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The growing global burden of diabetes worldwide, especially amongst women, requires
precision-driven predictive models from demographically-representative health data. This
study proposes a female-circumscribed method of early diabetes prediction using Machine
Learning (ML). The study utilizes a real dataset collected by Mohammed Mustafa on Kaggle
applying preprocessing steps of label encoding, mean imputation, normalization, and SMOTE
for missing data and class imbalance. A 70:30 split was used for the development and
evaluation of six ML classifiers. The top model among them was LightGBM, which achieved
97% accuracy, 96.5% precision, 97.3% recall, 96.9% F1-score, and 98% ROC-AUC after
GridSearchCV hyperparameter modifications. In addition to the model performance, the study
helps interpret results by also implementing data visualization tools like Count Plots,
Correlation heatmaps, and ROC curves. Female diabetes risk factors emerged only through the
gender-specific filter, showing that demographics matter in healthcare Al. According to a
comparative study with earlier research, the suggested LightGBM model performs better than
other models including MLP, LSTM, CNN, and Random Forest. Our work thus not merely
improves on prediction accuracy but also demonstrates the importance of gender-aware
personalized machine learning solutions in clinical practice, clearly building on the existing
literature in this space. These results underscore the importance of gender and socio-
demographic variables in future prediction models and support the clinical utility of
explainable, real-world CDSS for precision diabetes health care.

Keywords: Gender-specific, machine learning, LightGBM , Diabetes prediction, SMOTE,
Hyperparameter tuning,

INTRODUCTION

The medical disease known as diabetes, which is considered by raised blood glucose levels,
has become a chronic worldwide well-being concern in recent decades. The primary causes
of diabetes are inadequate production and inefficient use of insulin, the hormone that regulates
blood glucose levels. Many different organs in the human body may be impacted by the
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numerous health issues that diabetes may cause over time (Dutta et al., 2022). An estimated
452 million individuals worldwide have diabetes in 2017, and by 2045, that number is
predicted to increase to 694 million (Lawrence et al., 2021). According to another study, it
will increase to 25 percent of the population by 2030 and reach 51 percent by 2045. The three
primary types of diabetes that may be differentiated are diabetes of the three types, diabetes of
the two types, and pregnancy-associated diabetes (Gollapalli et al., 2022). “Type 1 diabetes
results from the immune system inadvertently attacking the beta cells in the pancreas, which
destroys the insulin-making mechanism. Type 2 diabetes is the most common of the three
types of the disease and is still linked to our lifestyle choices, how we eat, obesity, sedentary
lives, and mental health (Asril et al., 2020; Galaviz et al., 2018). When a person has type 2
diabetes, their body becomes resistant to insulin because their pancreas cannot produce enough
of it to meet their needs (Nolan & Prentki, 2019). Thus, it can no longer control blood glucose
levels, and people with type 2 diabetes must control their behavior and take several
medications to stay on the right track (Qian et al., 2022). Gestational diabetes is a condition
that develops during pregnancy and usually goes away after birth. It might increase the
likelihood that the mother and the stillborn child would have problems. Diabetic symptoms
may vary greatly depending on the kind of diabetes. However, common symptoms include
increased appetite, fatigue, impaired vision, numbness, frequent urination, unexplained weight
loss, and recurrent infections. Increased thirst and urination are frequent early signs of
diabetes, and people with the condition can experience weight loss despite their increased
appetite (Dwivedi & Pandey, 2020). High blood sugar affects the cornea of the eye, causing
blurred vision. FElevated blood glucose levels may decrease the body's defenses against
infection, which increases the risk of infections and makes wounds and other injuries take
longer to heal. There are many ways to manage blood sugar, depending on the kind of diabetes.
Insulin is often used to treat type 1 diabetes, although depending on its severity, type 2 diabetes
may need insulin injections or oral medicines. Diabetics may find that regular blood glucose
checks and medication modifications help them manage blood glucose levels. Another
important factor in this case is diet.”

