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This paper proposes a hybrid AI-based predictive risk management framework to enhance 

safety and decision reliability in autonomous vehicles. The system integrates multimodal 

sensor data from LiDAR, radar, and cameras with CNNs for spatial feature extraction, LSTMs 

for temporal modeling, XGBoost for risk classification, and Bayesian Networks for uncertainty 

estimation. The framework was trained and evaluated on 15,000 scenes—drawn from KITTI, 

ApolloScape, and CARLA—covering varied traffic contexts such as urban intersections, 

pedestrian zones, and highway merges. Experimental results show an accuracy of 94.1% ± 

0.8%, along with a MAE of 0.31 ± 0.04 seconds and RMSE of 0.43 ± 0.05 seconds for time-

to-collision prediction across five runs. Compared to rule-based systems, the proposed model 

reduces near-miss and collision incidents by over 70%. The Bayesian Network also provides 

well-calibrated uncertainty estimates, achieving an ECE of 2.9% ± 0.3%, enabling safer 

decisions in uncertain conditions. These outcomes demonstrate the framework’s potential as a 

practical solution for proactive risk assessment in autonomous driving. 

Keywords: Risk Prediction, Sensor Fusion, Deep Learning, Bayesian Networks, CNN, LSTM, 

XGBoost, , Safety Assessment, Real Time Inference, Autonomous Vehicles. 

Introduction 

Road traffic injuries remain one of the foremost causes of death worldwide. According to the 

World Health Organization (WHO), an estimated 1.19 million people lose their lives each year 

due to road accidents, while tens of millions more sustain non-fatal injuries or long-term 

disabilities [1]. This substantial global impact highlights the pressing need for safer mobility 

systems, including autonomous vehicles, which have the potential to minimize human error—

the leading factor behind most road crashes. Autonomous vehicles (AVs) are reshaping 

modern transportation by offering the prospect of fewer accidents, reduced travel costs, and 
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improved accessibility for individuals with disabilities. To perceive and navigate their 

surroundings, AVs rely on a combination of sensors such as cameras, radar, LiDAR, and GPS 

[2]. Companies such as Waymo, a pioneer in autonomous driving, have claimed dramatic 

decreases in traffic incidents, with its autonomous cars traveling millions of kilometers without 

an accident in real-world conditions [3]. The deployment of AVs is lauded as a key step toward 

safer roads, especially given the anticipated decrease in human error, which is responsible for 

more than 90% of traffic accidents. However, AVs confront a number of complicated obstacles 

that limit their broad use and operating safety. One major concern is AVs' capacity to manage 

unexpected road conditions and dynamic situations [4]. For example, AVs must appropriately 

assess the behavior of pedestrians, bicycles, and other vehicles, which might be chaotic and 

unpredictable. This is particularly difficult in heavily populated metropolitan areas, where 

unexpected incidents are often [5]. The March 2025 incident involving a Zoox autonomous 

robotaxi in Las Vegas serves as a relevant case, where the vehicle failed to anticipate human 

behavior, resulting in a minor collision with a pedestrian at a crosswalk. The event highlighted 

gaps in predictive modeling and was widely reported in safety assessments of AVs [6]. 

 

Figure 1: Responsible AI framework for AI-powered self-driving automobiles. 

Several predictive risk models have been presented to solve these issues. Machine learning 

and deep learning models have been frequently utilized to anticipate the trajectories of adjacent 

cars and people, which improves vehicle decision-making processes. Transformer-based 

models, such as TrajectoFormer, use temporal and geographical data to better correctly 

anticipate trajectories, suggesting a possible way to increasing AVs' response to changing 

driving circumstances and safety [7]. Furthermore, LSTM-based hybrid models have shown 

considerable gains in learning complicated temporal and spatial relationships in self-driving 

situations [8]. These models can learn long-range relationships and forecast the behavior of 

other road users, which is critical for detecting possible risks.  
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Figure 2: Illustration of vehicle motion interdependency.  The yellow ego vehicle is an 

AV, but the surrounding cars affect its movement. 

However, despite these improvements, there are still some problems. Because the training 

datasets aren't very diverse, many current models still have trouble predicting rare or unknown 

events [9]. When you need multi-modal data in a dynamic and complicated world, models that 

are mostly based on single-modal data, like camera or radar data, often don't work as well. 

Also, trajectory prediction models have worked in the past, but they don't always do a good 

job of quantifying error, which is important for making decisions in cases where safety is at 

stake [10]. This lack of stability is especially bad when AVs have to go through new or 

dangerous situations with no previous data to help them. Also, these models don't usually use 

multi-sensor fusion, which could make finding hazards and responding to them much better in 

tough weather conditions [11]. 

This paper presents an AI-based predictive risk management system for self-driving vehicles 

(AVs) that uses multi-modal sensor data from cameras, LiDAR, and radar to improve real-

time hazard identification and decision-making. The system uses a hybrid deep learning 

architecture that includes Convolutional Neural Networks (CNNs) for spatial feature 

extraction, Long Short-Term Memory (LSTM) networks for temporal sequence modeling, 

XGBoost for classification tasks, and Bayesian networks for uncertainty quantification. The 

merging of multi-modal sensor data provides a full picture of the vehicle's surroundings, while 

CNNs extract important visual characteristics and LSTMs capture time-dependent behavior. 

