

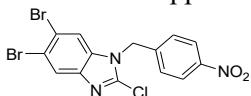
Biomedicinal Perspectives Of N-Heterocyclics

Samarth Singh, Dinesh Kumar Sharma,*Ravi Kant

Institute of Applied Sciences, Mangalayatan University, Aligarh-202145, India

**Corresponding Author: ravi.kant@mangalayatan.edu.in*

Benzimidazole is the heterocyclic compound which contains a phenyl ring fused to an imidazolering. The properties of benzimidazole and its derivatives have been studied over more than one hundred years. Benzimidazole derivatives are useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole analogues are of crucial importance because of their different clinical applications and biological activity. Benzimidazole are known as an optimistic class of bioactiveheterocyclic compounds possessing a wide variety of biological activities such as antimicrobial, antiviral, anticancer activity, antioxidant, antiparasitic, antiproliferative, antitumor, anti-HIV, anti-convulsant, antiprotozoal, analgesic and anti-inflammatory, antihypertensive,anticancer, androgen receptor antagonist, vasorelaxant etc. The present manuscript will further helpful for the researcher on the basis of substitution pattern around the nucleuswith an aim to help medicinal chemists for developing an SAR on Benzimidazole drugs/compounds.

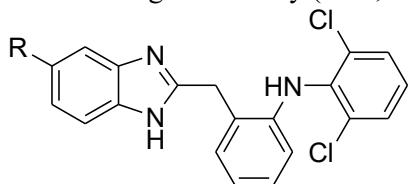

Keywords: Heterocyclics, Benzimidazole, Pharmacological activity, Chemistry.

INTRODUCTION

The benzimidazole scaffold is a useful structural modification for the development of molecules of pharmaceutical or biological interest. Benzimidazole is a benzo derivative of imidazole in which benzene ring is fused with a five member ring system having hetero atom at 1 and 3positions. The properties of benzimidazole and its analogs have been studied since over hundred years. However a special interest of researchers towards benzimidazole derivatives was originated by the fact that 5, 6-dimethyl-1-(α -Dribofuranosyl)benzimidazole is an basic part of the structure of vitaminB12^[1].Moreover benzimidazole is a structural unit of naturallyoccurring nucleotide, due to which it easily interacts with thebiopolymers of living system. They exhibit significant activitylike antihelminthic^[2], antifungal^[3],anti-allergic, antimicrobial^[4-6], antiviral^[7] and antineoplastic^[8]activities. Since proteases have been linked with several diseasestates, including thrombosis, inflammation, bronchoconstriction and tumour growth and invasion^[9]. The incorporation of thenucleus is an important synthetic strategy in studies of antimicrobial drug discovery.In the past few decades, benzimidazole and its derivatives have grasped much attention due to their chemotherapeutic values^[10]. Furthermore, the pharmacological properties and therapeutic applications of benzimidazole depend upon thepattern of substitution and recently they are reported to possessmany pharmacological activities. This review highlights theimportance of Benzimidazole in medicinal world along with afew examples of clinically used drugs. Additionally review ofsome of the work concerning benzimidazole reported in therecent literature has also been provided.

Antimicrobial activity

Synthesis of a new set of heterocyclic sulfonamide-bound molecules (1) was synthesized and tested for antibacterial activity by Naaz F et. al^[11] [Figure 1]. During antibacterial screening with the broathdilution method, it has been found that molecules are found to be highly active against different human pathogens, namely *B. cerus*, *S. aureus*, *E. coli* and *P. aeruginosa*, and most effective against *E. coli*. The results indicated a good antibacterial lead using the combination approach.

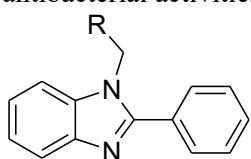


(1)

Figure 1: Sulphonamide derivative of benzimidazole

Analgesic activity

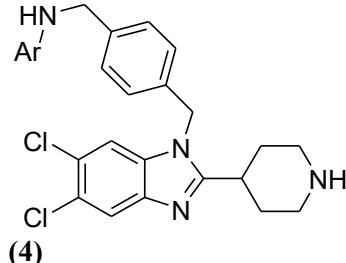
Sravanthi et al^[12] reported syntheses of 2-substituted benzimidazoles (2a-c). All the synthesized compounds [Figure 2] were tested for analgesic activity by tail flick method at 25 mg/kg doses orally and compared with indomethacin, compounds (2a), (2b) and (2c) showed analgesic activity (86%, 85% and 74%).



R = NO₂(2a), Br (2b), Cl(2c)

Figure 2.2-substituted benzimidazoles

Antibacterial activity


Synthesis of a series of 1, 2-disubstituted-1Hbenzimidazole-N alkylated- 5-carboxamidine derivatives was reported by Goker et. al^[13] and evaluated antibacterial activities against *S. aureus* and methicillin resistant *S. aureus*. The study revealed the best activity, with MIC values of 0.78 - 0.39 µg/mL against these species^[14]. Mohamed et al. Synthesized benzimidazoles as 1-(substituted-methyl)-2(substituted-phenyl) benzimidazoles (3) and compounds 3a, 3b and 3c were screened for their antibacterial activity against *S. aureus*, *B. pumillus* and *P. aeruginosa* [Figure 3]. Compound 3a showed MIC (6.25) at 100 µM/ML and exhibited good antibacterial activity. Various Chloro and dichlorosubstituted benzimidazole also possess antibacterial activities.

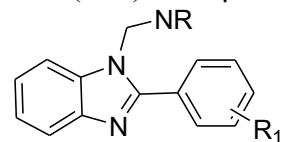
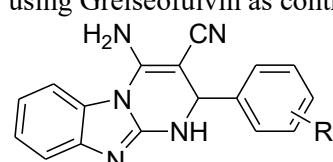

R= Diethylamine(3a), Dimethylamine(3b), Morphilono(3c)
(3)

Figure 3.

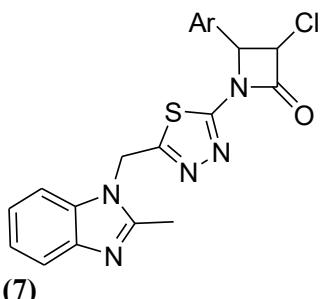
Synthesis of a series of benzimidazole with general molecular structure (4) were reported by He et al^[15] which exhibits potent broadspectrum antibacterial activity and started a research program to discover novel antibiotics against Gram positive bacteria by targeting rRNA [Figure 4].

Figure 4. General structure for benzimidazole derivatives


Leonardo et al^[16] reported synthesis of benzimidazole as 1-(substituted-methyl)-2-(substituted-phenyl) benzimidazole(5). Compounds 5a, 5b and 5c were screened for their antibacterial activity against *S. aureus*, *B. pumillus* and *P. Aeurugenosa*[Figure 5]. Compound 5a showed MIC (6.25) at 100 μ M/mL and exhibited good antibacterial activity.

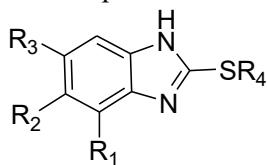
R = piperazine(**5a**), dimethylamine(**5b**), diethylamine(**5c**), R₁ = Cl

Figure 5.

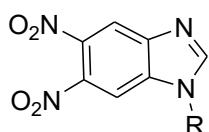
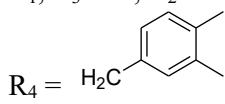

Deshmukhet al^[17] reported synthesis of 2,3,4-trisubstituted-1,2-dihydropyrimido[1,2-a]benzimidazole derivatives (6)[Figure 6]. The compounds were tested for their fungicidal activities against *Aspergillusniger*MTCC-2255 and *Penicilliumchrysogenum*-NCIM-723 using Greiseofulvin as control.

R = -OCH₃, -OH

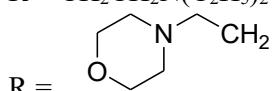
Figure 6.


The efficient synthesis of novel 3-chloro-1-5-(2-methyl-1Hbenimidazol-2-yl)-4-(substituted) phenylazetidin-2-one (7) was reported by Ansari et al^[18]. Compounds were screened for antibacterial activity against *B. subtilis* and *E. coli* and compound 7a, and 7b [Figure-7] shown MIC at 100 μ g/mL, 100 μ g/ML and 200 μ g/mL doses.

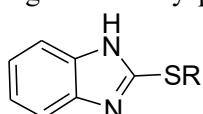
Ar = 2-PhCl (7a), 2-PhOH (7b)



Figure 7.

Kazimierczuk et al^[19] reported two series of benzimidazole derivatives, the first one was based on 2-thioalkyl and thioaryl substituted benzimidazole (8a), the second one was based on 5,6-dinitrobenzimidazole (8b) [Figure 8] and the antibacterial activity of the compound against *Stenotrophomonas maltophilia* was examined.