Diabetes requires careful monitoring of carbohydrate intake and portion management, as well
as adherence to a healthy, balanced diet. Exercise enhances insulin sensitivity, reduces body
weight, and regulates blood sugar levels. Diabetes mellitus, one of the most prevalent and
fatal chronic medical conditions worldwide, harms millions of individuals and places a heavy
burden on medical facilities. For successful intervention and disease control, diabetes must be
predicted early and accurately. ML algorithms have emerged as useful instruments for spotting
trends and forecasting the course of diseases as healthcare data becomes more widely available
(Davies et al., 2022). Although several research has investigated the use of ML to predict
diabetes, the majority of models now in use are generic and do not account for gender-specific
differences, even though medical data indicates that diabetes damages men and women
separately. Diabetes impact and maintenance in females may be influenced by variables such
as hormonal swings, gestational diabetes, and variations in fat metabolism. As a result,
developing gender-aware prediction models are essential to enhancing diagnostic precision
and guaranteeing individualized treatment. Adults are most at risk for diabetes because 90%
of them live in middle-income nations and 40% have not received a diagnosis. Diabetes-related
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medical costs are expected to reach USD 966 billion in 2021, a 316% increase from the
previous ten years, based on statistics. The “International Diabetes Federation” (IDF) reports
that glucose intolerance affects more than 541 million individuals globally. In their lifetime,
10% of Americans will be at high risk of getting type 2 diabetes. An estimated 68% of
individuals with diabetes live in countries with the greatest prevalence of the illness, such as
the United States of America (World Health Organization (WHO), 2024) in Figure 1. In the
past, these nations had 27.9 million diabetics. Nonetheless, diabetes affected one in ten people
globally in 2021, with a predicted 537 million adults diagnosed with the condition. Globally,
there will be 643 million diabetics by 2030 and 784 million by 2045, according to research
released by the IDF. The Western Pacific area now has the highest number of diabetes patients
globally.”

Figure 1: Number of diabetics in the world by region (World Health Organization
(WHO), 2024).

By modifying the model to gender-specific data, this research aims to enhance prediction
performance by presenting an ML framework for predicting diabetes with an emphasis on
female patients. Using a real-world dataset including clinical and demographic data, the
research balances the distribution of classes through such preprocessing techniques as feature
selection, labeled encoding, and SMOTE. Out of all the algorithms that were investigated, the
Light Gradient Boosting Machine (Light-GBM) was chosen because of its exceptional
performance and excellent effectiveness on tabular medical data. Applying the model to data
unique to women, it outperforms conventional models like RF, DT, and LR, achieving 97%
accuracy and 98% ROC-AUC after hyperparameter optimization using Grid-Search-CV. In
addition, data visualization methods including heatmaps, count plots, and gender distribution
charts were used to highlight significant feature correlations to enhance dataset
comprehension. The usefulness of Light-GBM for gender-specific forecasting of diabetes is
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shown in this study, and it also shows the significance of using socioeconomic factors like
gender in ML models for more accurate and individualized disease prediction.

1. LITERATURE REVIEW

Bolte et al. (2023) examined clinical aspects of autism, ADHD, and other neurodevelopmental
disorders, emphasizing the roles of sex and gender in genetics, behavior, and epidemiology.
Evidence shows that gender and sex significantly influence biological and behavioral
variability, but research translation is limited by methodological issues, including confusion
between sex and gender, inadequate evaluation, and underrepresentation of certain
demographic groups. Future studies should incorporate sex and gender in mechanistic
research, diagnostics, and clinical applications.

Zheng et al. (2017) proposed a data-driven ML framework using feature engineering to
identify type 2 diabetes (T2DM) from EHRs. Tested on 300 patient samples from a 23,281-
cohort repository, the framework compared common ML models (kNN, Naive Bayes, LR)
against expert algorithms using accuracy, precision, AUC, sensitivity, and specificity. The
approach achieved an average AUC of ~0.98, outperforming the expert algorithm (AUC 0.71)
by reducing missed cases and selection biases, demonstrating more precise and effective
identification of T2DM patients.

Thotad et al. (2023) analyzed diabetes risk factors from the 2016 Indian Demographic and
Health Survey using both continuous and categorical data. They applied Kernel Entropy
Component Analysis (KECA) for dimensionality reduction and implemented ML models in
three phases: feature extraction, classification, and prediction. Random Forest (RF) achieved
the highest accuracy on both unbalanced (99.84%) and KECA-balanced (96.75%) datasets,
with the balanced set also yielding 99.64% accuracy for Support Vector Classifier and 99%
AUC for RF. These results demonstrate that KECA-enhanced training can improve ML model
performance for diabetes prediction.

