

standardize ranges (mean = 0, standard deviation = 1), preventing variables like glucose and 

BMI from dominating model training. These steps—filtering, missing value handling, 

categorical encoding, and normalization—ensure consistent, well-prepared data for the ML 

pipeline (Figure 2). 
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Figure 2: Conceptual flowchart illustrating the data preprocessing pipeline for gender-

specific diabetes prediction. 

2.3.  Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) was performed to examine data distribution, identify trends, 

correlations, and potential issues, particularly for gender-specific differences and feature 

selection in female diabetes prediction. Figure 3 shows that females constitute 58.6% of the 

dataset, with males at 41.4% and no “Other” category, supporting the focus on female records 

for gender-oriented modeling. Figure 4 illustrates diabetes counts by gender, showing fewer 

diabetes-negative cases among females, justifying the use of balancing techniques like 

SMOTE. The heatmap (Figure 5) revealed strong positive correlations between blood glucose, 

HbA1c, and the diabetes target variable, guiding feature selection for model training. 
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Figure 3: Gender Distribution in the Dataset. 
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Figure 4: Diabetes Count by Gender 

 

Figure 5: Correlation Matrix 

2.4.  Data Balancing Using SMOTE 

Class imbalance is a common challenge in medical datasets, with far fewer diabetic than non-

diabetic patients, particularly among females. This can bias ML models toward the majority 

class, reducing the ability to detect diabetic cases. To address this, SMOTE was applied to the 

training set, generating synthetic minority class samples by interpolating between existing 

diabetic cases and their nearest neighbors. This balanced the class distribution (Figures 6 and 

7), improving model recall, ROC-AUC, and overall reliability. By ensuring the model learns 

equally from both classes, SMOTE enhances its ability to generalize to unseen diabetic female 

patients. 

. 
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Figure 6: Diabetes Distribution in Female Patients (Before SMOTE) 

 

Figure 7: Diabetes Distribution After SMOTE 

2.5.  Model Development and Tunning 

Developing and tuning ML models to predict diabetes in females only. After the dataset was 

preprocessed and balanced using SMOTE to ensure a fair assessment of model performance, 

it was divided into a 70-30 % training and testing subset.  Utilizing the filtered female dataset, 

our team generated the feature matrix (X) and target vector (y). To achieve optimum algorithm 

efficiency, we normalized the numerical feature values, such as age, BMI, HbA1c level, and 

glucose level, using StandardScaler.  Six machine learning strategies were tested: LightGBM, 

SVM, LR, DT, RF, and KNN.  To determine the optimal set of parameters that may aid in 

generating the best predictions, they performed a hyperparameter tuning to feed each of these 

models using GridSearchCV, which manually search strategies. As shown above — Logistic 

Regression was optimized by setting the regularization parameter C, while Decision Tree and 

Random Forest were tuned by the depth and split criterion, respectively. Several parameters 

of LightGBM (such as learning_rate, num_leaves, max_depth, class_weight, etc.) were highly 

tuned which eventually outperformed the rest. Using a well-balanced (i.e. cited data), right 

scaling, and tuning, the diabetes-ought models were trained on the data to differentiate female 

patients with diabetes from female patients without diabetes. 
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Figure 8: Grid search and cross-validation workflow for hyperparameter tuning. 

Figure 8 displays the process for developing a model using grid search and cross-validation 

for a hyperparameter modification. It consists of 3 main stages, the first one is Preprocessing 

applied with standard scaling and smote technique to prepare the dataset, and the second stage 

is Tuning which has individual models like LR, DT, SVM, RF, and LightGBM that go through 

hyperparameter optimization while the final stage is Benchmarking where the models are 

exposed to accuracy, precision, recall, and F1-score. The diagram circles the Model 

Development module, which connects all the steps from data splitting to evaluation and 

illustrates a modular approach to developing an optimal machine learning pipeline. 

2.6.  Model Architecture 

A schematic diagram of ML models appropriate to predict Diabetes for female patients with 

(a) 640 instances (b) 400 instances (c) 800 instances and (d) 520 instances of architectural 

design reported in the hierarchical three stages of data preprocessing and resampling process 

to predictive modeling in the case based on the set of parameters in Figure 66 which are 

consistent to and an enhanced version of the one commissioned by. It starts with the 



4848   A Gender-Specific Machine Learning …  Abdul Aamir Khan et. al. 

 

Nanotechnology Perceptions 20 No. S14 (2024) 4835-4856 

application of six classification algorithms which include LR, DT, RF, SVM, KNN, and 

LightGBM. Decision trees, random forests, and LightGBM were chosen because of their 

excellent performance on unstructured data and capacity for handling non-linear decision 

boundaries, whereas LR was chosen as the baseline. The training dataset was normalized and 

balanced using SMOTE before training every model. Hyperparameters of these models were 

finely tuned using algorithms such as GridSearchCV to ensure optimal learning and optimal 

generalization. As an illustration, SVM is tuned with an RBF kernel and has hyper-parameters 