The XGBoost classifier anticipates possible dangers, such as crashes or near-misses, while the 

Bayesian network measures uncertainty and improves decision-making accuracy. This 

comprehensive strategy intends to improve AVs' environmental awareness and risk 

assessments, lowering accidents and increasing operational dependability.  

Methodology 

This section provides an overview of the extensive methodology employed to develop, design, 

and assess a hybrid predictive risk management system for autonomous vehicles (AVs). The 

system fuses multimodal sensors, deep learning, ensemble classifiers, and probabilistic 

reasoning to facilitate proactive safety decision-making. 
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Figure 3: Hybrid predictive Risk management Framework for Autonomus Driving 

System Overview 

The proposed framework consists of the following components: 

1. Sensor Data Collection and Fusion 

2. Feature Extraction via CNN 

3. Temporal Risk Pattern Modeling using LSTM 

4. Risk Classification with XGBoostUncertainty Handling via Bayesian Network 

5. Decision Support Layer 

The architecture supports both real-time inference and simulation-based validation using 

publicly available datasets and tools such as CARLA. 

Sensor Data Collection and Fusion 

Autonomous vehicles (AVs) operate in dynamic and uncertain environments that require 

continuous perception of surroundings. To address this, AVs are equipped with multiple 
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heterogeneous sensors, each contributing unique modalities of environmental data. However, 

raw sensor outputs are noisy, partial, and temporally misaligned. Therefore, an effective sensor 

fusion strategy is critical to achieve a coherent and robust environmental representation. 

Sensor Modalities and Their Roles 

The proposed framework uses a combination of exteroceptive and proprioceptive sensors: 

• Camera (RGB and IR): Captures visual features such as lane markings, traffic signs, 

pedestrians, and obstacles. It provides high-resolution semantic information but 

suffers under poor lighting or weather conditions. 

• LiDAR (Light Detection and Ranging): Produces dense 3D point clouds that offer 

accurate spatial geometry of surroundings. It is especially reliable for depth estimation 

and obstacle contouring, though expensive and limited by reflectivity. 

• Radar (Radio Detection and Ranging): Detects objects' range and relative velocity 

even in low visibility. While resolution is lower than LiDAR, radar is robust to 

environmental noise (e.g., rain, fog). 

• GPS and IMU (Inertial Measurement Unit): Provide geolocation, acceleration, and 

vehicle orientation. These are vital for ego-localization, but GPS may be error-prone 

in urban canyons and tunnels. 

• Vehicle Telemetry: Includes speed, brake pressure, steering angle, throttle, and gear 

state. These features reflect the vehicle's internal status and are useful for control 

decisions and modeling its motion. 

Need for Sensor Fusion 

Each sensor has individual limitations—visual occlusions, sensor noise, limited field-of-

view—which can compromise autonomous safety. Hence, the system adopts a multi-sensor 

fusion strategy that combines complementary sensor strengths and overcomes individual 

weaknesses. 

Objectives of sensor fusion: 

• Improve situational awareness 

• Eliminate redundant and irrelevant data 

• Reduce uncertainty 

• Enable real-time processing 

1.1.1 Fusion Method: Kalman Filter 

For continuous-time and real-time fusion of positional, velocity, and object tracking 

information (e.g., from LiDAR and Radar), we apply a Kalman Filter (KF)—a recursive 

optimal estimator suitable for linear Gaussian systems. 
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Sensor fusion operates at 10 Hz, synchronizing LiDAR, radar, GPS/IMU, and camera data 

streams in real time. 

Mathematical Formulation 

Let: 

• ‘xk: state vector at time k (e.g., position, velocity) 

• zk: observation vector (sensor readings) 

• A: state transition matrix 

• H: observation matrix 

• P: state covariance matrix 

• Q: process noise covariance 

• R: measurement noise covariance’ 

‘Prediction 

x̂k|k−1 = Ax̂k−1|k−1                    (14) 

Pk|k−1 = APk−1|k−1AT + Q         (15) 

Update 

Kk = Pk|k−1HT(HPk|k−1HT + R)−1                (16) 

x̂k|k = x̂k|k−1 + Kk(zk − Hx̂k|k−1)                 (17) 

Pk|k = (I − KkH)Pk|k−1                             (18) 

The Kalman Gain Kk optimally weighs the prediction and observation to minimize the 

estimation error.’ 