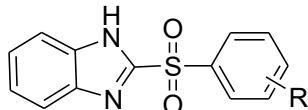

R₁ = R₂, R₃ = CH₂CH₂N(CH₃)₂

R₁, R₃ = H, R₂ = COOH


R = CH₂CH₂N(CH₃)₂

R = CH₂CH₂N(C₂H₅)₂

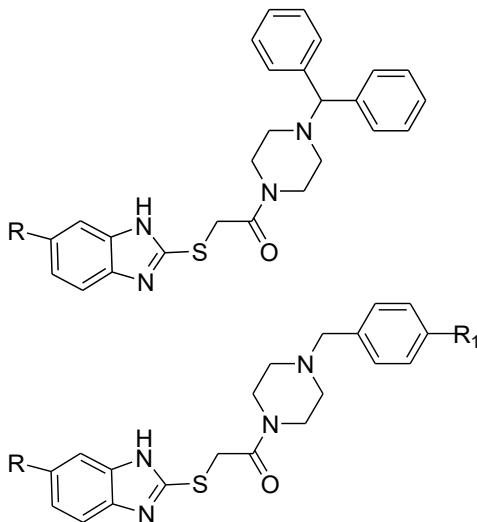
Figure-8.


The compound 2-thiohalogenonitrophenylbenzimidazole (9) [Figure 9] was synthesized by Gupta and co-workers^[20] and screened for their antifungal activity against *H. sativum*, *A. niger* and *F. oxysporum*. The percentage inhibition of the fungal spores was recorded at 10 ppm.

R = 2,4-DNP/ 2,6-DNT/ 2,4,6-TNP/2-chloro 4,6-DNP/2-methyl-4,6-DNP/ 2-chloro-4-bromo-3,5-DNP

(9) Figure 9.

Ghoneim et al^[21] reported the synthesis of 2-[(4-aminophenyl)sulphonyl]derivative (10) [Figure 10] of benzimidazole and these derivatives were tested for antimicrobialactivity of against *E. coli* using agar diffusionmethod. All 4-amino and 2,4-diaminophenylsulphonylderivatives showed antimicrobial activity.



R = 4-NH2/ 2,4-diNH2

(10)

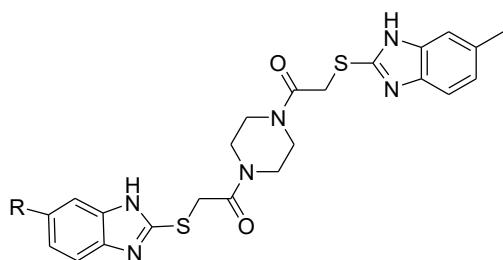
Figure-10

Mavrova and co-workers^[22]reported the synthesis of 1H-benzimidazole-2-yl thioacetyl piperazine derivatives (11a-c) [Figure 11]and screened themfor in-vitro activity in contrast to *T. spiralis* and in-vivo antinematodeactivity against *S. obvelata*. Most of the synthesizedcompounds exhibit higher activity towards *T. spiralis*than albendazole and comparable to that of ivermectin. Fewcompounds exhibited 96.0%, 98.2% and 100% activities at adose of 200 μ g/ml after 48h. Some of the compounds were mostactive with 76%, 73% and 77% towards *S. obvelata*.

(11a) R=H, CH₃

(11b) R=H, CH₃, NO₂, Cl

R1=CH₃, Cl

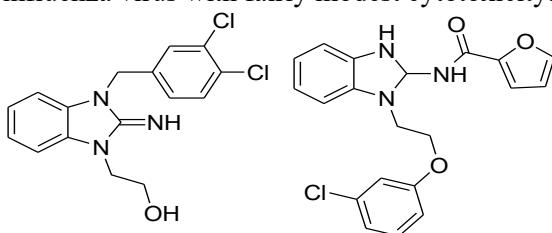


(11c) R=H,CH₃

Figure 11.

Antiviral activity

Kharitonova MI et al^[23], reported that β -D-ribo- and 2'-deoxyribofuranosides of 2-amino-5,6-difluorobenzimidazole nucleosides (**12**)[Figure 12] were synthesized using the enzymatictransglycosylation reaction. 2-Amino-5,6-difluoro-benzimidazole riboside exhibited selective antiviral activity against a wild strain of the herpes simplex virus, and against cidofovir, acyclovir and foscarnet resistant virus strains. It has been hypothesized that this compound can be used to treat herpes infections in such cases, when acyclovir is ineffective.

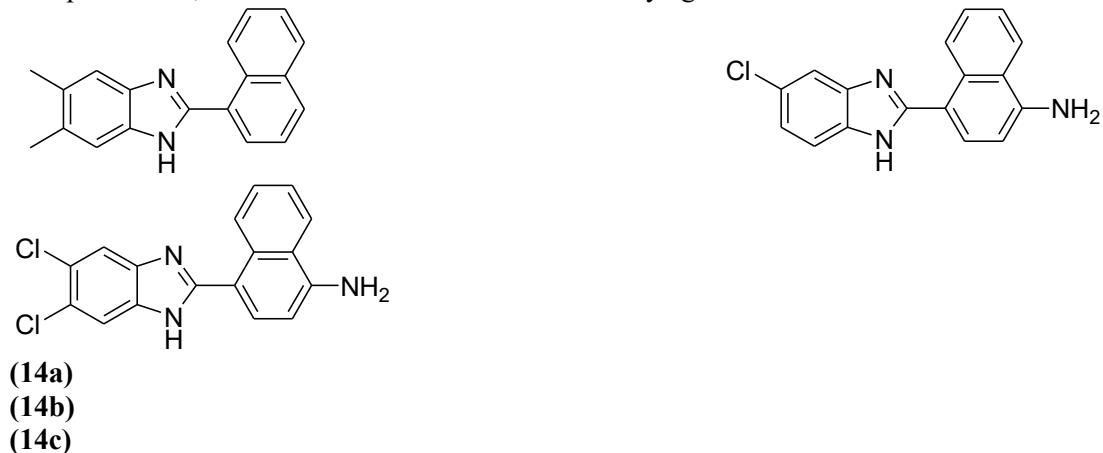

X= -H (2-deoxyriboside)

X= -OH (riboside) active against -HSV-1

(12)

Figure-12.2-amino-5,6-difluorobenzimidazole nucleosides

Zarubaev VV et al^[24] reported the synthesis of a series of 1,3-disubstituted-2-iminobenzimidazolines (**13a** and **13 b**)[Figure 13] and a number of their tautomer analogues. Synthesized compounds were tested for toxicity to MDCK cells and for inhibiting activity against influenza virus A/California/07/09 (H1N1) pdm09. It has been found that some of synthesized benzimidazole derivatives have a potent virus inhibiting activity against pandemic influenza virus with fairly modest cytotoxicity.



(13a)

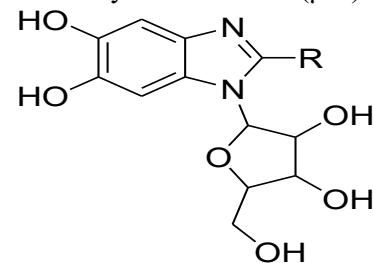
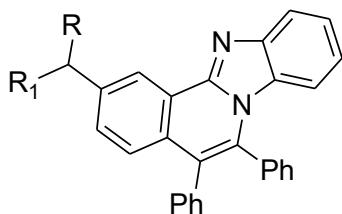

(13b)

Figure 13.1,3-disubstituted 2-iminobenzimidazolines

Vitale et al^[25] reported a new series of 2-arylbenzimidazoles (14)[Figure 14]. They assessed them for antiviral activity and antiproliferative. Compounds were screened against Flaviviridae family, i.e. Flaviviruses and Pestiviruses, Retroviridae, Picornaviridae, Paramyxoviridae, Rhabdo-viridae and Reoviridae, Herpesviridae and Poxviridae. Compounds 14a, 14b and 14c showed moderate activity against Yellow Fever Virus.

Figure-14. 2-arylbenzimidazoles derivatives (14)


Synthesis of 2-(benzylthio)-5, 6-dichloro-1-(β -D-ribofuranosyl)benzimidazoles(15) [Figure 15] was reported by Devivaretal^[26]. Compounds 15a, 15b and 15c performed anti-viral activity towards HSV-1 and HCMV and compound 18c shown maximum activity at 90% inhibitory concentration (μ M).

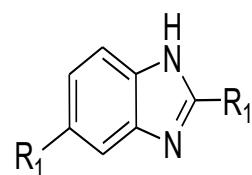
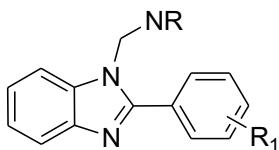

R = SCH₃ (15a), SO₂CH₃ (15b), SO₂Ph (15c)

Figure 15.2-(benzylthio)-5, 6-dichloro-1-(β -D-ribofuranosyl)benzimidazoles (15)

Some 7-(arylamidoalkyl)-3,4-diphenyl-isoquinolinyl-[1,5-c]-benzimidazoles (16) [Figure 16] have been synthesized by Pandey and Shukla et al^[27] and were evaluated for their in vivo against influenza virus (IV) by inoculating it in 10 day old embryonated hen's egg at the concentration of 0.5 mg per embryo. After 48 h it was found that the isoquinonylbenzimidazole derivative with nicotinamido group showed the maximum activity.

