Nano Particle-Based Drug For Treatment Of Covid-19

Dr. Tuhin Suvro Banerjee*

*Assistant Professor, Department of Physiology, A.B.N Seal College, Cooch Behar, West Bengal. Corresponding author:

Tuhin Suvro Banerjee, PhD Department of Physiology,nA.B.N Seal College, Cooch Behar, West Bengal e-mail: tuhin.banerjeel@gmail.com

1. Introduction

The coronavirus disease 2019 (COVID-19) outbreak has been caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV2, are single-stranded enveloped viruses belonging to the order Nidovirales and family Coronaviridae. It is a type of betacoronavirus that structurally contain four main proteins: the spike (S) glycoprotein, a small envelope (E) glycoprotein, a membrane (M) glycoprotein, and a nucleocapsid (N) protein (1). The SARS-CoV2 affects primarily the respiratory system of the humans where the S protein targets the cell surface receptor, angiotensin-converting enzyme II (ACEII) for its uptake and entry into the host cells. The binding of the S spike protein of the virus with ACEII is a primary criterion for the infection (2). With an ever increasing number of cases, various modes of treatment have been studied but none have proved to be completely effective in combating the coronavirus primarily on account of the emergence of new viral strains that has developed due to the repeated mutations that the virus has been undergoing.

The first therapeutic approaches in the treatment of COVID-19 were made by repurposing the well-known antiviral or antimicrobial agents along with interferons. The potential antiviral targets were initially pointed out by studying the viral replicative properties and the pathogenesis of the virus. These have helped in the use of drugs that have known pharmacokinetic profiles and are safe in the treatment of COVID-19 patients. Nucleoside analogs like Remdesivir (adenosine analog) (3-8), favipiravir, ribavirin (guanine analogs) (8-10); protease inhibitors lopinavir, ritonavir have been tested for inhibiting viral replication process at various stages (11-13). Chloroquine, the anti-malarial drug had also gained attention in the treatment of COVID-19, but like the other drugs, it has also proved to be ineffective and hence have not been considered for further use (8, 14-20).

Nanomedicine has been proved to be effective in combating various well-known diseases like HIV1 (21,22), Hepatitis-B Virus (23), influenza virus (24) and respiratory syncytial virus (25). As the traditional methods of therapeutic approaches in treatment of COVID-19 has remained away from success, researchers have moved their attention to the use of nanotechnology alone

and/or along with the combination of traditional methods for combating coronavirus. The applications of this new age technology in the field of medical sciences are commonly known as nanomedicines which uses nanoparticles for their unique properties. The nanoparticles help in the development of a more targeted, tissue specific, safer and personalized medical approach (26, 27) which can even cross biological barriers (28) in treating a disease besides their diagnosis and/or prevention. In the present pandemic situation these nanoparticles can not only help in development of new drugs with increased tissue specificity and activity, sustained release and reduced toxicity; but they might also provide a nano-based vaccination against coronavirus, augmenting the humoral as well as cellular immune responses.

The primary target of the coronavirus is the respiratory tract, specifically the ACEII receptors. Hence this is often taken as a first site for therapeutic approaches for the treatment of covid-19. With this view in mind, nanomedicine has been used in targeting the lungs through aerosol suspended nanoparticles for delivering drugs, mRNAs and therapeutic proteins (29, 30). The first approach might be to introduce an "entry inhibitor" which can block the interaction of the virus with the cells (31, 32). A nanoparticle entry inhibitor blocking the interaction of spike S protein with cellular ACE2 receptor could do the trick (33-36). Development of various nanoparticles like polymers to oligomers and liposomes (37-39) which could act as an entry inhibitors by binding to the virus, damaging it and rendering it irreversibly ineffective might be a good antiviral approach of nanomedicine (40) in combating coronavirus infections.

The second and most sought after approach for a broader and more efficient control of the virus is the development of a nanoparticle-based vaccine that would not only target the virus but would also help in modulation of the immune responses of the host to the viral particles (41). The efficient targeting of the viral spike proteins by antigens requires a suitable carrier to avoid cargo degradation, enhance bioavailability and clearance. Nanocarriers being biocompatible could be easily used for encapsulation of cargo with high loading efficiency (29). These carriers are also used for delivery of mRNAs or siRNAs enabling synthesis of key viral proteins, inactivating critical viral target genes, etc (30).