Feature Extraction Using Convolutional Neural Networks (CNN) 

1.1.2 Motivation 

Autonomous vehicles rely heavily on visual understanding to interpret lane boundaries, traffic 

signs, pedestrians, road conditions, and obstacle contours. While raw sensor data (like RGB 

images or LiDAR point clouds) contain valuable information, they are unstructured and high-

dimensional. As a result, we use Convolutional Neural Networks (CNNs) for determining 

whether inputs include hierarchical spatial information. 
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CNNs are particularly effective for: 

• Object detection and classification 

• Semantic segmentation 

• Scene understanding 

• Localizing hazardous elements  

1.1.3 Input Modalities 

The CNN module primarily processes: 

• RGB camera frames (e.g., 1280×720 resolution) 

• LiDAR projection images (e.g., bird’s-eye view or depth maps) 

• Radar heatmaps (if formatted for CNN) 

Each image input is resized, normalized, and optionally augmented for robustness (flipping, 

cropping, contrast changes). Inputs are stacked over short intervals for richer context. 

Let the input image be: 

I ∈  ℝH ×W ×C                                (19) 

‘Where H , W are height and width, and C is the number of channels (typically 3 for RGB).’ 

1.1.4 CNN Architecture 

The CNN module consists of three convolutional layers with ReLU activation functions. The 

first layer uses 32 filters with a kernel size of 3×3 and stride 1, followed by a max-pooling 

layer with a 2×2 window. The second convolutional layer has 64 filters, also followed by max 

pooling. The third layer uses 128 filters, and its output is processed through a global average 

pooling layer to reduce dimensionality. Finally, a fully connected dense layer produces a 256-

dimensional feature vector, which serves as the spatial representation of each input frame. 

Let x(l)be the input to layer l, then each CNN layer computes: 

x(l+1) = f(W(l) ∗ x(l) + b(l))                        (20) 

Where: 

• W(l) is the convolutional kernel 

• * Denotes convolution 

• f is an activation function (typically ReLU) 
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• b(l) is the bias term 

The final CNN output is a feature vector: 

fCNN  ∈  ℝd                           (21) 

Where d is the dimensionality of the abstracted spatial representation. 

1.1.5 Multi-Sensory Input Integration 

If both LiDAR and camera projections are used, there are two common fusion strategies: 

• Early Fusion: Concatenate image channels before feeding into a shared CNN. 

• Mid-Level Fusion: Use separate CNN branches for each modality, then merge 

intermediate features. 

We adopt mid-level fusion, which provides flexibility for sensor-specific learning: 

fcamera,fLIDAR → Concat → fCNN                          (22) 

‘Temporal Modeling Using Long Short-Term Memory (LSTM) Networks’ 

1.1.6 Motivation 

While CNNs extract spatial features from individual sensor frames, they do not capture 

temporal dependencies — how a sequence of events evolves over time. In autonomous driving, 

this is essential for anticipating: 

• Sudden lane changes 

• Overtaking behavior 

• Gradual speed changes 

• Emerging threats like jaywalking pedestrians 

 In order to overcome this, we use a Long Short-Term Memory (LSTM) network, a kind of 

Recurrent Neural Network (RNN) that is ideal for learning temporal sequences and avoiding 

the vanishing gradient issue.  

1.1.7 Input Sequence Construction 

The feature vectors extracted from CNN (Step 2) are collected over a temporal window of 

TTT frames, e.g., 1–3 seconds of driving context. 
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Let the CNN output at timestep t be: 

ft ∈ ℝd                                   (23) 

The input to the LSTM is the time series: 

ℱ = [f1,f2,f3, … fT]ϵℝT×d                                (24) 

1.1.8 LSTM Architecture 

The architecture comprises two stacked LSTM layers, each with 128 hidden units. A dropout 

rate of 0.3 is applied between the layers to prevent overfitting. The output of the final time step 

is a 128-dimensional hidden state representing the temporal embedding. The LSTM maintains 

a cell state ct and hidden state ht across time. At each timestep t, it updates these states using 

input, forget, and output gates: 

ft = σ(Wfxt + Ufht−1 + bf)                             (25) 

ft = σ(Wixt + Uiht−1 + bi)                               (26) 

ft = σ(W0xt + U0ht−1 + b0)                              (27) 

c̃t = tanh (Wcxt + Ucht−1 + bc)                           (28) 

ct = ft⨀ct−1 + it⨀c̃t                                            (29) 

ht = ot⨀tanh (ct)                                                 (30) 

Where: 

• xt : current input (feature vector from CNN) 

• σ  : sigmoid activation 

• ⨀  : element-wise multiplication 

• W,U,b : learned weights and biases’ 

1.1.9 Temporal Risk Embedding Output 

After passing the full sequence ℱ through the LSTM, we obtain a final hidden state: 

hTϵℝn                                   (31) 

This vector captures the cumulative risk dynamics over time and is used for: 
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• Risk classification (via XGBoost) 

• Sequence forecasting (Time-to-Collision) 

• Uncertainty estimation (via Bayesian model) 

Risk Classification Using XGBoost 

1.1.10 Motivation 

Once the spatial and temporal features of the driving environment have been extracted and 

encoded into a meaningful vector (via CNN and LSTM), we need a reliable method to classify 

risk levels. This classification supports downstream decisions like braking, rerouting, or 

alerting the AV control system. 