R1 = salicylamido, R = H

(16)**Figure-16**

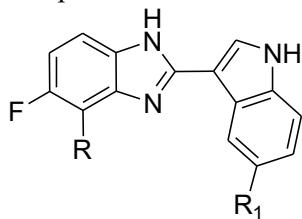

R2 = Amidino substituent

(17)**Figure-17**

Kristina et al.^[28] reported the synthesis of a set of 2-substituted-5-amidinobenzimidazole(17)[Figure 17] derivatives bearing amidinosubstituent at C-5 of benzimidazole ring by substituting various heterocyclic nuclei at C-2 and were evaluated for their antiviral activity towards coxsackieviruses and echo viruses. The most selective activity towards coxsackieviruses and echo viruses was observed with the compound having pyridine ring at C-2.

Anti-Inflammatory Activity

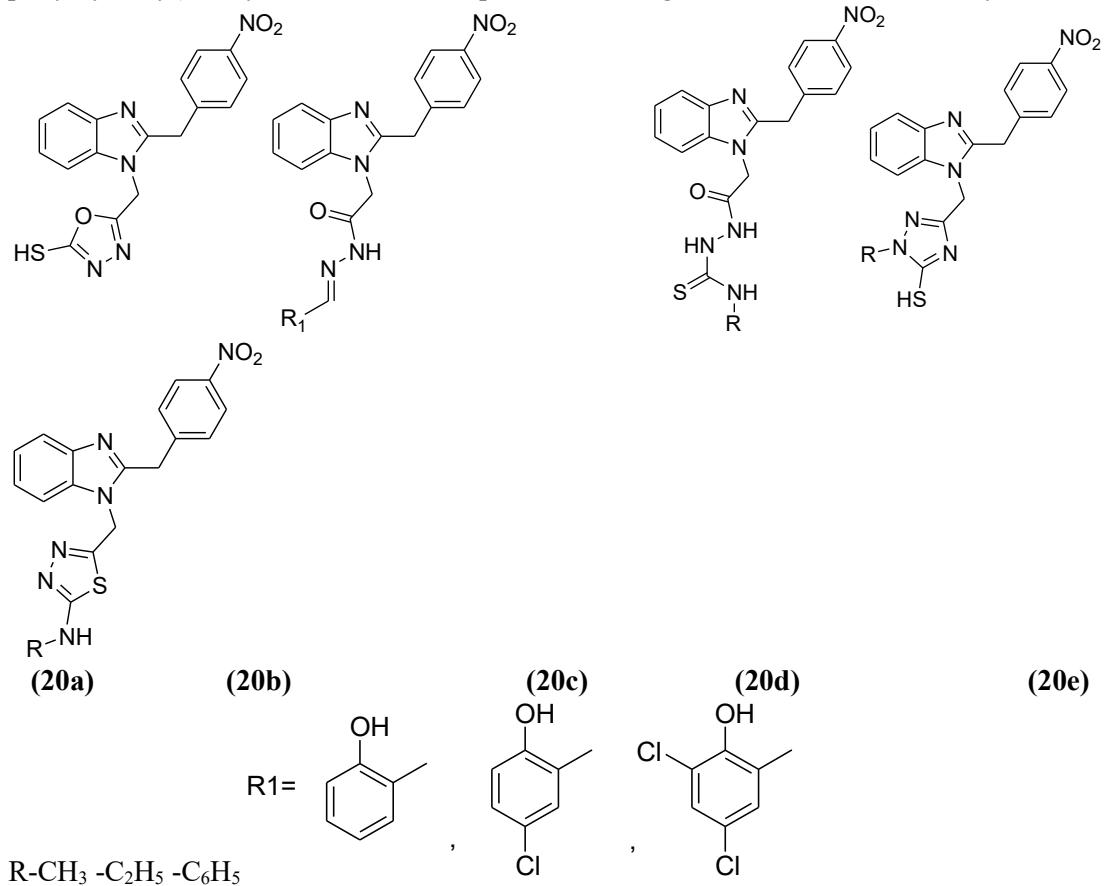
Leonardo et al.^[29] reported synthesis and anti-inflammatory activity of phenylbenzimidazole(18a-d). Compounds 18a, 18b, 18c and 18d[Figure 18] were screened for anti-inflammatory activity and they showed percent inhibition (22.1%, 52.2%, 54.6% and 49.6%) at 50 mg/kg each doses. By these values the compound 21c showed maximum (54.6%) inhibition of edema at doses of 50mg/kg.



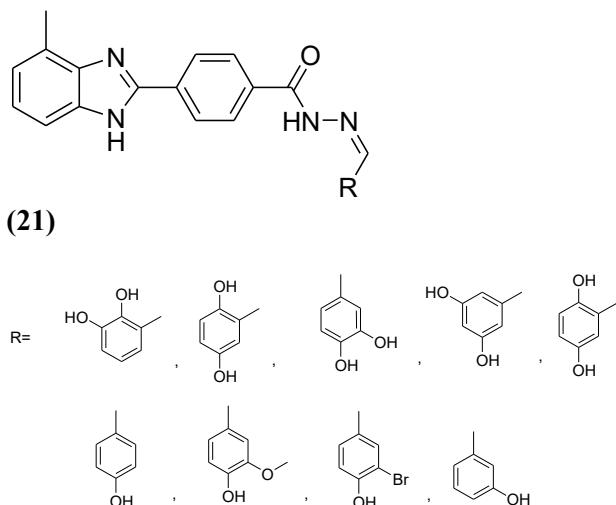
R = morphine (18a), diphenylamine (18b), dimethylamine (18c), imidazole (18d), R1 = Cl

Figure18. Phenyl benzimidazole derivatives

Antioxidant Activity


Alagoz et al.^[30] synthesized some 6-fluoro-5-substituted benzimidazoles (19a-e)[Figure 19] and tested for antioxidant activity and compound (19e) showed strong anti-oxidant effect on superoxide anion at 0.001M concentration.

R = 4-CH₃C₅H₁₀ (19a), 4-CH₃C₅H₁₀N (19b), 4-C₆H₅C₄H₉N₂ (19c), 4-C₆H₅C₄H₉N₂ (19d), 4-C₆H₅C₄H₉N₂ (19e), R1 = H, Br, OCH₃


Figure 19.6-fluoro-5-substituted benzimidazole derivatives.

Karaali N et al^[31], synthesized a number of new 2-(4-nitrobenzyl)-1H-benzimidazole derivatives with thiosemicarbazide, triazole, oxadiazole and thiadiazole units (20a-e)[Figure 20]are present in the 1st position of benzimidazole ring has been synthesized and tested for its antioxidant activity. The inhibitor activities of the synthesized compounds were determined with CUPric Reducing Antioxidant Capacity (CUPRAC), ABTS (2,2-azinobis(3-ethylbenzothiazoline-6 sulfonic acid)/persulfate and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays. Most of the compounds show significant antioxidant activity.

Figure 20: 2-(4-nitrobenzyl)-1H-benzimidazole derivatives bearing thiosemicarbazide, triazole, oxadiazole and thiadiazole moieties

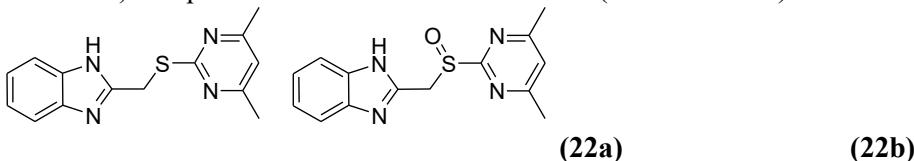
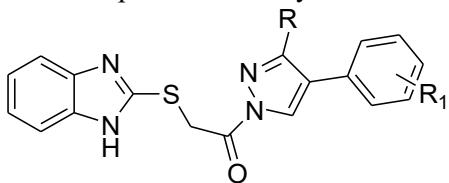
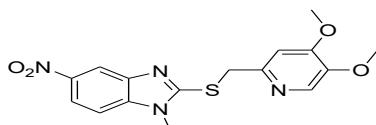

Taha M et al^[32], synthesized some novel 4-Methylbenzimidazole derivatives (21)[Figure 21] and evaluated for their antioxidant activity. All synthesized compounds were evaluated for DPPH activity. Some of the compounds showed excellent activities, ranging 12-29 μ M, better than the standard drug n-Propylgallate (IC_{50} $\frac{1}{4}$ 30.30 ± 0.40 μ M). For superoxide anion scavenging activity, many of the compounds showed better activity than standard n-Propylgallate(IC_{50} $\frac{1}{4}$ 106.34 ± 1.6 μ M) and ranged from 82-104 μ M.

Figure 21: 4-Methylbenzimidazole derivatives


Anti-ulcerative Activity

Bariwal et al.^[33] synthesized and reported a series of novel pyrimidyl-thio-methyl-benzimidazole(22a) and pyrimidylsulfinylmethylbenzimidazole(22b)[Figure 22]. Compounds evaluated for the antiulcer activity. Compound 22a and 22b at 10 and 30 mg/kg doses reduced the ulcer formation significantly comparable to standard (Omeprazole) and 22b (sulfinyl derivative) compound was more effective than 22a (thio derivative).