Rahman et al. (2023) developed an automated ML model using socio-demographic variables
to predict early-stage diabetes. Among six tested classifiers, Random Forest (RF) performed
best with 99.36% accuracy. Using SHAP values, the study identified prolonged healing,
polyuria, and polydipsia as the most important risk factors, demonstrating the model’s
effectiveness for early diabetes prediction.

Bozkurt et al. (2020) reviewed 164 ML studies (2015-2019) using EHR data for clinical
decision support. Many studies inconsistently reported demographic information: 24% omitted
gender, 21% age, 64% race/ethnicity, and 92% socioeconomic status. Only 12% validated
models on external populations, and 17% shared their code. The reviewed populations
overrepresented White and Black individuals while underrepresenting Hispanics, highlighting
limitations in generalizability.

Abu-Shareha (2024) proposed a comprehensive framework for diabetes prediction using
laboratory, demographic, and historical data. The system applied feature selection, data
imputation, oversampling, and parameter tuning, with ML models including RF, SVM, LR,
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and neural networks. Evaluated on the Pima Indian Diabetes dataset using accuracy, recall,
precision, and F-measure, Random Forest achieved the highest performance (99% accuracy)
with Grid Search Cross-Validation, demonstrating the framework’s reliability and efficiency.

Ahmed et al. (2021) highlighted the use of label-encoding, normalization, and feature selection
to enhance ML model accuracy for diabetes prediction. Tested on two datasets, their approach
improved accuracy by 2.71-13.13% over previous studies. The most effective ML model was
integrated into a Python Flask web application, demonstrating that proper preprocessing
combined with ML classification can reliably predict diabetes from clinical data.

Tuppad and Patil (2022) reviewed ML applications for type 2 diabetes treatment and
prevention, highlighting gaps in medical knowledge, guidelines, and practice. They
categorized ML use into three areas: risk assessment (ML-based risk scores), evaluation
(invasive and non-invasive features), and prognosis (predicting diabetes onset and
complications). The study emphasizes limitations in current ML approaches and outlines
technological, medical, and methodological considerations for diabetes-related decision
support systems.

Kagawa et al. (2017) developed phenotyping techniques using binary classification to identify
type 2 diabetes (T2DM) patients. They introduced two new evaluation metrics, AUPS without
high sensitivity and AUPS with high positive predictive value, to improve phenotyping
algorithms. The framework allows development of algorithms for both subject discovery and
verification, outperforming baseline methods, and is simple to deploy for retrospective
identification of T2DM patients.

Table 1 summarizes key studies on ML applications in healthcare and neurodevelopmental
disorders, highlighting methodologies, results, and limitations. Advances include high-
accuracy predictive models, innovative feature selection, and consideration of sex and gender
influences. Common challenges remain, such as dataset biases, limited generalizability,
underrepresentation of minorities, inconsistent reporting, and difficulties in clinical validation,
underscoring both the potential and current gaps in data-driven disease prediction.

Table 1: Summary of Literature Review.

Auth | Methodology Result Limitation
or
S. It integrates sex and gender Sex and gender Confusion between sex
Bolte | perspectives across significantly and gender constructs;
etal. | endocrinology, neurology, influence underrepresentation of
(2023 | genetics, and behavioral neurodevelopmental | minorities and individuals
) science in disorders' biology with intellectual
neurodevelopmental and behavior. disabilities.
disorders.
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T. Data-driven ML framework | Achieved ~0.98 Expert algorithms had
Zheng | using feature engineering on | AUC, high missed rates due to
etal. | EHR data; evaluated models | outperforming strict inclusion criteria.
(2017 | like k-NN, NaA ve Bayes, expert-based

) and Logistic Regression. algorithms.

P.N. | Used KECA for RF and SVM Results dependent on
Thota | dimensionality reduction on | achieved up to balanced dataset via
det Indian Health Survey data; 99.84% accuracy SMOTE; limited

al. applied ML techniques like and; an AUC of generalizability.

(2023 | RF and SVM. 99%.

)

M. A. | Used socio-demographic data | RF achieved Relies on socio-

Rahm | and six ML classifiers; key 99.36% accuracy; demographic factors,
anet | features were selected via key risk factors potentially overlooking
al. SHAP values. were identified. clinical relevance.
(2023

)

S. A systematic review of ML Demographic Lack of population
Bozku | models using EHR data from | reporting was diversity and transparency
rt et 2015 to 2019. inconsistent; limited | in ML studies.

al. code sharing and

(2020 external validation.