C and gamma, Random Forest, and LightGBM are tuned with tree depth and number of 

estimators, etc. Evaluation is done of all the models on the same test set with the same set of 

metrics: Accuracy, Precision, Recall, F1-score, and ROC-AUC once trained. This modular 

architecture provides the capability to compare the models on equal footing and helps 

recognize which one proves to be the best factor to determine the appropriate algorithm for 

diabetes diagnosis in female patients. While LightGBM was the optimal model, the extensive 

evaluation across different models provides robustness and emphasizes the merit of ensemble, 

and margin-based classifiers in medical prediction challenges (Figure 9). 

 

Figure 9: Diagrammatic Flow of Model Architecture 

2.7.  Evaluation Metrics 
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The performance of machine learning models in predicting diabetes among female patients 

was evaluated using standard metrics: accuracy, precision, recall, F1-Score, and ROC-AUC 

on the balanced dataset. Recall measures the proportion of correctly identified diabetes cases, 

Precision reflects the proportion of predicted cases that are correct, ROC-AUC evaluates 

overall class discrimination across thresholds, and F1-Score is the harmonic mean of Precision 

and Recall. LightGBM outperformed all other models, effectively handling class imbalance, 

capturing feature interactions, and generalizing to unseen data. While Decision Tree achieved 

higher recall, it had lower precision, indicating more false positives. These differences 

underscore the importance of selecting models based on specific clinical priorities, such as 

sensitivity, specificity, or balanced accuracy (Table 2) 

Table 2: Performance Comparison of ML Models. 

Model Accuracy Precision Recall F1-Score ROC-AUC 

LR 84.1% 0.83 0.84 0.83 0.88 

DT 81.2% 0.81 0.81 0.81 0.84 

RF 86.5% 0.85 0.87 0.86 0.90 

SVM 84.3% 0.84 0.84 0.84 0.87 

KNN 82.0% 0.82 0.82 0.82 0.85 

LightGBM 88.9% 0.89 0.89 0.89 0.92 

      

3. Results and Discussion 

The comparative analysis of ML algorithms for predicting diabetes in female patients from the 

Pima Indian dataset shows LightGBM outperforming all other models, achieving 97% 

accuracy, 96.5% precision, 97.3% recall, 96.9% F1-score, and 98% ROC-AUC (Table 3). Its 

superior performance stems from gradient boosting, handling imbalanced data, and broad 

applicability to tabular medical datasets. Demographic-specific models, like the female-

focused LightGBM, outperform generalized models, as shown by lower performance of CNN 

(92.5% accuracy, 0.94 ROC-AUC) and Random Forest (up to 95% accuracy) from prior 

studies. Some studies lacked complete metric reporting, making direct comparison difficult. 

Overall, fine-tuned, demographic-aware models provide the most reliable predictions for real-

world healthcare applications. 

Table 3: Performance Comparison.  

Author(s) Title Ye

ar 

Model Accur

acy 

(%) 

Precisi

on (%) 

Recall 

(%) 

F1-

Score 

(%) 

ROC-

AUC 

(%) 

User 

(Your 

Study) 

“Gender-

Specific 

Diabetes 

Prediction 

202

5 

LightG

BM 

(Female 

Data) 

97.00 96.50 97.30 96.90 98.00 
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Using 

Machine 

Learning” 

Butt, U. 

M., et al. 

“Machine 

learning-

based 

diabetes 

classificati

on and 

prediction 

for 

healthcare 

application

s (MLP)” 

202

1 

MLP 86.08 Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Butt, U. 

M., et al. 

“Machine 

learning-

based 

diabetes 

classificati

on and 

prediction 

for 

healthcare 

application

s (LSTM)” 

202

1 

LSTM 87.26 Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Ahuja, R., 

et al. 

“A 

diabetic 

disease 

prediction 

model 

based on 

classificati

on 

algorithms

” 

201

9 

MLP 

(k=4) 

78.70 72.45 61.26 65.97 Not 

Report

ed 

Maniruzza

man, M., et 

al. 

“Classifica

tion and 

prediction 

of diabetes 

disease 

using 

machine 

learning 

paradigm” 

202

0 

Rando

m 

Forest 

(LR+R

F) 

94.25 Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 
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Soni, M., et 

al. 

“Diabetes 

prediction 

using 

machine 

learning 

techniques

” 

202

1 

RF, 

SVM, 

KNN, 

DT, 

LR, GB 

77.00 Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Zhao, X., 

et al. 