Live attenuated viruses being highly immunogenic, initial extensive safety tests must be done to ensure their usage. However, inactivated vaccines and recombinant-protein vaccines are safe but need the presence of adjuvants to enhance their immunogenicity. In covid-19 besides enhancing the effectivity of such vaccines, adjuvants would also reduce the dosage of the vaccine protein required per unit (nn3697). Several materials at a nano quantity could work as a suitable adjuvant in combination with vaccines. Besides being adjuvants several nanoparticles like graphene, carbon nanotubes, polystyrene particles, nanodiamonds also function as immune modulators either activating or suppressing the immune responses (42-45) by activating STAT1/IRF1 interferon signalling in monocytes and T cells, producing T cell chemoattractants and macrophage 1/T helper1 polarization of immune response (44). As COVID-19 often causes ARDS (acute respiratory distress syndrome) by triggering the cytokine storm (46), the nanoparticles may be used in not only modulation of the immune response but also in targeted delivery of immunosuppressants and receptor blockers for IL-6, one of the key players of cytokine storm (47). The use of nanoparticles that have been octadecylamine-functionalised and dexamethasone-adsorbed for anti-inflammatory and proregenerative purposes have also been explored (48).

Besides the conventional therapeutic approaches, nanoparticles in the form of carbon quantum dots (CQDs) may be used for inhibition of early stage interaction of the viral S protein with the host cells (49). Similarly biomimetic nanodecoys like reconstituted lipoproteins, liposomal formulations and cell-membrane nanostructures may be used lure viruses (50, 51).

2. Conclusion

It may be concluded from the evidences that the applications of nanomedicine in the treatment and prevention of COVID-19 are promising. However, the utility faces key challenges not only in understanding the viral genomics and pathogenesis but also in the development of a safe nanoparticle-based procedure that may help answer the therapeutic necessity of the COVID-19 patients.

References

- 1. Astuti I, Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020;14:407–412.
- 2. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12:1–5
- 3. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D. Finberg RW, Dierberg K, Tapson V, HsiehL, Patterson TF, Paredes R, Sweeney DA, Short WR, Tuloumi G, Lye DC, Ohmagari N, Oh MD, RuizPalacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Clifford Lane H, ACTT-1 Study Group Members. Remdesivir for the treatment of COVID-19 preliminary report. N Engl J Med. 2020 (Epub ahead of print).
- 4. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). FL USA: In:StatPearls. StatPearls Publishing; 2020.
- 5. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK, Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936.
- 6. Reina J. Remdesivir, the antiviral hope against SARS-CoV-2. Rev Esp Quimioter. 2020;33(3):176–179.
- 7. Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11:222.
- 8. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271.

- 9. Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen K-Y. Coronaviruses drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327–347.
- 10. Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis. 2014;20:42–46.
- 11. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, Kao RY, Poon LL, Wong CL, Guan Y, Peiris JS. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252–256.
- 12. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, Hsu HH, Huang HC, Wu D, Brik A, Liang FS, Liu R, Fang JM, Chen ST, Liang PH, Wong CH. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA. 2004;101(27):10012–10014.
- 13. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X. Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. A trial of lopinavir—ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020;382(19):1787–1799.
- 14. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2(1):69.
- 15. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67–69.
- 16. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30(4):297–308.
- 17. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, Jin N, Jiang C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23(2):300–302.
- 18. Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus. Int J Antimicro Agents. 2020;55(3):105923.
- 19. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trend. 2020;14(1):72–73.
- 20. Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol. 2020;15(4):247–249.
- 21. Sun RWY, Chen R, Chung NPY, Ho CM, Lin CLS, Che CM. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun. 2005;40:5059–5061.
- 22. Lara HH, Ixtepan-Turrent L, Garza-Trevi~no EN, Rodriguez-Padilla C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol. 2010;8:15.