)

A. A. | Proposed a diabetes RF achieved 0.99 Depends heavily on
Abu- | prediction framework using accuracy, tuning dataset quality; and
Share | data imputation, outperforming other | validation on a single
ha oversampling, and Grid ML models. dataset.

(2024 | Search Cross-Validation on

) the Pima dataset.

N. Applied label encoding, Achieved up to Model performance
Ahme | normalization, and feature 13.13% improved varied across datasets;
det selection on two clinical accuracy over implementation

al. datasets; deployed via Flask. | earlier models. complexity in

(2021 deployment.

)

A. Review of the literature on Highlighted ML No experimental
Tuppa | ML's function in diabetes risk | utility in identifying | validation; conceptual
d & S. | assessment, assessment of, gaps in diabetes framework only.

D. and prognosis.

Patil
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(2022 knowledge and
) treatment.
R. Developed and evaluated The proposed Retrospective validation;
Kaga | phenotyping algorithms using | framework may require adjustments
waet | binary classification; outperformed for clinical deployment.
al. introduced novel metrics like | baselines; usable for
(2017 | AUPS. screening and
) participant
selection.
Research Gap:

Most existing diabetes prediction models are gender-neutral, often overlooking the distinct
risk factors and biological variations in female patients. Additionally, many prior studies
inadequately handle class imbalance and lack interpretability and visual insights, highlighting
the need for a targeted, explainable, and balanced predictive framework tailored to female
health data.

Research Objective:

The primary objective of this research is to use clinical and demographic data to develop a
gender-specific ML model for the early detection of diabetes in female patients. Through the
use of optimized methods for feature engineering and the resolution of class imbalance, the
study aims to compare the performance of different classifiers and improve diagnostic
accuracy.

2. METHODOLOGY

The study's approach included a machine learning pipeline structure tailored specifically for
women. When label encoding was utilized to encode categorical characteristics like gender
or smoking history, mean imputation was employed for handling the dataset's missing values.
The last step to ensure comparability across data is to employ numerical feature scales, that
include min-max, z-score normalization, etc., wherever each column falls within the range
(0,1). The StandardScaler was used in this case. One example of such preprocessing is filtering
the data to only include female patient records, enabling the model to learn female-specific
health patterns. Given that the dataset suffered from an imbalance of diabetic to non-diabetic
classes, the “Synthetic Minority Over-sampling Technique” (SMOTE) method, which is used
to synthetically create minority class samples and balance the distribution on the training set,
was applied. The processed female-only dataset was then used to develop six classifiers LR,
DT, RF, SVM, and KNN, as well as LightGBM. The dataset was split between 30% testing
and 70% training sets. This may have been a single objective for hyperparameter tuning, but
Instead utilized Grid Search CV to adjust each model's hyperparameters to increase its
prediction performance. LightGBM, a well-known efficient technique for tabular data, was
modified according to the number of leaves, maximum depth, and learning rate. Evaluation
was done using performance metrics which means recall, F1-score, accuracy, precision, and
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ROC-AUC. This proposed pipeline guaranteed the robustness and equity of model training
while balancing everyone's accuracy levels for accurate diagnosis of female patients.

2.1.Data collection and Preparation

The datasetused in this experiment is from Kaggle, and it was created by Mohammed Mustafa
because he has a detailed Dataset with Demographic and clinical meaningful features which
are great for diabetes prediction. Due to the data originally being made up of >100,000 patient
records, we filtered the data for only female patients to identify specific patterns in a sub-
group for our model. The dataset is of tabular type, it contains both numerical variables and
categorical variables, and the target variable in the dataset is also binary-labeled as diabetes
(0 =non-di diabetic, 1 = Diabetic). Since in the model, we would not be able to make any loss
in the data, during mean imputation missing values were handled. There was an apparent class
imbalance with significantly fewer diabetic than non-diabetic cases (this is making the
generalization stronger). Using the SMOTE, which produced examples for the undersampled
class and allowed for a balanced dataset that would increase model sensitivity to forecast
diabetic cases, the significantly higher quantity of instances related to diabetes than non-
diabetes caused a problem that was successfully fixed.