Because of its extreme performance, Extreme Gradient Boosting (XGBoost) was selected as 

our implementation of choice for gradient-boosted decision trees: 

• Robustness to non-linear relationships 

• Fast training and inference 

• Support for feature importance and explainability 

• Strong empirical performance on structured/tabular data 

The classifier is configured with a learning rate of 0.1, a maximum tree depth of 6, and uses 

150 decision trees. Subsampling and column sampling rates are set to 0.8 and 0.7 respectively, 

with regularization parameters λ and γ set to 1.0 and 0.5 to reduce overfitting. 

1.1.11 Problem Definition 

‘The objective is to map the LSTM output vector hT ϵ ℝnto a risk class label: 

• 0 → Low Risk 

• 1 → Medium Risk 

• 2 → High Risk’ 

The classifier function f can be expressed as: 

ŷ = f(hT), ŷ ϵ { 0,1,2 }                          (32) 

1.1.12 XGBoost Fundamentals 

XGBoost builds an ensemble of K additive regression trees: 

ŷi = ∑ fk(xi)
K
k=1 , fk ∈ ℱ                        (33) 
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‘Where: 

• ℱ is the space of regression trees 

• fk: individual tree 

• xi: feature vector (in our case, hT)’ 

1.1.13 Objective Function 

The training minimizes the regularized objective: 

ℒ(ϕ) = ∑ l(yi, ŷi) + ∑ Ω(fk)K
k=1

n
i=1                                   (34) 

‘Where: 

• l: differentiable loss function (e.g., softmax for multiclass classification) 

• Ω(f)=γT+12λ∥w∥2 is a regularization term 

• T: number of leaves in the tree 

• w: leaf weights 

• γ,λ : regularization parameters’ 

This balances predictive accuracy with model complexity to avoid overfitting. 

Uncertainty Estimation Using Bayesian Networks 

1.1.14 Motivation 

Sensor noise, occlusions, along with unexpected agent behavior may induce uncertainty into 

the system, both epistemologically and aleatoric, in real-world situations involving 

autonomous driving.  Convolutional neural networks (CNNs) and long short-term memories 

(LSTMs) are great deep learning models for pattern recognition, but they usually provide 

predictable results without showing how confident they are in their predictions. 

To address this limitation, we integrate a Bayesian Network (BN) into the framework to: 

• Estimate the probability distribution over risk classes 

• Capture conditional dependencies among risk-related variables 

• Support probabilistic inference and reasoning under uncertainty 

1.1.15 Bayesian Network Overview 

The Bayesian Network models the probabilistic dependencies among key risk-related 

variables, including vehicle speed, distance to the nearest object, weather conditions, object 
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behavior (static, crossing, or following), and lane position. These variables influence the final 

risk level node. The network’s structure is defined as a directed acyclic graph (DAG) based 

on domain knowledge, and conditional probability tables (CPTs) are learned using 

Expectation-Maximization. Probabilistic inference is conducted using variable elimination to 

estimate confidence in the predicted risk class. Every node in a Bayesian Network is a random 

variable, such as speed, weather, or the distance to an obstacle.  

• This kind of network is known as a directed acyclic graph (DAG). 

•  Dependencies that are conditional or causal are encoded by edges. 

•  An Associated Conditional Probability Table (CPT) is included for every node. 

(CPT). 

1.1.16 Key Variables Modeled 

We define the network with variables that significantly influence driving risk: 

• S: Vehicle speed 

• D: Distance to nearest object 

• W: Weather condition (clear, rain, fog) 

• A: Object action (static, crossing, following) 

• L: Lane integrity (on-lane, deviated) 

• R: Risk level (Low, Medium, High) 

1.1.17 Mathematical Formulation 

Let X={S,D,W,A,L,R} be the set of variables. The joint probability distribution over the 

network is factored as: 

P(X) =  ∏ P(xi|Pa(xi))n
i=1                           (35) 

Where Pa(xi)  denotes the parents of node xi  in the graph. For example: 

• P(R∣S,D,W,A) 

• P(W∣L) 

Decision Support Layer 

1.1.18 Motivation 

The ultimate objective of the proposed risk prediction system is not only to classify and 

quantify risks but to act upon them effectively. The Decision Support Layer serves as the 

control interface that leverages outputs from the classification and Bayesian uncertainty 
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modules to make timely, safe, and context-aware decisions within the autonomous vehicle 

(AV). 

This layer bridges the gap between perception and actuation by: 

• Interpreting model outputs (risk levels + probabilities) 

• Triggering safety actions (e.g., braking, lane change, rerouting) 

• Logging high-risk patterns for post-analysis 

1.1.19 Inputs to the Decision Layer 

The decision module receives three key inputs: 

1. Predicted Risk Class from XGBoost: 

o R∈{Low,Medium,High} 

2. Risk Confidence Score from Bayesian Network: 

o P(R)∈[0,1] 

3. Additional Contextual Variables: 

o Speed, lane condition, pedestrian proximity, visibility level 

1.1.20 Decision Rules 

We define a rule-based policy engine for control decisions. Rules can be refined through 

simulation or expert input. 