Figure-22. Pyrimidyl-thio-methyl-benzimidazole 22(a) and pyrimidyl-sulfinylmethylbenzimidazole 22 (b)


Nadeem H et al.^[34], synthesized and reported a series of six new benzimidazole-pyrazole hybrid molecule (23a-f)[Figure 23] were and characterized. In vivo anti ulcerogenic activity was evaluated for all compounds synthesized. All six compounds synthesized showed higher anti-ulcer activity as compared against standard omeprazole. The results clearly show that these new benzimidazole-pyrazole hybrids may constitute a new category of potential anti-ulcer compounds and may be considered as new anti-ulcer drugs upon further investigation.

	23d	23e	23f
R	-4-OHC ₆ H ₅ NH ₅	-C ₆ H ₅	-3-OH, -4-OCH ₃
R ₁	-2-OH	-H	-H
	23a	23b	23c
R	-C ₆ H ₅	-2-OHC ₆ H ₅	-2-OHC ₆ H ₅
R ₁	-2-OH	-2-OH	-3-OH, -4-OCH ₃

Figure 23. Benzimidazole- \square pyrazole hybrid molecule

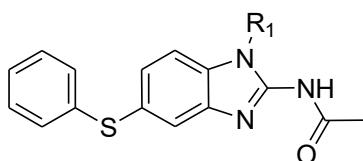
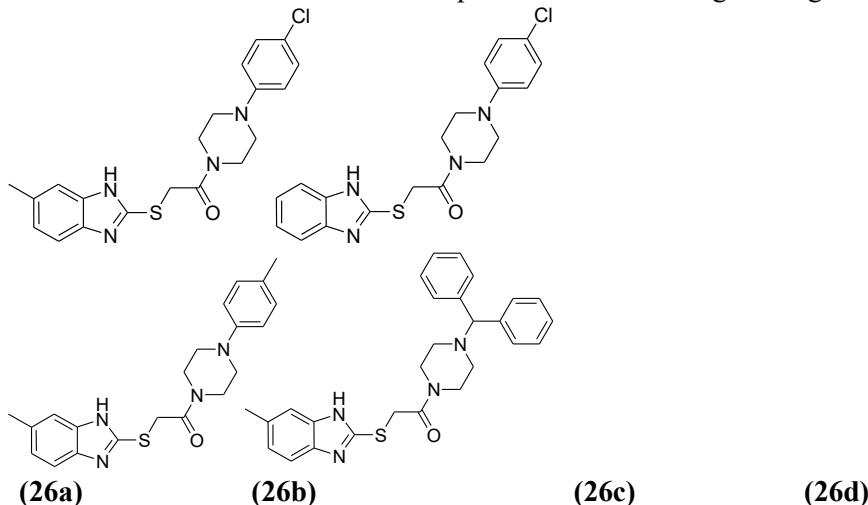

Madala SR et al^[35], reported that 1-methyl-2{[(3,4-di methoxy pyridine2-yl) methyl] sulfanyl}-5-nitro-1H-benzimidazole (24) was synthesized by coupling 1-methyl-2-mercaptop-5-nitro-1Hbenzimidazole with pyridine derivative in presence of a base at room temperature. The synthesized compound [Figure 24] was tested for antiulcer activity by using the technique of cold and restraint ulcer. The results showed that the compound showed significant activity.

Figure 24: 1-methyl-2{[(3,4- di methoxy pyridine2-yl) methyl] sulfanyl}-5-nitro-1Hbenzimidazole

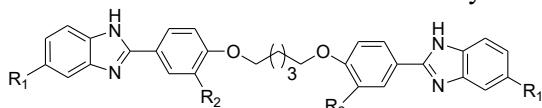
Anti-leishmanial Activity

Solominova et al^[36] reported the synthesis of 2-benzimidazole carbamic acid methyl ester derivatives. Compounds 25a and 25b[Figure 25] shown anthelmintic activity against *Nippostrongilus*, *Ankilostoma* and *Haemonhus* larvae that exceeded 65% upon per oral administration in animals (rats, sheep, dogs) at a dose of 2.5- 50mg/kg. In another group of animal inhibition action is below 40% upon per oral administration in a dose of 50-100mg/kg.



R₁ = COOCH₂CH₂OCH₃ (25a), CONHCH₂CH₂COOCH₃ (25b)

Figure-25. 2-benzimidazole carbamic acid methyl ester derivatives

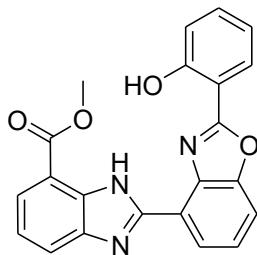

Mavrova et al^[37] synthesized 5(6)-(un)substituted-1Hbenzimidazol-2-yl thioacetyl piperazine derivatives and assessed for anthelmintic activity against *T. spirilis*. Compound 2-(2-{2-[4-(4-chlorophenyl)piperazin-1-yl]-2-oxoethyl}thio)-5(6)-methyl-1H-benzimidazole (26a) was the most active. They also synthesized some new piperazine derivatives of (1H-benzimidazol-2-ylthio) acetic acid (26b-d) [Figure 26] and investigated them for antihelminthic efficacy in order

to compare them with albendazole and ivermectin. The same group of scientist have also synthesized 2-substituted-[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-ones. SAR of these compounds was also comparable to the known drugs, albendazole and ivermectin. These results proved the hypothesis of introduction of a condensed ring in the benzimidazole system, favored to the interaction of these compounds with the biological targets.

Figure 26.Piperazine Derivatives of (1H-Benzimidazol-2-ylthio)acetic Acid (26 a-d)

Torres et al^[38] had synthesized some hybrid compounds by using benzimidazole and pentamidine with central pentyldioxyphenyl piece at the end and the terminal amidine groups were substituted by 5-substituted benzimidazole frame (27). The results obtained were much in agreement because many of the compounds exhibited activity in comparable with standard drugs meteronidazole and pentamidine. Only compound with $-CF_3$ at 5th position ring exhibited moderate anti-malarial activity with IC_{50} of 6.53 μ M.

R1 = H, OCH₃, CH₃, NO₂, CF₃

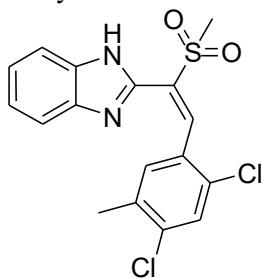

R2 = H, OCH₃

(27)

Figure-27: 5-Substituted Benzimidazole Derivatives

Anticancer Activity

Cancer characterized by rapid or slow uncontrolled growth of cells. On the basis of the type, a number of anticancer drugs are now a days in medicinal practice. Carbomethoxy-substituted benzimidazole derivatives of UK-1 [a bis(benzoxazole) natural product] were obtained from Streptomyces strains by Kumar et al^[39] and assessed its cytotoxicity against four cell lines such as PC-3, HT-29, MCF-7 and HL-60. Only one compound methyl-2-[2-(2-hydroxyphenyl)-1,3-benzooxazol-4-yl]-1H-benzimidazole-4-carboxylate (28)[Figure 28] possesses activity towards the tested cell lines against a concentration ranging from 7.0 to 100 μ M.

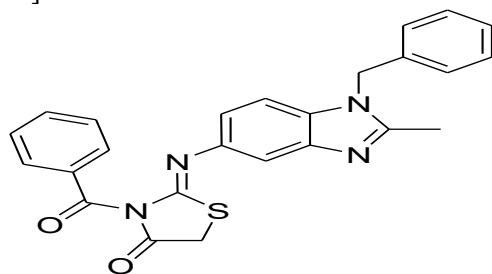


(28)

Figure 28.methyl 2-[2-(2-hydroxyphenyl)-1,3-benzoxazol-4-yl]-

1H-benzimidazole-4-carboxylate

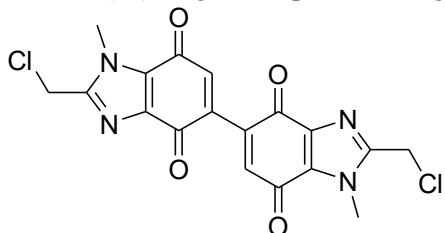
Vedula and co-workers^[40] screened new styrylsulfones for anticancer activity against different cell lines. Out of the various molecules prepared only one compound 6-chloro-1H-(benzo[d]imidazol-2-yl) methyl[(E)-2-(4-chloro-3-methylphenyl)-1-ethenyl] sulphone (29)[Figure 29]showed 51% inhibition of tumour growth in mice with HT-29 at 400mg/kg orally.



(29)

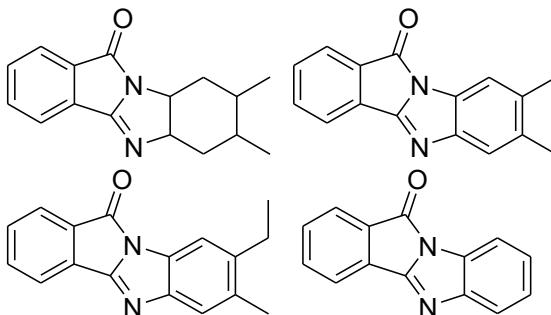
Figure 29. 6-chloro-1H-(benzo[d]imidazol-2-yl) methyl[(E)-2-

(4-chloro-3-methylphenyl)-1-ethenyl] sulphone.