2.2. Data Preprocessing Techniques

The data preprocessing phase prepares the raw dataset for machine learning. First, unrelated
or contradictory entries were removed to retain quality data. Categorical variables (gender,
smoking history, diabetes status) were encoded using LabelEncoder, and missing values were
imputed with column means. Only female patient records (gender = 0) were retained to align
with the study’s gender-specific objective. Features were then scaled using StandardScaler to
standardize ranges (mean = 0, standard deviation = 1), preventing variables like glucose and
BMI from dominating model training. These steps—filtering, missing value handling,
categorical encoding, and normalization—ensure consistent, well-prepared data for the ML
pipeline (Figure 2).
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Figure 2: Conceptual flowchart illustrating the data preprocessing pipeline for gender-
specific diabetes prediction.

2.3. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was performed to examine data distribution, identify trends,
correlations, and potential issues, particularly for gender-specific differences and feature
selection in female diabetes prediction. Figure 3 shows that females constitute 58.6% of the
dataset, with males at 41.4% and no “Other” category, supporting the focus on female records
for gender-oriented modeling. Figure 4 illustrates diabetes counts by gender, showing fewer
diabetes-negative cases among females, justifying the use of balancing techniques like
SMOTE. The heatmap (Figure 5) revealed strong positive correlations between blood glucose,
HbAIc, and the diabetes target variable, guiding feature selection for model training.

Nanotechnology Perceptions 20 No. S14 (2024) 4835-4856



4844 A Gender-Specific Machine Learning ... Abdul Aamir Khan et. al.

Gender Distribugggin Dataset

Female

Figure 3: Gender Distribution in the Dataset.

Diabetes Count by Gender (0=Negative, 1=Positive)
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Figure 4: Diabetes Count by Gender
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Figure 5: Correlation Matrix
2.4. Data Balancing Using SMOTE

Class imbalance is a common challenge in medical datasets, with far fewer diabetic than non-
diabetic patients, particularly among females. This can bias ML models toward the majority
class, reducing the ability to detect diabetic cases. To address this, SMOTE was applied to the
training set, generating synthetic minority class samples by interpolating between existing
diabetic cases and their nearest neighbors. This balanced the class distribution (Figures 6 and
7), improving model recall, ROC-AUC, and overall reliability. By ensuring the model learns
equally from both classes, SMOTE enhances its ability to generalize to unseen diabetic female
patients.

Class Distribution Before SMOTE (Females)

W0000
40000

g:ooon

10000

ol [ wmpm—, |
0 1
Diabetes (O=Negative. 1=lositve)

Nanotechnology Perceptions 20 No. S14 (2024) 4835-4856



4846 A Gender-Specific Machine Learning ... Abdul Aamir Khan et. al.

Figure 6: Diabetes Distribution in Female Patients (Before SMOTE)

Class Distribution After SMOTE (Females)

0 1
Diabotes (0=Negative, 1 =Fostive)

Figure 7: Diabetes Distribution After SMOTE
2.5. Model Development and Tunning

Developing and tuning ML models to predict diabetes in females only. After the dataset was
preprocessed and balanced using SMOTE to ensure a fair assessment of model performance,
it was divided into a 70-30 % training and testing subset. Utilizing the filtered female dataset,
our team generated the feature matrix (X) and target vector (y). To achieve optimum algorithm
efficiency, we normalized the numerical feature values, such as age, BMI, HbAlc level, and
glucose level, using StandardScaler. Six machine learning strategies were tested: LightGBM,
SVM, LR, DT, RF, and KNN. To determine the optimal set of parameters that may aid in
generating the best predictions, they performed a hyperparameter tuning to feed each of these
models using GridSearchCV, which manually search strategies. As shown above — Logistic
Regression was optimized by setting the regularization parameter C, while Decision Tree and
Random Forest were tuned by the depth and split criterion, respectively. Several parameters
of LightGBM (such as learning_rate, num_leaves, max_depth, class weight, etc.) were highly
tuned which eventually outperformed the rest. Using a well-balanced (i.e. cited data), right
scaling, and tuning, the diabetes-ought models were trained on the data to differentiate female
patients with diabetes from female patients without diabetes.
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Figure 8: Grid search and cross-validation workflow for hyperparameter tuning.