Table 1: Decision rules 

Risk Level Confidence P(R) Action 

High > 0.6 Trigger immediate braking, slow to 0–20 km/h 

Medium > 0.7 Reduce speed by 40%, monitor environment 

Low N/A Maintain planned route and velocity 

 

1.1.21 Adaptive Planning Integration 

In more advanced configurations, the Decision Layer interacts with motion planning and 

control modules: 

• Adjusts path planning to avoid high-risk zones  

• Recommends route changes via V2X if a crash-prone area is detected 

• Dynamically alters lane position for obstacle avoidance 
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Training Configuration 

Table 2: Configuration values 

Configuration Value 

Batch size 32 

Optimizer Adam 

Initial LR 0.001 

LR Scheduler Step Decay (drop by 0.1 every 10 epochs) 

Epochs 40 

Loss Function Cross-Entropy (for CNN/LSTM), Softmax loss 

Frameworks Used PyTorch 2.1, XGBoost 1.7, pgmpy 0.1.22 

Simulation Tool CARLA 0.9.14 

OS/Hardware 
Ubuntu 22.04, 32GB RAM, NVIDIA RTX 3090 

GPU 

Evaluation Strategy and Metrics 

1.1.22 Objective of Evaluation 

The goal of the evaluation is to assess the effectiveness, accuracy, and real-time performance 

of the proposed hybrid predictive risk model in: 

• Predicting and classifying driving risk accurately 

• Reducing near-miss and collision events 

• Improving AV safety and reliability in varied conditions 

• Operating under real-time constraints with interpretable outputs 

1.1.23 Experimental Setup 

The evaluation uses multimodal, annotated datasets suitable for AV risk analysis: 

1. KITTI Vision Benchmark – Camera, LiDAR, and GPS/IMU data for object tracking, 

road scenes, and localization. 

2. ApolloScape – Urban driving sequences with dense labels for road users and 

behaviors. 

3. CARLA Simulator – Customizable simulated driving scenarios for controlled 

evaluation of rare and risky events. 

4. Waymo Open Dataset (optional) – For large-scale testing under varied environmental 

conditions. 

Environments Tested 
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• Urban intersections 

• Highways with merging traffic 

• Pedestrian zones 

• Low-visibility scenarios (fog, night, rain) 

1.1.24 Metrics for Evaluation 

The framework is evaluated across three major dimensions: classification accuracy, risk 

prediction quality, and real-time performance. 

ACCURACY: The frequency with which the classifier produces accurate predictions may be 

easily measured by looking at its accuracy.  Alternative interpretations include dividing the 

total number of predictions by the fraction of accurately anticipated positive events. 

Accuracy =
TP+TN

S
                                      (36) 

PRECISION: In contrast, recall is given by dividing accuracy by one minus the proportion 

of false negatives, which is (1 - precision). 

Precision =
TP

TP+FP
                                     (37) 

RECALL: In contrast, there exist what are known as false negatives when they pertain to true 

negatives. 

Recall =
TP

TP+FN
                                          (38) 

F1-SCORE: It is computed by taking the harmonic mean between the accuracy and recall 

scores. 

F1 =
2∗Pr ecision∗Re call

Pr ecision+Re call
                                  (39) 

MAE (Mean Absolute Error) 

The average of the inaccuracies found in two independent observations of the same event is 

called the "mean absolute error" (MAE).  The Y vs. X comparison may be used to compare 

planned and actual data, the time following an event to the time immediately before it, or one 

measurement technique against another.  Methods for calculating MAE include dividing total 

absolute errors by sample size. 
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Mean Square Error (MSE) 

It finds the root of the average discrepancy between the expected and actual values in a dataset.  

The mean squared error (MSE) is a common statistic for assessing the performance of 

prediction models in regression analysis. 

MSE =
1

n
∑ (xi − yi)

2n
i=1                                        (41) 

Results:  

In this, a comparison of how well several autonomous vehicle risk management 

systems work. Results are benchmarked against current baseline models with 

multiple benchmarks by using standard measures to test classification accuracy, 

safety effect, and real-time effectiveness. 

Compared Methods 

1. We assess the following approaches: 

2. Suggested Hybrid Model (CNN + LSTM + XGBoost + Bayesian Network) 

3. CNN + LSTM Only (Deep learning without risk classification or uncertainty estimation) 

4. XGBoost Only (Handcrafted features, no CNN/LSTM) 

5. Traditional Rule-Based System (Thresholding logic based on speed, distance, etc.) 

The comparative performance across different models predicting risk levels in autonomous 

driving environments demonstrates the performance of the introduced hybrid approach. The 

Hybrid Model, combining CNN for spatial feature extraction, LSTM for temporal behavior 

modeling, XGBoost for risk classification, and Bayesian Networks for uncertainty estimation, 

provides the highest overall accuracy of 94.1 % ± 0.6, demonstrating its enhanced ability to 

appropriately classify driving risk scenarios under diverse conditions. Besides accuracy, the 

hybrid model also exhibits high precision (0.92 % ± 0.03) and recall (0.93 % ± 0.02), a high 

F1-score of 0.925 % ± 0.02 indicating a balanced and steady performance in detecting both 

true positives and avoiding false negatives. By comparison, the CNN + LSTM model without 

the classification and uncertainty modules has a lower accuracy rate of 89.5% ± 0.8, indicating 

that even though spatial and temporal patterns are well represented, the absence of explicit 

classification and probabilistic reasoning affects the decision confidence and overall outputs. 