Ramla et al^[41]synthesized derivatives of 2-(1-benzyl-2-methyl-1Hbenzimidazol-5-ylimino)-3-(substituted)-thiazolidines-4-ones and 3-(2-methyl-1H-benzimidazol-5-yl)-2-substitutedthiazolidines-4-ones. They significantly assessed them for antitumor activity against the EBV-EA activation by introducing 12-O-tetradecanoyl phorbol-13-acetate. 3-benzoyl-2-(1-benzyl-2-methyl-1H-benzimidazol-5-yl-imino)thiazolidin-4-one (30)[Figure 30].

(30)

Figure-30: 3-benzoyl-2-(1-benzyl-2-methyl-1H-benzimidazol-5-yl-imino)thiazolidin-4-one


Benzimidazole-4,7-diones substituted at position-2 were designed by Gellis et al^[42]. Their anti-cancer activity was studied on lung cancer, colon cancer and breast cancer cell lines. Out of these, 2,20-bis(chloromethyl)-1,10-dimethyl-5,50-bi(1Hbenzimidazole)-4,40,7,70-tetraone (31) [Figure 31] possesses significant cytotoxicity against mitomycinC.

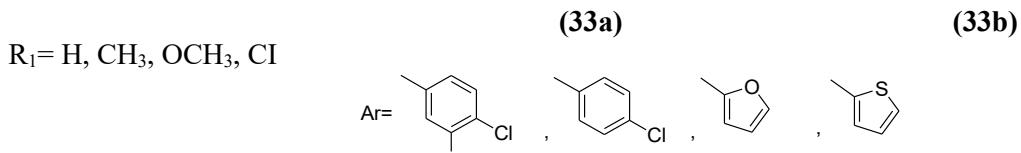
(31)

Figure-31: 2,20-bis(chloromethyl)-1,10-dimethyl-5,50-bi(1H-benzimidazole)-4,40,7,70-tetraone

Various heterocyclic benzimidazole derivatives (32a-d) [Figure 32] were prepared from succinic acid, homophthalic acid and 2,3-pyrazinedicarboxlic acid and various substituted diamines by Sondhi et al^[43]. All these compounds screened for their antitumor assay at 50mg/kg showed good anticancer activity against IGROV-1, MCF-7 and SF-295 human cancer cell lines.

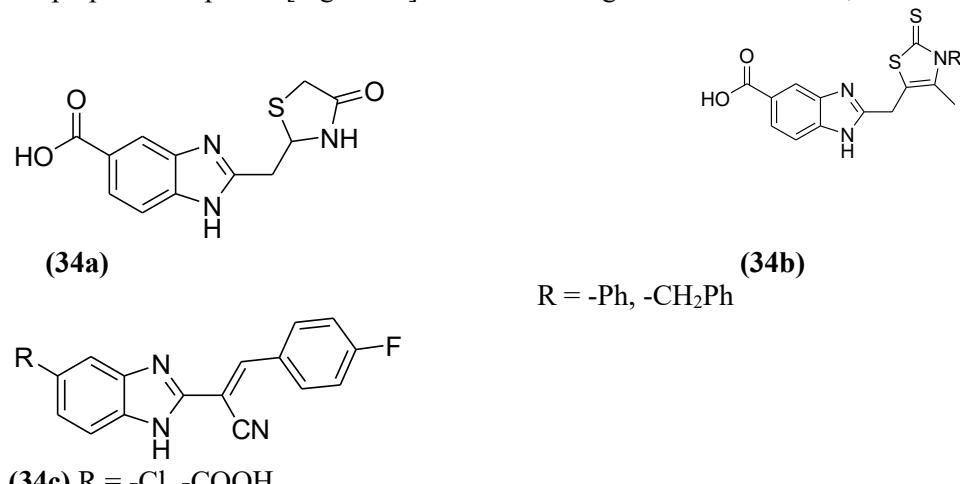
(32a)

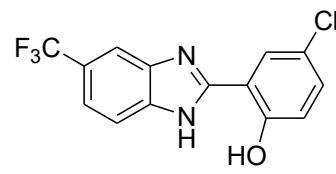

(32b)


(32c)

(32d)

Figure 32.Various heterocyclic benzimidazole derivatives.


1-methylene-2, 3-diaryl-1, 2-dihdropyrazino [1,2-a]benzimidazoles(33a)and some 1-(2-arylvinyl)-3-arylpyrazino[1,2-a]benzimidazole derivatives (33b)[Figure 33] have been synthesized and their anticancer activity was reported by Demirayak et al^[44]. $\log_{10}GI50$ values are less than – 4 against standard drug.


Figure-33: 1-methylene-2,3-diaryl-1,2-dihydropyrazino[1,2-a]benzimidazoles (33a) and 1-(2-arylvinyl)-aryl pyrazino[1,2-a]benzimidazole derivatives (33b).

The synthesis of series of benzimidazole like: 2-[(4-oxothiazolidin-2-ylidene)-methyl (34a) and (4-amino-2-thioxothiazol-5-yl) benzimidazoles(34b), 2-[(4-fluorobenzylidene (34c) and cycloalkylidene)-cyanomethyl]benzimidazoles was carried out by Refaat et al^[45]. All the prepared compound [Figure 34] were assessed against three cell line , HEPG2 and MCF7.

Figure-34: Benzimidazole Derivatives

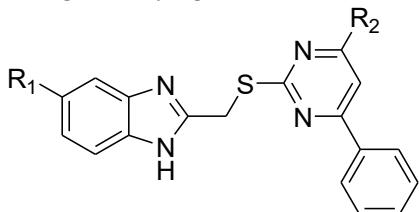
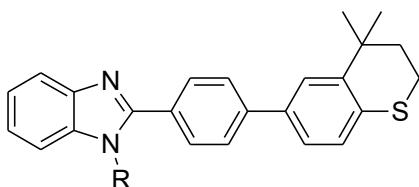

Mook Jr RA et al^[46], developed a new class of benzimidazole inhibitors of Wnt/ β -catenin signaling based on SAR studies of the Niclosamidesalicylanilidechemotype. These studies identified 4-chloro-2-(5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl) phenol [Figure 35] [Figure 35] and concerned derivatives with higher Wnt/ β -catenin signaling inhibition vs. differential effects on cellular ATP homeostasis. These compounds may be useful in elucidating the mechanism of Niclosamide's inhibition of Wnt signaling, and may aid in the discovery of inhibitors having improved pharmacologic properties in the treatment of cancer and diseases in which Niclosamide has vital biological activity.

Figure 35: 4-chloro-2-(5-(trifluoro methyl)-1H-benzo[d]imidazol-2-yl) phenol derivative

Shao KP et al^[47], synthesized a series of pyrimidine– benzimidazol hybrids (36) [Figure 36] and investigated anticancer activity in four human cancer cell lines including MCF-7, MGC-

803, EC-9706 and SMMC-7721. Some of the synthesized compounds showed moderate to strong activity against MGC-803 and MCF-7.

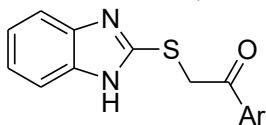

R₁= -H, R₂= -4-CH₃O-C₆H₅-NH

R₁=-Cl, R₂= -4-CH₃O-C₆H₅-NH

Figure 36: Pyrimidine-benzimidazole derivatives (36)

Anti-Diabetic Activity

A synthesis of a series of novel and substituted benzimidazole derivatives (37)[Figure 37] was reported by Kumar et al^[48] Compounds shown anti-diabetic activity against DPP-IV and PTP-IB. Compound 37a and 37b shown inhibitory activity against PTPIB (1.64%, 2.42%) at 30 μ M doses.

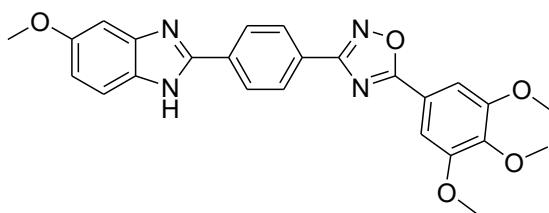
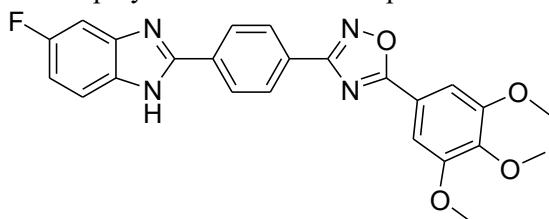

(37)

R = H (37a), CH₂CH₂CH₂CH₃ (37b)

Figure 37. Benzimidazole derivatives.

Anti-proliferative activity

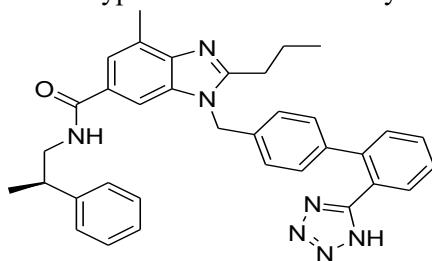
Abdel-Aziz HA et al^[49], reported that a series of 2-((benzimidazol-2-yl)thio)-1-arylethan-1-ones (38)[Figure 38] were synthesized. All compounds were evaluated against anti-proliferative activity against the neoplastic colon HT-29 cell line. In addition, their inhibitory activity against cellsurface expression of CD133, a potent marker for cancer stem cells (CSCs) in the same cells, was assessed by flow cytometry at 10 μ M.