- 23. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther. 2008;13(2):253–262.
- 24. Papp I, Sieben C, Ludwig K, Roskamp M, Böttcher C, Schlecht S, Herrmann A, Haag R. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 2010;6(24):2900–2906.
- 25. Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol. 2008;4(2):149–158.
- 26. Siccardi M, Martin P, McDonald TO, Liptrott NJ, Giardiello M, Rannard S, Owen A. Research spotlight: nanomedicines for HIV therapy. Ther Delivery. 2013;4(2):153–156.
- 27. Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Del. 2018;15(1):93–114.
- 28. Kobayashi K, Wei J, Iida R, Ijiro K, Niikura K. Surface engineering of nanoparticles for therapeutic applications. Polym J. 2014;46(8):460–468.
- 29. Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: Overview and perspectives. J Controlled Release. 2016;240:24–37.
- 30. Li B, Zhang X, Dong Y. Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(2):1530.
- 31. Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed. 1998;37(20):2754–2794.
- 32. Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalency as a chemical organization and action principle. Angew Chem Int Ed. 2012;51(42):10472–10498.
- 33. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.
- 34. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Del Pozo CH, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Ryan Conder R, Montserrat N, Mirazimi A, Penninger JM. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020; 181(4):905–913.
- 35. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590.
- 36. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD. Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang Xi, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
- 37. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate Chem. 2009;20(8):1497–1502.

- 38. Tang S, Puryear WB, Seifried BM, Dong X, Runstadler JA, Ribbeck K, Olsen BD. Antiviral agents from multivalent presentation of sialyl oligosaccharides on brush polymers. ACS Macro Lett. 2016;5(3):413–418.
- 39. Cheng HW, Wang HW, Wong TY, Yeh HW, Chen YC, Liu DZ, Liang PH. Synthesis of S-linked NeuAc-α (2-6)-di-LacNAc bearing liposomes for H1N1 influenza virus inhibition assays. Bioorg Med Chem. 2018;26(9);2262–2270.
- 40. Cagno V, Andreozzi P, D'Alicarnasso M, Silva PJ, Mueller M, Galloux M, Le Goffic R, Jones ST, Vallino M, Hodek J, Weber J, Sen S, Janeček ER, Bekdemir A, Sanavio B, Martinelli C, Donalisi M, Rameix Welti MA, Eleouet JF, Han Y, Kaiser L, Vukovic L, Tapparel C, Král P, Krol S, Lembo D, Stellacci F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17(2):195–203.
- 41. Amanat F, Krammer F. SARS-CoV-2 Vaccines:Status Report. Immunity. 2020;52:583-589.
- 42. Pescatori M, Bedognetti D, Venturelli E, Menard-Moyon C, Bernardini C, Muresu E, Piana A, Maida G, Manetti R, Sgarrella F, Bianco A, Delogu LG. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials. 2013;34:4395–4403.
- 43. Fuchs AK, Syrovets T, Haas KA, Loos C, Musyanovych A, Mailänder V, Landfester K, Simmet T. Carboxyl- and amino- functionalized polystyrene nanoparticles differentially affect the polarization profile of m1 and m2macrophage subsets. Biomaterials. 2016;85:78–87.
- 44. Orecchioni M, Bedognetti D, Newman L, Fuoco C, Spada F, Hendrickx W, Marincola FM, Sgarrella F, Rodrigues AF, Menard-Moyon C, Cesareni G, Kostarelos K, Bianco A, Delogu LG. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat Commun. 2017;8:1109.
- 45. Fusco L, Avitabile E, Armuzza V, Orecchioni M, Istif A, Bedognetti D, Da Ros T, Delogu LG. Impact of the surface functionalization on nanodiamond biocompatibility: a comprehensive view on human blood immune cells. Carbon. 2020;160:390–404.
- 46. Yang Y, Shen C, Li J, Yuan, J, Yang, M, Wang F, Li G, Li Y, Xing L, Peng L, and Wei J. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. Med Rxiv. 2020.
- 47. Al-Lawati H, Aliabadi HM, Makhmalzadeh BS, Lavasanifar A. Nanomedicine for immunosuppressive therapy: achievements in pre-clinical and clinical research. Expert Opin Drug Delivery. 2018;15:397–418.
- 48. Pentecost A, Kim MJ, Jeon S, Ko YJ, Kwon IC, Gogotsi Y, Kim K, Spiller KL. immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. Regen Biomater. 2019; 6:163–174.
- 49. Łoczechin A, Seron K, Barras A, Giovanelli E, Belouzard S, Chen YT, Metzler-Nolte N, Boukherroub R, Dubuisson J, Szunerits S. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11:42964–42974.
- 50. Magee WE, Miller OV. Liposomes containing antiviral antibody can protect cells from virus infection. Nature. 1972;235:339–341
- 51. Rao L, Tian R, Chen, X. Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano. 2020;14:2569–2574.