Its recall and precision rates, at 0.88 % ± 0.03 and 0.87 % ± 0.04respectively, also reflect a 

solid but less than optimal performance compared to the hybrid model with an F1-score of 

0.875 % ± 0.03. With an F1-score of 0.80 % ± 0.04, an accuracy of 82.3 % ± 1.1, a precision 

of 0.81 % ± 0.05, a recall of 0.79 % ± 0.04, and no deep learning integration, its XGBoost-
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only model performs far worse.  Because of this drop, learning rich spatial-temporal features 

is more important for understanding complex AV scenarios than using tree-based models.  

Finally, out of all the models, the rule-based system has the lowest performance, with a score 

of 0.695 % ± 0.05 for F1-score, a recall of 0.68 % ± 0.05, a precision of 0.71 % ± 0.06, and an 

accuracy of 73.2 % ± 1.4. This system uses hard-coded threshold logic for risk computation, 

such as braking distance and relative speed.  These numbers show how susceptible the system 

is to false positives and negatives and how poorly it generalizes across different types of 

dynamic situations.  The results show that the hybrid model's incorporation of learning-based 

spatial, temporal, along with probabilistic reasoning significantly enhances autonomous 

vehicle systems' operational safety and prediction dependability. 

  

Fig 4(a)                                                                          Fig 4(b) 

Figure 4: Comparison of the performance metrics 

Prediction Reliability: RMSE, MAE, and Calibration 

The predictive reliability and calibration performance of the presented models is presented by 

four indicative metrics: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) 

for Time-to-Collision (TTC) prediction, and Brier Score and Expected Calibration Error 

(ECE) to assess the confidence and probabilistic accuracy of the risk predictions. The Hybrid 

Model, which combines spatial (CNN), temporal (LSTM), classification (XGBoost), and 

probabilistic reasoning (Bayesian Network), overtly surpasses the rest on all these metrics. It 

also yields a MAE of 0.31 ± 0.04 seconds and RMSE of 0.43 ± 0.05 seconds in predicting 

TTC, reflecting that its risk anticipation is not just accurate in aggregate but also displays low 

heterogeneity across varied scenarios. This precision is vitally important for real-time 

decision-making in self-driving cars where even slight timing inaccuracies can result in 
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untimely or delayed safety reaction. As regards confidence calibration, the Hybrid Model 

scores 0.074 ± 0.006 in Brier Score, which represents an excellent probabilistic estimate of the 

risk levels. This low value indicates that the predicted probabilities are close to actual 

occurrences and hence enhances the reliability of the model in safety-critical contexts. In 

addition, the ECE of 2.9 % ± 0.3  shows outstanding consistency between risk confidence 

prediction and empirical accuracy, which is especially vital when the model is used in real-

world uncertain driving conditions where interpretability and trust are needed. In comparison, 

the CNN + LSTM model—lacking explicit classification and uncertainty estimation layers—

exhibits reduced performance. It achieves a Mean Absolute Error (MAE) of 0.44 ± 0.05 

seconds, Root Mean Square Error (RMSE) of 0.57 ± 0.06 seconds, a Brier Score of 0.094 ± 

0.008, and an Expected Calibration Error (ECE) of 4.8% ± 0.5. These results suggest that while 

the model captures spatiotemporal patterns reasonably well, its predictions are less accurate 

and significantly less calibrated than those of the proposed hybrid model—likely due to the 

absence of structured probabilistic reasoning and risk-aware classification. In contrast, the 

XGBoost-only model, which lacks deep spatial and temporal feature learning, performs the 

poorest across all evaluation metrics. It records an MAE of 0.61 ± 0.07 seconds, RMSE of 

0.82 ± 0.08 seconds, a Brier Score of 0.137 ± 0.009, and an ECE of 7.5% ± 0.6. These values 

indicate high prediction uncertainty and calibration errors, suggesting that the model tends to 

be either overconfident or underconfident in its risk estimates—potentially leading to 

suboptimal or delayed decision-making in real-time scenarios. Overall, these findings 

reinforce that the hybrid architecture—through integrated spatial-temporal modeling and 

probabilistic classification—yields not only more accurate point predictions but also 

significantly better-calibrated, uncertainty-aware outputs. This makes it a more robust and 

reliable solution for risk prediction in autonomous driving systems. 
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Fig 5: Prediction reliability 