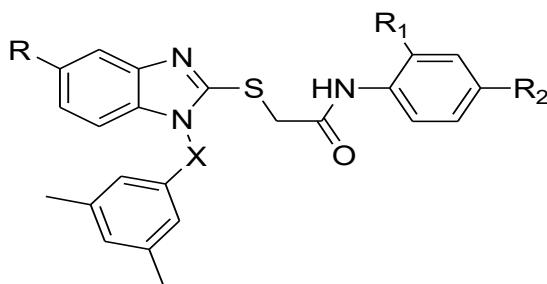
Ar = -2,3,4-(OCH₃)₃-C₅H₂ (38)

Figure 38: 2-((Benzimidazol-2-yl)thio)-1-arylethan-1-one derivatives.

Kamal A et al^[50], synthesized a new series of 2-aryl-1,2,4-oxadiazolo-benzimidazole conjugates (39a and 39b)[Figure 39] and investigated their antiproliferative activity in the group of sixty cancer cell lines. The compounds (39a) and (39b) showed remarkable cytotoxic activity against most of the cancer cell lines in the one dose assay and were administered at five dose levels (0.01, 0.1, 1, 10 and 100 μ M) with GI₅₀ values in the range of 0.79–28.2 μ M. The flow cytometric results of these compounds showed increased cells in the G2/M phase,


indicating a G2/M cell cycle arrest. Furthermore, these compounds showed inhibition of tubulin polymerization and disruption of microtubule formation.

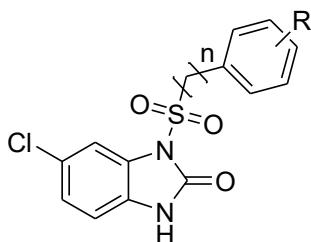
(39a) **(39b)**
Figure 39: 2-aryl-1,2,4-oxadiazolo-benzimidazole conjugates.


Antihypertensive activity

Han XF et al^[51], reported that novel angiotensin II receptor type 1 (AT1) blockers bearing 6-substituted carbamoyl benzimidazoles with a chiral centre were developed and synthesized as the first step in the development of new antihypertensive agents. The newly synthesized compounds were tested for their potential ability to displace [¹²⁵I] Sar¹ Ile⁸-Ang II, which was specifically bound to human AT₁ receptor. The candidate (40) [Figure 40] was identified on the basis of plasma analyses, toxicology studies, and chronic oral tests for its excellent efficacy in anti-hypertension and relatively low toxicity.

(40)

HIV Inhibitors
Maria Monforte A et al^[52] reported the synthesis of some N₁-aryl-2-arylthioacetamido-benzimidazoles (41)[Figure 41]as a novel class of Non-nucleoside reverse transcriptase inhibitors (NNRTIs). Most of the new compounds well tried to be very much effective in inhibiting every RT enzyme protein at Nano molar concentrations and HIV-1 replication in MT4 cells with low toxicity.

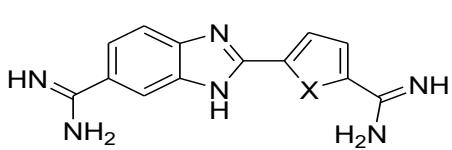

(41)

X = -CH₂, -SO₂

R = -H, -Cl

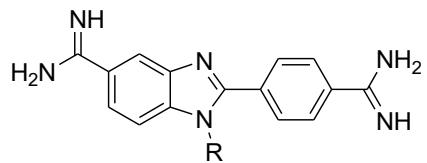
R₁ = -Br, -Cl, -NO₂;R₂ = -H, -CH₃, -COOCH₃, -SO₂CH₃, -SO₂NH₂**Figure 41: N1-aryl-2-arylthioacetamido-benzimidazole derivatives.**

Ferro SF et al^[53], reported that non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an integral part of the currently available combination antiretroviral therapy (cART) which helps to reduce the AIDS-mortality and turned the disease from fatal to chronic. In this context, they recently reported a series of 6-chloro-1-(3-methylphenylsulfonyl)-1,3-dihydro-2H-benzimidazol-2- ones (42)[Figure 42] as potent non-nucleoside HIV-1 reverse transcriptase inhibitors (Figure 17). All the newly obtained compounds were evaluated as RT inhibitors and were co tested against RTs containing single amino acid mutations. Finally, molecular docking studies were conducted to rationalize the identified activity of the most promising compound.



(42)

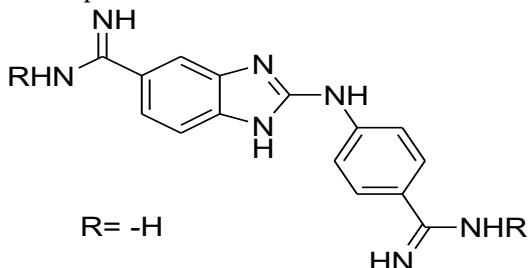
R = -H, -2-Cl, -3-Cl, -4-Cl, -2-CH₃, -3-CH₃, -4-CH₃; n = 1 or 2**Figure 42: 6-chloro-1-(substituted-phenylsulfonyl)-1,3-dihydro-2H-benzimidazol-2-one**


Antiprotozoal activity

Farahat AA et al^[54], prepared a series of novel benzimidazolediamidines[Figure-43] from the corresponding dicyano analogues either by using Pinner method or by preparing amidoximesintermediates which were reduced to the corresponding amidines. The new amidines (43a) and (43b) were evaluated against the protozoan parasite Trypanosomabrucei rhodesiense by *in vitro* method. The thiophene analogue and the N-methyl compound showed superior antitrypanosomal activity compared to that of the parent I.

X=-O,-S

(43a)

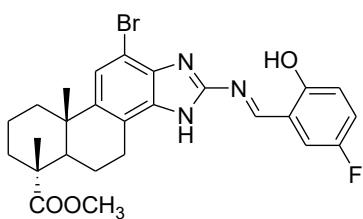


R= -CH3, -C2H5, -C3H7, -Cyclohexyl

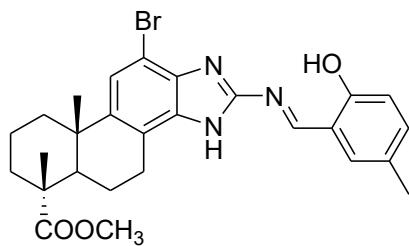
(43b)

Figure-43: Benzimidazole-diamidine analogues

Karaaslan C et al^[55], synthesized a number of mono and dicationic new 2-anilinobenzimidazolecarboxamidines (44)[Figure 44]starting from 4-amino-3-nitrobenzonitrile and corresponding o-phenylenediamines. Their antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei rhodesiense was investigated in vitro. Some of the dicationic compounds showed equal or very close activity against T.b. rhodesiense with melarsoprol and co-exhibited a promising activity against P. falciparum compared to chloroquine.



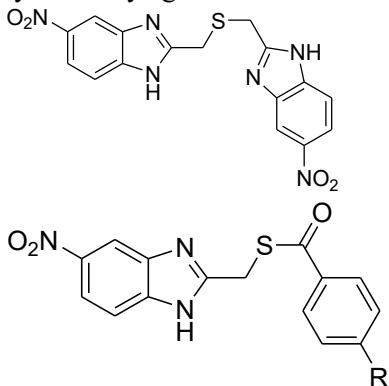
(44)


Figure 44: mono and dicationic-2-anilinobenzimidazole carboxamidines

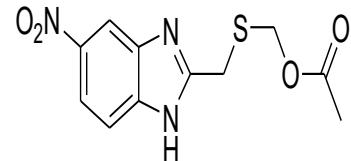
Antitumor activity

Gu W et al^[56], designed and synthesized a series of new 1H-benzo[d]imidazole derivatives of dehydroabietic acid (45a and 45b) [Figure 45]as potent antitumor agents. In the in vitro method, most of the compounds showed significant cytotoxic activity against two carcinoma cells (SMMC-7721 and HepG2) and reduced toxicity to noncancerous human hepatocyte (LO2).

(45a)



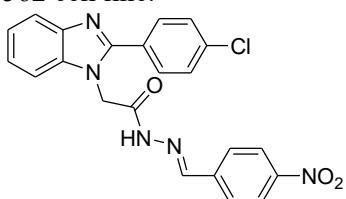
(45b)


Figure 45: 1H-benzo[d]imidazole derivatives of dehydroabietic acid.

El-Gohary NS et al^[57], prepared and tested new benzimidazole analogues (46a-c)[Figure 46]for antitumouractivity. In vitro antitumor screening of the new benzimidazoles toward HepG2,

HCT-116 and MCF-7 cancer cell lines showed that these compounds are the most potent analogs to all cell lines tested. The three potent *in vitro* antitumor analogues were further examined for the *in vivo* method of antitumor activity on EAC in mice, and *in vitro* cytotoxicity against the normal W138 cell line.

(46a)

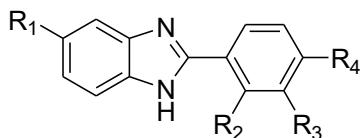

(46b)

(46c)

R= -Cl; □Br

Figure 46: Some new benzimidazole analogs.