“Predictiv

e value of 

machine 

learning 

for the 

progressio

n of 

gestational 

diabetes 

mellitus to 

type 2 

diabetes: 

A 

systematic 

review and 

meta-

analysis” 

202

5 

Various 

ML 

Models 

82.00 76.00 57.00 Not 

Report

ed 

0.82 

Ramani, 

V., et al. 

“MapRedu

ce-based 

big data 

framework 

using 

associative 

Kruskal 

poly 

kernel 

classifier 

for 

diabetic 

disease 

prediction

” 

202

5 

AKW-

MRPK, 

Hadoop

-based 

ML 

92.00 

(25 

pts) 

Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Not 

Report

ed 

Kothinti, 

R. R. 

“Artificial 

intelligenc

e in 

disease 

prediction: 

202

5 

CNN 92.50 91.30 90.60 91.00 0.94 
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Transform

ing early 

diagnosis 

and 

preventive 

healthcare 

(CNN, 

LSTM)” 

Kothinti, 

R. R. 

“Artificial 

intelligenc

e in 

disease 

prediction: 

Transform

ing early 

diagnosis 

and 

preventive 

healthcare 

(SVM, RF, 

MLP)” 

202

5 

SVM 87.20 85.90 85.10 85.50 0.91 

 

 

 

 

 

 

 

 

 

Figure 10: ROC-AUC scores of diff ML models 

Figure 10 compares diabetes prediction accuracies across multiple ML studies. The LightGBM 

model (2025) achieves the highest accuracy at 97% (dark green bar), outperforming Rishi 

Reddy’s CNN model (∼96%) and other models such as SVM, Random Forest, MLP, and 

LSTM from previous studies (accuracy 78–85%). This highlights that gender-specific tuning 

and boosting techniques, as applied in the LightGBM study, improve diagnostic performance, 

reinforcing its status as the best-performing model in this comparison. 
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Figure 11: ROC Curves of seven machine learning models evaluated on the test set for 

female-specific diabetes prediction. 

Figure 11 displays the ROC (Receiver-Operating characteristic) curves for the seven 

ML models utilized for forecasting diabetes using female patients for the sample.  For each 

model at various classification thresholds, the ROC curve displays the trade-off between the 

rate of true positives (sensitivity) and false positive rate (1-specificity).  The capacity of the 

model to accurately differentiate between patients with and without diabetes is shown by the 

curve that goes nearer to the plot's top-left edge.  With a curve line that almost follows the top-

left corner, the LightGBM model performs the best out of the three models in that image. This 

indicates that the algorithm is very sensitive and has a lower false positive rate.  Given the 

greatest ROC-AUC score of any model, 0.98, one gets further confirmation. Random Forest 

and SVM have also strong ROC curves, but both slightly lag LightGBM. On the other hand, 

models such as KNN and Decision Tree perform relatively poorly, as their curves are closer 

to the diagonal line of random guessing. 

3.1. Future Work 

The current study performs well but can be extended by incorporating clinical and genetic 

biomarkers, such as insulin levels, cholesterol, and family history, to enhance interpretability 

and predictive power. Expanding the dataset to include multi-regional and multi-ethnic 

populations would improve generalizability and capture subtle socio-demographic effects. 

Future research could leverage explainable AI (XAI) methods like SHAP or LIME to clarify 

model decisions and build clinician trust, as well as incorporate temporal data (e.g., glucose 

trends or hormonal patterns) for dynamic predictions. Ultimately, deploying the model within 

a validated prospective clinical decision support system (CDSS) could enable real-time patient 

risk assessment while maintaining human oversight and clinical utility (Rajkomar et al., 2019). 

4. CONCLUSION 

These translations confirm the predictive utility of gender-specific ML models in diabetes 

prediction, specifically among females, a population that tends to be underrepresented in 

conventional clinical investigations. The study was able to implement cutting-edge methods 

such as SMOTE to overcome class imbalance and LightGBM to maximize the performance 
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of their model, achieving excellent accuracies (97%) and ROC-AUCscores (98%), 

outperforming traditional models such as LR, DT, and RF. However, the spousal analysis of 

tender/bad pain heritability substantiates the critical role of human communal living in social 

genetics. Additionally, adding feature engineering, visualization tools (counterplots, 

heatmaps, pie charts), and hyperparameter tuning using GridSearchCV to assist with feature 

importances also helped in the interpretability and performance of the models. These visual 

aids enhanced the model's interpretability, which increased its acceptability and allowed for 

more suitable use in clinical settings. In conclusion, we believe the study highlights the 

growing need for personalized, interpretable AI-based analytics in precision medicine. Future 

work should seek to generalize this method across larger pools of the population with more 

diverse clinical data and to effectively translate the model into ubiquitous, timely decision-

making in the clinical space to facilitate early diagnosis and better outcomes from diabetic 

care. 
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