The safety impact of the proposed hybrid predictive risk management model is clearly 

demonstrated through its performance in reducing near-miss and collision incidents across two 

of the most safety-critical autonomous driving scenarios: urban intersections and highway lane 

merging. In the challenging urban intersection environment—characterized by dense traffic, 

pedestrians, and unpredictable vehicle behavior—the rule-based system recorded 21 near-miss 

incidents and 4 collisions per 1000 kilometers, indicating its limited ability to handle dynamic 

interactions and respond proactively. The CNN + LSTM model, with its capacity to handle 

spatial and temporal patterns, demonstrates substantial improvement, bringing near-misses 

down to 13 and collisions down to 2.2 per 1000 kilometers. Yet, it still does not possess the 

layered decision-making and uncertainty awareness needed for best-case intervention. In sharp 

contrast, the hybrid model suggested—enhancing CNN and LSTM with risk classification 

using XGBoost and uncertainty estimation using Bayesian reasoning—performs outstandingly 

well with just 6 near-misses and 0.7 collisions per 1000 kilometers in city intersections. This 

suggests a more anticipatory and well-informed decision-making ability, enabling the vehicle 

to detect risks earlier and carry out defensive maneuvers better. A similar pattern is seen in 

highway lane merging situations, with cars having to make instant decisions at the increased 

speeds while keeping a safe distance. The rule-based system provided 15 near-misses and 3.1 

collisions, but the CNN + LSTM model cut down those numbers to 8.7 and 1.3, respectively. 

But the hybrid model performed even better with just 3.4 near-misses and 0.4 collisions per 

1000 kilometers, substantiating its performance in high-speed and high-risk environments. 

These decreases—more than 70% reduction in both near-misses and collisions over rule-based 

systems—confirm the hybrid model's potential to improve operational safety dramatically and 

qualify it for real-world autonomous vehicle deployments. 
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Fig 6: Safety impact of Near miss and Collision reduction 

The actual-time performance of the suggested hybrid model and its equivalents is a 

determining factor for use in autonomous vehicle systems, where timely decision can be the 

key to safety versus failure. The Hybrid Model, with its layered structure integrating CNN, 

LSTM, XGBoost, and Bayesian reasoning, still has a pragmatic inference time of 89.2 

milliseconds per frame, equivalent to a processing rate of around 11.2 frames per second 

(FPS). This frame rate easily satisfies the real-time processing needs for Level 3 autonomous 

systems, where updates at 10 FPS or more are generally adequate for perception and control 

loops. The CNN + LSTM model, having fewer parts, runs slightly quicker at 76.8 ms/frame 

or 13 FPS but loses accuracy, risk classification depth, and probabilistic confidence estimation 

to the hybrid approach. Though more efficient, it does not have the layered decision support 

that is necessary to deal with complex risk situations in real-time environments. The XGBoost-

only model, because of its simplicity and absence of deep learning layers, is much faster at 

24.5 ms/frame and 40.8 FPS. Yet, this speed benefit comes at a high price in predictive quality, 

particularly in unstructured or highly dynamic conditions, where deep temporal-spatial 

comprehension is crucial. The rule-based system is the quickest by a wide margin, executing 

at only 12.4 ms/frame with a very high throughput of 76.4 FPS. However, this processing 

velocity misrepresents safety worth; the rule-based reasoning is not adaptable, resulting in 

lower accuracy and increased collision and near-miss incidence, as previously demonstrated. 

Overall, although the hybrid model does incur a computational overhead over less complex 

systems, its processing time is kept well within real-time deployment levels. Of greater 

importance, though, it provides considerably better risk prediction accuracy, decision 

confidence, and safety outcomes—making it a worthwhile performance versus precision trade-

off for real-world AV applications.  
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Fig 7: Real-Time Inference Efficiency 

Discussion 

The findings emphasize the distinct benefit of the integration of deep learning with ensemble 

classification and probabilistic reasoning for autonomous vehicle risk prediction. The hybrid 

model performs better than more straightforward architectures such as CNN + LSTM, 

XGBoost-only classifiers, and conventional rule-based systems on all key metrics. This 

suggests that sophisticated driving environments—particularly those with dynamic and 

uncertain components need spatial-temporal modeling and decision-layer integration to 

guarantee precise and explainable results. Although the CNN + LSTM model performs motion 

and visual feature capture well, it does not have the structured risk classification and 

uncertainty quantification provided by XGBoost and Bayesian Networks. The rule-based 

system, although computationally light, does not generalize and learn from real-world 

variability and thus produces high false positive and false negative rates. In addition, while the 

XGBoost-only model provides improved throughput, it compromises on critical spatial-
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temporal context and is therefore not appropriate for high-risk situations. Contrary to 

expectations, the hybrid model achieves inference rates far higher than the real-time need for 

Level 3 autonomy, which more than makes up for its computing complexity.  The fact that it 

is both safe and responsive lends credence to its suitability for use in production-grade AV 

systems. 