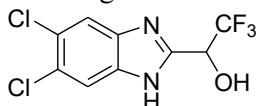
BalramSoni et al.^[58], reported the synthesis of a series of benzimidazole derivatives and screened for their *in vitro* cytotoxic activity. From the cytotoxic activity study, it was observed that compound with the presence of a 2-chloro on aromatic ring and 2-NO₂ on benzylidene amino group (47) [Figure 47] in most cases gives better cytotoxic activity against human K-562 cell line.



(47)

Figure-47.Benzimidazole derivatives

Vasorelaxant activity:


Navarrete-Vazquez G et al.^[59], reported that a series of 1H-benzo[d]imidazole analogues (48)[Figure 48] of Pimobendan, substituted at position 5 with either – CF₃ or – NO₂, were synthesized using a short synthetic route. All the nitro derivatives were potent, and showed a partial endothelium dependent vasorelaxant effects, with EC₅₀s < 5 μM. 2-Methoxy-4-[5-nitro-1H-benzo[d]imidazol-2-yl]phenol was the most potent derivative in the series, showed an EC₅₀ value of 1.81 μM and Emax of 91.7% for *ex vivo* relaxant response in intact aortic rings, resulting in a 2.5-fold higher activity compared to Pimobendan. The closely related 5-CF₃ analogue was 19 times less potent than – NO₂substituted compound.

(48)

R1= -CF₃, -NO₂R2= -H, -OMe, -OEt, -NO₂, -O*i*Pr,R3= -H, -OMe, -O-CH₂-O,R4= -H, -OH, -OPr, -N(Me)₂, -OMe**Figure 48: Pimobendan analogues of 1H-benzo[d]imidazole.****Androgen receptor antagonist**

Ng RA et al^[60], reported the synthesis and in vivo SAR of 5,6-dichlorobenzimidazole derivatives (49)[Figure 49] as new selective androgen receptor antagonists. During the screening of 2-alkyl benzimidazoles, it has been found that a trifluoromethyl group greatly improves antagonist activity in the prostate. This Benzimidazole derivative is a potent AR antagonist in the rat prostate (ID₅₀ = 0.15 mg/day).

(49)

Figure-49: 5,6-dichloro-benzimidazole derivative**CONCLUSION**

The present literature reveals that the benzimidazole nucleus, which can potentially be used in the field of drug discovery area and medicines, has versatile biological activities. This substrate has a great scope for the discovery of new, better, safer and more potent chemotherapeutic agents also. In future, therefore, there is a great scope for developing a new class of substituted benzimidazoles to show better efficacy.

REFERENCES

- [1] Spasov A.A. and Yozhitsa I.N., Benzimidazole derivatives: spectrum of pharmacological activity and toxicological properties, *J. Pharm. Chem.*, 1999, 33, 232-243.
- [2] Mavrova A.T.S., Anichina K.K. and Vuchev D.I., Synthesis and antitrichinellosis activity of some 2-substituted-[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-ones, *Bioorg. Med.Chem.*, 2005, 13(9), 5550-5559.
- [3] Goker H., Kus C. and Boykin D.W., Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against *Candida* species, *Bioorg. Med.Chem.*, 2002, 10, 2589-96.
- [4] Goker H., Kus C., Boykin D.W., Synthesis and Potent Antibacterial Activity against MRSA of Some Novel 1,2-Disubstituted-1H-Benzimidazole-N-alkylated-5-carboxamidines, *Eur. J. Med. Chem.*, 2005, 40, 1062.
- [5] Andrzejewska M. and Yepez M.L. Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyl- and 2-pentafluoroethylbenzimidazoles, *Eur. J. Med. Chem.*, 2002, 37, 973.

[6] Ozden S., Atabey D. and Goker H., Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1Hbenzimidazole-5-carboxylates derivatives carrying amide or amidine groups, *Bioorg. Med. Chem.*, 2005, 13, 1587-97.

[7] Ramlal M.M. and Omar M.A., Discovery and optimization of pyrrolo[1,2-a] pyrazinones leads to novel and selective inhibitors of PIM kinases, *Bioorg. Med. Chem.*, 2006, 14, 7372.

[8] Boiani M. and Gonzalez M., Imidazole and benzimidazole derivatives as chemotherapeutic agents, *Mini Rev. Med. Chem.*, 2005, 5, 409-424.

[9] Janos Beahdy, Recent Developments of Antibiotic Research and Classification of Antibiotics According to Chemical Structure, *Advances in Applied Microbiology*, 1974, 18, 309– 406.

[10] DevenderPathak, Nadeem Siddiqui, Bhanupriya Bhrigu, Waquar Ahsan, M. Shamsher Alam, Benzimidazoles: A New Profile of Biological Activities, *Der Pharmacia Letter*, 2010, 2(2), 27-34.

[11] Naaz F, Srivastava R, Singh A, Singh N, Verma R, Singh VK, Singh R K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. *Bioorganic and Medicinal Chemistry*, 2018, 26 (12), 3414-3428.

[12] JB Bariwal; AK Shah; MK Kathiravan; RS Soman; JR Jagtap; KS Jain, *Ind. J. Pharm. Edu. Res.*, 2008, 42, 225-231.

[13] W Ramanpreet; Hedaitullah; NS Farha; I Khalid; HS Lamba, 2011, 1(3), 565-570.

[14] GE Mohamed; N Ibrahim, *Int. J. Chem. Tech. Res.*, 2010, 2(4), 2097-2100.

[15] Y. He, B. Wu, J. Yang, D. Robinson, L. Risen, L.B. Ranken, S. Sheng & E. Swayze., *Bioorg. Med. Chem. Lett.*, 2003, 13(19), 3253-6.

[16] JT Leonard; L Jeyaseeli; M Kumar; R Sivakumar. Synthesis, anti-inflammatory and antibacterial activities of 4-substituted phenyl benzimidazoles, *Asian J. Chem.*, 2006, 1104-1106.

[17] Deshmukh M.B., Suryavanshi A.W., Deshmukh S.A., Jagtap S.A., Microwave assisted synthesis of 2,3,4-trisubstituted 1,2- dihydropyrimido-[1,2-a]benzimidazole, *Ind. J. Chem.*, 2009, 86B, 302-305.

[18] KF Ansari; C Lal. □Synthesis and evaluation of some new benzimidazole derivatives as potential antimicrobial agents, *Eur. J. Med. Chem.*, 2009, 44, 2294-2299.

[19] Kazimierczuk Z., Upcroft, J.A., Upcroft, P., Gorska, A., Starosciak, B., Laudy, A., Synthesis, antiprotozoal and antibacterial activity of nitro- and halogeno-substituted benzimidazole derivatives, *ActaBiochim. Pol.*, 2002, 49(1), 185- 95.

[20] Gupta S.P. and Rani S., Synthesis and fungitoxicity of some 5-substituted- 3- polynitrophenyl rhodanines, *J. Ind. Chem. Soc.*, LIV, 1997, 478.

[21] Ghoneim K.M., Essawi M.Y.H., Mohamed M.S., Kamal A.M., Synthesis of 2-[(4-amino or 2,4-diaminophenyl)sulfonyl] derivatives of benzimidazole, benzothiazole and 6 methyluracil as potential antimicrobial agents, *Ind. J. Chem.*, 1998, 37B, 904.

[22] Mavrova A.T., Anichina K.K., Vuchev D.I., Tsenov J.A., Denkova P.S., Magdalena S.K., Micheva M.K., Antihelminthic activity of some newly synthesized 5(6)-(un)substituted 1H-benzimidazol-2-ylthioacetyl piperazine derivatives, *Eur. J. Med. Chem.*, 2006, 41, 1412-20.

[23] Kharitonova MI, Denisova AO, Andronova VL, Kayushin AL, Konstantinova ID, Kotovskaya SK et al. New modified 2-aminobenzimidazole nucleosides: Synthesis and

evaluation of their activity against herpes simplex virus type 1. *Bioorganic and Medicinal Chemistry Letters*, 2017, 27 (11), 2484-2487.

[24] Zarubaev VV, Morkovnik AS, Divaeva LN, Karpinskaya LA, Borodkin GS. Tautomeric and non-tautomeric N-substituted 2-iminobenzimidazolines as new lead compounds for the design of anti-influenza drugs: An in vitro study. *Bioorganic and Medicinal Chemistry*. 2016, 24 (22), 5796-5803.

[25] Vitale G., Carta A., Loriga M., Paglietti G., Colla P., Busonera B., Collu D., Loddo R., 2-Arylbenzimidazoles as Anti-viral and Anti-proliferative Agents-Part 1, *Med. Chem.*, 2008, 4, 605-615.

[26] R. V. Devivar, E. Kawashima, Benzimidazoleribonucleosides: design, synthesis, and antiviral activity of certain 2-(alkylthio)-and 2-(benzylthio)-5,6-dichloro-1-(dribofuranosyl)benzimidazoles. *J. Med. Chem.*, 1994, 37, 2942-2949.

[27] Pandey, V.K., Shukla, A., Synthesis and biological activity of isoquinolinylbenzimidazoles. *Ind. J. Chem.*, 1999, 38B, 1381.