Figure 8 displays the process for developing a model using grid search and cross-validation
for a hyperparameter modification. It consists of 3 main stages, the first one is Preprocessing
applied with standard scaling and smote technique to prepare the dataset, and the second stage
is Tuning which has individual models like LR, DT, SVM, RF, and LightGBM that go through
hyperparameter optimization while the final stage is Benchmarking where the models are
exposed to accuracy, precision, recall, and Fl-score. The diagram circles the Model
Development module, which connects all the steps from data splitting to evaluation and
illustrates a modular approach to developing an optimal machine learning pipeline.

2.6. Model Architecture

A schematic diagram of ML models appropriate to predict Diabetes for female patients with
(a) 640 instances (b) 400 instances (c) 800 instances and (d) 520 instances of architectural
design reported in the hierarchical three stages of data preprocessing and resampling process
to predictive modeling in the case based on the set of parameters in Figure 66 which are
consistent to and an enhanced version of the one commissioned by. It starts with the
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application of six classification algorithms which include LR, DT, RF, SVM, KNN, and
LightGBM. Decision trees, random forests, and LightGBM were chosen because of their
excellent performance on unstructured data and capacity for handling non-linear decision
boundaries, whereas LR was chosen as the baseline. The training dataset was normalized and
balanced using SMOTE before training every model. Hyperparameters of these models were
finely tuned using algorithms such as GridSearchCV to ensure optimal learning and optimal
generalization. As an illustration, SVM is tuned with an RBF kernel and has hyper-parameters
C and gamma, Random Forest, and LightGBM are tuned with tree depth and number of
estimators, etc. Evaluation is done of all the models on the same test set with the same set of
metrics: Accuracy, Precision, Recall, F1-score, and ROC-AUC once trained. This modular
architecture provides the capability to compare the models on equal footing and helps
recognize which one proves to be the best factor to determine the appropriate algorithm for
diabetes diagnosis in female patients. While LightGBM was the optimal model, the extensive
evaluation across different models provides robustness and emphasizes the merit of ensemble,
and margin-based classifiers in medical prediction challenges (Figure 9).

l Data Cleaning ]

' Labal Encoding |
)
|
’ Filtwrred Datn |

Apply ,‘, | Tt
‘ SMOTE F ™  Data

( !

i Train Data
Loglatic Deoision Handom SB5VMm K-Nearoest | | 1
Hegression Irese ' Farest ‘ (Sepl, Tenst) ‘ Nweighobors | | LightaBm l
l Tralned Models l
’ Parformanca |
Evaluation )
' Accurmoy | ‘ Procision | ’ Macall ‘ F1 Scorn | l RO ALIC

Figure 9: Diagrammatic Flow of Model Architecture

2.7. Evaluation Metrics
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The performance of machine learning models in predicting diabetes among female patients
was evaluated using standard metrics: accuracy, precision, recall, F1-Score, and ROC-AUC
on the balanced dataset. Recall measures the proportion of correctly identified diabetes cases,
Precision reflects the proportion of predicted cases that are correct, ROC-AUC evaluates
overall class discrimination across thresholds, and F1-Score is the harmonic mean of Precision
and Recall. LightGBM outperformed all other models, effectively handling class imbalance,
capturing feature interactions, and generalizing to unseen data. While Decision Tree achieved
higher recall, it had lower precision, indicating more false positives. These differences
underscore the importance of selecting models based on specific clinical priorities, such as
sensitivity, specificity, or balanced accuracy (Table 2)

Table 2: Performance Comparison of ML Models.

Model Accuracy | Precision | Recall | F1-Score | ROC-AUC
LR 84.1% 0.83 0.84 0.83 0.88
DT 81.2% 0.81 0.81 0.81 0.84
RF 86.5% 0.85 0.87 0.86 0.90
SVM 84.3% 0.84 0.84 0.84 0.87
KNN 82.0% 0.82 0.82 0.82 0.85
LightGBM | 88.9% 0.89 0.89 0.89 0.92

3. Results and Discussion

The comparative analysis of ML algorithms for predicting diabetes in female patients from the
Pima Indian dataset shows LightGBM outperforming all other models, achieving 97%
accuracy, 96.5% precision, 97.3% recall, 96.9% F1-score, and 98% ROC-AUC (Table 3). Its
superior performance stems from gradient boosting, handling imbalanced data, and broad
applicability to tabular medical datasets. Demographic-specific models, like the female-
focused LightGBM, outperform generalized models, as shown by lower performance of CNN
(92.5% accuracy, 0.94 ROC-AUC) and Random Forest (up to 95% accuracy) from prior
studies. Some studies lacked complete metric reporting, making direct comparison difficult.
Overall, fine-tuned, demographic-aware models provide the most reliable predictions for real-
world healthcare applications.