 

Conclusion 

This paper introduces a strong hybrid model for predictive risk management in autonomous 

vehicles that combines the power of Convolutional Neural Networks (CNNs), Long Short-

Term Memory (LSTM) networks, Extreme Gradient Boosting (XGBoost), and Bayesian 

Networks. The proposed model successfully captures major challenges in AV risk prediction 

by incorporating multi-modal sensor data with spatial-temporal learning and probabilistic 

reasoning. Empirical performance shows that the developed hybrid framework yields 94.1 %  

± 0.6 accuracy, lowers collision and near-miss events by more than 70%, and features a low 

Expected Calibration Error (ECE) of 2.9%, outperforming traditional baselines for both 

structured urban intersections and high-speed highway settings. In spite of the multi-layer 

model, real-time inference is delivered at greater than 11 frames per second, making it practical 

to be deployed in safety-critical AV scenarios. In the future, studies will concentrate on 

hardware-in-the-loop (HIL) testing to assess real-time system response under physical limits, 

reinforcement learning integration to support adaptive risk threshold adjustment, and cross-

geographic generalization using domain-adaptive learning and widened datasets to include 

rural, semi-structured, and diverse environmental settings. These developments seek to further 

improve the scalability, adaptability, and resilience of autonomous vehicle safety systems. 

 

Acknowledgement: We acknowledge “Arni University and IMS Engineering College” for 

providing necessary facilities to conduct the study. 

Author contributions: Unmendu Senapati was instrumental in identifying the research topic 

and designing the study, as well as in drafting the manuscript and overseeing data collection. 

Umesh Sharma was crucial in developing the questionnaires and conducting the data analysis. 

Unmendu Senapati, Umesh Sharma and Amit Sharma was collaborated closely throughout the 

research process, ensuring the study was thorough and effectively communicated their 

findings. This partnership exemplifies their shared commitment to advancing knowledge in 

their field. 

Conflict of Interest: There is no conflict of interest in this study. 

Ethical Approval: Not applicable 

Funding: Not applicable 

References 

[1] World Health Organization. (2023). Road Traffic Injuries. WHO Fact Sheet. 



                                                  AI-Integrated Predictive Safety …  Unmendu Senapati, et al. 1521 

 

Nanotechnology Perceptions 20 No. S6 (2024) 1498-1520 

[2] Wang, C., Liao, H., Zhu, K., Zhang, G., & Li, Z. (2025). A dynamics-enhanced 

learning model for multi-horizon trajectory prediction in autonomous vehicles. 

Information Fusion, 118, 102924. https://doi.org/10.1016/j.inffus.2024.102924 

[3] Bharilya, V., & Kumar, N. (2024). Machine learning for autonomous vehicle 

trajectory prediction: A comprehensive survey, challenges, and future research 

directions. Vehicular Communications, 46, 100733. 

https://doi.org/10.1016/j.vehcom.2024.100733 

[4] Tiwari, A., & Farag, H. E. (2025). Responsible AI framework for autonomous 

vehicles: Addressing bias and fairness risks. IEEE Access. 

https://doi.org/10.1109/ACCESS.2025.3556781 

[5] Lee, S., Song, B., & Shin, J. (2024). Collision prediction in an integrated framework 

of scenario-based and data-driven approaches. IEEE Access, 12, 55234–55247. 

https://doi.org/10.1109/ACCESS.2024.3388099 

[6] Michaels, J. (2025). Zoox AV involved in collision during test drive in Las Vegas. 

The Verge. 

[7] Kothuri, S. R., Nivedita, V., Dharmateja, M., Chinnaraj, A., & Sachidananda, K. B. 

(2023). Enhancing pedestrian safety in autonomous vehicles through machine 

learning. In 2023 International Conference on Sustainable Communication Networks 

and Application (ICSCNA) (pp. 1587–1592). IEEE. 

https://doi.org/10.1109/ICSCNA58489.2023.10370173 

[8] Raskoti, C., & Li, W. (2024). Exploring transformer-augmented LSTM for temporal 

and spatial feature learning in trajectory prediction. arXiv Preprint arXiv:2412.13419. 

https://doi.org/10.48550/arXiv.2412.13419 

[9] Cui, H., Radosavljevic, V., Chou, F. C., Lin, T. H., Nguyen, T., Huang, T. K., 

Schneider, J., & Djuric, N. (2019). Multimodal trajectory predictions for 

autonomous driving using deep convolutional networks. In 2019 International 

Conference on Robotics and Automation (ICRA) (pp. 2090–2096). IEEE. 

https://doi.org/10.1109/ICRA.2019.8793868 

[10] Sun, Y., & Ortiz, J. (2024). Data fusion and optimization techniques for enhancing 

autonomous vehicle performance in smart cities. Journal of Artificial Intelligence and 

Information, 1, 42–50. 

[11] Qiu, J., Zhu, L., Zhang, M., Pan, Y., Xu, P., Gao, J., & Liu, J. (2025). Collision 

scenario analysis for autonomous vehicles using multimodal deep learning models. In 

2025 IEEE Conference on Artificial Intelligence (CAI) (pp. 631–636). IEEE. 

https://doi.org/10.1109/CAI64502.2025.00116 

 

 

 