[28] Kristina S., Marijeta M., Katja E., Ivan S., Magdalena G., Kresimir P., Grace, K. Z., Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles, *Bioorg. Med. Chem.* 2007, 15, 4419-4422.

[29] JT Leonard, L Jeyaseeli, M Kumar, R Sivakumar, Synthesis, anti-inflammatory and antibacterial activities of 4-substituted phenyl benzimidazoles. *Asian J. Chem.*, 2006, 18, 1104-1106.

[30] ZA Alagoz; C Kus T Coban., Synthesis and antioxidant properties of novel benzimidazoles containing substituted indoles. *J. Enz. Inhib. Med. Chem.*, 2004, 20(3), 325-331.

[31] Karaali N, Baltas N, Menteşe E. Synthesis and antioxidant, antiurease and anti-xanthine oxidase activities of some new benzimidazoles bearing triazole, oxadiazole, thiadiazole and imin function. *Indian. Journal of Chemistry*, 2018; 57 (B): 374-384.

[32] Taha M, Ismail NH, Jamil W, Rashwan H, Kashif SM, Sain AA et al. Synthesis of novel derivatives of 4-methylbenzimidazole and evaluation of their biological activities. *European. Journal of Medicinal Chemistry*. 2014; 84: 731-738.

[33] JB Bariwal; AK Shah; MK Kathiravan; RS Soman; JR Jagtap; KS Jai □ Synthesis and antiulcer activity of novel pyrimidylthiomethyl and Pyrimidylsulfinylmethylbenzimidazoles as potential reversible proton pump inhibitors. *Ind. J. Pharm. Ed. Res.*, 2008, 42, 225-231.

[34] Nadeem H, Noor A, Qazi NG, Khan A, Paracha RZ, Ali F, Saeed A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. *Chemistry Central Journal*, 2017, 11 (85), 1-13.

[35] Madala SR, Anusha D. Synthesis, characterization and evaluation of anti-ulcer activity of benzimidazole derivative. *World Journal of Pharmacy and Pharmaceutical Sciences*. 2017; 6 (8): 1258-1262.

[36] PS Solominova; VS Pilyugin; AA Pyurin. □ Targated search for new anthelmentic among 5 (6-Aminophenylthio (oxy)-2-amino benzimidazole derivatives. Part- 1 quantitative structure activity relationship□, *J. Pharm. Chem.*, 2004, 38, 425-430.

[37] Mavrova AT, Anichina KK, Vuchev DI, Issenov JA, Denkova PS, Kondeva MS, Micheva MK ,Antihelminthicactivity of some newly synthesized 5(6)-(un)substituted-1H-benzimidazol- 2-ylthioacetylpirperazine derivatives, *Eur. J Med Chem*, 2006, 41, 1412– 1420.

[38] T.G. Hector, E.H. Nunez, I.L. Rivera & J.G Alvarez., Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids, *Bioorg. Med. Chem. Lett.*, 2008, 18(110), 3147-51.

[39] Kumar D, Jacob MR, Reynolds MB, Kerwin SM Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1, *Bioorg Med Chem*, 2002,10(12), 3997– 4004.

[40] Vedula MS, Pulipaka AB, Venna C, Chintakunta VC, Jinnapally S, Kattuboina VA, Vallakati RK, Basetti V, Akella V, Rajgopal S, Reka AK, Teepireddy SK, Mamnoon PK, Rajagopalan R, Bulusu G, Khandelwal A, Upreti VV, Mamidi SR New styrylsulfones as anticancer agents, *Eur J Med Chem*, 2003,38(9), 811– 824.

[41] Ramlal MM, Omar MA, Tokuda H, El-Diwani HI Synthesis and inhibitory activity of new benzimidazole derivatives against Burkitt□s lymphoma promotion, *Bioorg Med Chem*, 2007,15(19), 6489– 6496.

[42] Gellis A., Kovacic H., Boufatah N., Vanelle P., Synthesis and cytotoxicity evaluation of some benzimidazole-4,7- diones as bioreductive anticancer agents, *Eur. J. Med. Chem.*, 2008, 43(9), 1858-1864.

[43] Sondhi SM, Rajavanshi S, Johar M, Bharti N, Azam A, Singh K Anti-inflammatory, analgesic and antiamoebic activity evaluation of pyrimido[1,6-a]benzimidazole derivatives synthesized by the reaction of ketoisothiocyanates with mono and diamines, *Eur J Med Chem.*, 2002,37(10), 835– 843.

[44] Demirayak, S., Mohsen, U.A., Karaburun, A.C. Synthesis and anticancer and anti-HIV testing of some pyrazino[1,2-a]benzimidazole derivatives, *Eur. J. Med. Chem.*, 2002,37(3), 255-260.

[45] Refaat, H.M., Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives, *Eur. J. Med. Chem.*, 2010, 45(7), 2949-60.

[46] MookJr RA, Ren XR, Wang J, Piao H, Barak LS, Lyerly HK, Chen W. Benzimidazole inhibitors from the Niclosamidechemotype inhibit Wnt/β-catenin signaling with selectivity over effects on ATP homeostasis. *Bioorganic and Medicinal Chemistry*, 2017, 25 (6), 1804-1816.

[47] Shao KP, Zhang XY, Chen PJ, Xue DQ, He P, Ma LY et al. Synthesis and biological evaluation of novel pyrimidine–benzimidazol hybrids as potential anticancer agents. *Bioorganic and Medicinal Chemistry Letters*, 2014, 24 (16), 3877-3881.

[48] BB Kumar, PV Rao, Synthesis and structural studies on transition metal complexes derived from 1-(2-thienyl)-1-ethanole-1H-benzimidazole, *Asian J. Chem.*, 2006, 18, 3060- 3064.

[49] Abdel-Aziz HA, Ghabbour HA, Eldehna WM, Al-Rashood STA, Al-Rashood KA, Kun Fun H et al. 2-((Benzimidazol-2-yl)thio)-1- arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential. *European Journal of Medicinal Chemistry*,2015, 104, 1-10.

[50] Kamal A, Reddy TS, Vishnuvardhan MVPS, Nimbarde VD, SubbaRao AV, Srinivasulu V, Shankaraiah N. Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents. *Bioorganic and Medicinal Chemistry*,2015, 23 (15), 4608-4623.

[51] Han XF, He X, Wang M, Xu D, Ping Hao L, Hua Liang A et al. Discovery of novel, potent and low-toxicity angiotensin II receptor type 1 (AT1) blockers: Design, synthesis

and biological evaluation of 6-substituted amino carbonyl benzimidazoles with a chiral center. *European Journal of Medicinal Chemistry*, 2015, 103, 473-487.

[52] Maria Monforte A, Luca LD, RosaBuemi M, Agharbaoui FE, Pannecouque C, Ferro S. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. *Bioorganic and Medicinal Chemistry*, 2018, 26 (3), 661-674.

[53] Ferro SF, RosaBuemi M, DeLuca L, Agharbaoui FE, Pannecouque C, MariaMonforte A. Searching for novel N1-substituted benzimidazol-2-ones as non-nucleoside HIV-1 RT inhibitors. *Bioorganic and Medicinal Chemistry*, 2017, 25 (14), 3861-3870.

[54] Farahat AA, Vaughn CB, Mineva EM, Kumar A, Wenzler T, Brun R. Synthesis, DNA binding and antitrypanosomal activity of benzimidazole analogues of DAPI. *Bioorganic and Medicinal Chemistry Letters*, 2016, 26 (24), 5907-5910.

[55] Karaaslan C, Kaiser M, Brun R, Goker H. Synthesis and potent antiprotozoal activity of mono/di amidino 2-anilinobenzimidazoles versus *Plasmodium falciparum* and *Trypanosoma brucei rhodesiense*. *Bioorganic and Medicinal Chemistry*, 2016, 24 (18), 4038-4044.

[56] Gu W, Miao TT, Hua DW, Jin XY, Tao XB, Huang CB, Wang SB. Synthesis and in vitro cytotoxic evaluation of new 1H-benzo[d]imidazole derivatives of dehydroabietic acid. *Bioorganic and Medicinal Chemistry Letters*, 2017, 27 (5), 1296-1300.

[57] El-Gohary NS, Shaaban MI. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. *European Journal of Medicinal Chemistry*, 2017, 137, 439-449.

[58] S Balram; SR Mahendra; B Anil; S Ramba, *International J. Drug Res. Tech*, 2012, 2 (7), 479-485.

[59] Navarrete-Vazquez G, Hidalgo-Figueroa S, Torres-Piedra M, Vergara-Galicia J, Rivera-Leyva JC, Estrada-Soto S et al. Synthesis, vasorelaxant activity and antihypertensive effect of benzo[d]imidazole derivatives. *Bioorganic and Medicinal Chemistry*. 2010, 18, 3985– 3991.

[60] Ng RA, Guan J, Alford Jr VC, Lanter JC, Allan GF, Sbriscia T et al. Synthesis and SAR of potent and selective androgen receptor antagonists: 5,6-Dichloro-benzimidazole derivatives. *Bioorganic and Medicinal Chemistry Letters*, 2007, 17 (3), 784-788.