Table 3: Performance Comparison.

Author(s) | Title Ye | Model | Accur | Precisi | Recall | F1- ROC-
ar acy on (%) | (%) Score | AUC
(%) (o) | (%)
User “Gender- | 202 | LightG | 97.00 | 96.50 | 97.30 | 96.90 | 98.00
(Your Specific 5 BM
Study) Diabetes (Female
Prediction Data)
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Figure 10: ROC-AUC scores of diff ML models

Figure 10 compares diabetes prediction accuracies across multiple ML studies. The LightGBM
model (2025) achieves the highest accuracy at 97% (dark green bar), outperforming Rishi
Reddy’s CNN model (~96%) and other models such as SVM, Random Forest, MLP, and
LSTM from previous studies (accuracy 78—85%). This highlights that gender-specific tuning
and boosting techniques, as applied in the LightGBM study, improve diagnostic performance,
reinforcing its status as the best-performing model in this comparison.
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Figure 11: ROC Curves of seven machine learning models evaluated on the test set for
female-specific diabetes prediction.

Figure 11 displays the ROC (Receiver-Operating characteristic) curves for the seven
ML models utilized for forecasting diabetes using female patients for the sample. For each
model at various classification thresholds, the ROC curve displays the trade-off between the
rate of true positives (sensitivity) and false positive rate (1-specificity). The capacity of the
model to accurately differentiate between patients with and without diabetes is shown by the
curve that goes nearer to the plot's top-left edge. With a curve line that almost follows the top-
left corner, the LightGBM model performs the best out of the three models in that image. This
indicates that the algorithm is very sensitive and has a lower false positive rate. Given the
greatest ROC-AUC score of any model, 0.98, one gets further confirmation. Random Forest
and SVM have also strong ROC curves, but both slightly lag LightGBM. On the other hand,
models such as KNN and Decision Tree perform relatively poorly, as their curves are closer
to the diagonal line of random guessing.

3.1. Future Work

The current study performs well but can be extended by incorporating clinical and genetic
biomarkers, such as insulin levels, cholesterol, and family history, to enhance interpretability
and predictive power. Expanding the dataset to include multi-regional and multi-ethnic
populations would improve generalizability and capture subtle socio-demographic effects.
Future research could leverage explainable Al (XAI) methods like SHAP or LIME to clarify
model decisions and build clinician trust, as well as incorporate temporal data (e.g., glucose
trends or hormonal patterns) for dynamic predictions. Ultimately, deploying the model within
a validated prospective clinical decision support system (CDSS) could enable real-time patient
risk assessment while maintaining human oversight and clinical utility (Rajkomar et al., 2019).

4. CONCLUSION

These translations confirm the predictive utility of gender-specific ML models in diabetes
prediction, specifically among females, a population that tends to be underrepresented in
conventional clinical investigations. The study was able to implement cutting-edge methods
such as SMOTE to overcome class imbalance and LightGBM to maximize the performance
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of their model, achieving excellent accuracies (97%) and ROC-AUCscores (98%),
outperforming traditional models such as LR, DT, and RF. However, the spousal analysis of
tender/bad pain heritability substantiates the critical role of human communal living in social
genetics. Additionally, adding feature engineering, visualization tools (counterplots,
heatmaps, pie charts), and hyperparameter tuning using GridSearchCV to assist with feature
importances also helped in the interpretability and performance of the models. These visual
aids enhanced the model's interpretability, which increased its acceptability and allowed for
more suitable use in clinical settings. In conclusion, we believe the study highlights the
growing need for personalized, interpretable Al-based analytics in precision medicine. Future
work should seek to generalize this method across larger pools of the population with more
diverse clinical data and to effectively translate the model into ubiquitous, timely decision-
making in the clinical space to facilitate early diagnosis and better outcomes from diabetic
care.
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