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Hardness is an essential mechanical characteristic of austempered ductile iron (ADI) that affects 

its ability to perform in a variety of applications. To increase hardness characterization, dedicated 

testing methods that take into consideration the unique properties of ADI must be developed and 

used. The generalisation of hardness prediction algorithms could be complicated by the variations 

in composition of materials and processing circumstances. In this study, we proposed a jellyfish 

swarm adaptive hybrid AdaBoost approach to improve hardness characterization in austempered 

ductile iron. The complex relationship between the microstructure of ADI is influenced by 

chemical-based compositions, duration and austempering temperatures that determine the 

material's hardness and flexibility. A typical method for determining a material's hardness is to 

utilize its Hardness Number (HN). Five specimens that completed the process of austempering at 

different temperatures (240, 260 and 280 degrees celsius) and times (20, 40, 60 and 80 mins) are 

examined in this investigation. Examining seven chemical compositions, large-scale modelling 

demonstrated that the JSO-AdaBoost-based approach is capable of predicting the HN with the 

highest mean absolute error (MAPE) of 0.27%. Due to its desirable qualities, including its high 

tensile strength and exceptional flexibility, ADI is utilized in the automotive industry.  

   

Keywords: F Austempered ductile iron (ADI) Hardness Number (HN), Jellyfish swarm 

optimization (JSO) AdaBoost, Chemical compositions.  
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1. Introduction 

“Austempered Ductile Iron (ADI)” provides a unique combination of durability, toughness 

and corrosion resistance is a significant development in metallurgy. Austempering is a 

specific heat treatment method that separates this specialized category of ductile iron from 

other materials [1]. Austempering produces a microstructure with exceptional mechanical 

qualities by quenching the iron in a particular temperature range and applying an isothermal 

heating process.  

The main component of ADI's microstructure, acicular ferrite, adds to its exceptional 

flexibility and strength [2]. This unique combination derives from the austempering process, 

which turns high-carbon austenite into acicular ferrite. Because of its outstanding tensile 

strength, resistance to impacts and fatigue strength, the final product is suitable for 

applications requiring extraordinary performance under changing circumstances. This makes 

ADI an excellent choice [3]. Due to its enhanced mechanical qualities, ADI has become 

prevalent in many engineering applications, such as industrial equipment, drives, shafts and 

automotive parts. Because of its increased durability and wear resistance, it is especially 

well-suited for demanding environments where conventional materials would perform poorly 

[4]. 

ADI is an innovative material that is highly performative and adaptable in the metallurgical 

field. Its exceptional durability, toughness and resistance to wear are made possible by its 

distinct microstructure, which was attained through careful heat treatment, giving engineers 

and manufacturers a beneficial option for a variety of challenging applications [5]. Engineers 

and metallurgists trying to customize ADI characteristics to meet particular application need 

demand to know that accurate and comprehensive hardness characterisation performs. 

Nuanced differences in durability across the acicular ferrite structure can be detected by 

conventional hardness testing techniques like Brinell or Rockwell [6]. Therefore, 

sophisticated methods such as micro-hardness testing at various material regions are utilized 

to offer an improved understanding of ADI's hardness distributions [7]. 

The hardness profiles of intricate ADI components are better understood because of 

developments in non-destructive testing techniques like magnetic and ultrasonic hardness 

testing [8]. By using these techniques, one can assess local hardness differences more 

precisely and adjust the austempering procedure to get the necessary hardness levels in 

particular areas [9]. Through this effort, the mechanical qualities of ADI can be optimized to 

meet the demanding needs of a wider range of applications in different industries [10].  

Study [11] assessed the impact of austempering duration and temperature on the 

microstructural features and rigidity of ductile iron, confirming it with a statistical approach 

to hardness predicting. As the duration of austempering increased, acicular ferrite needles 

were observed to thicken. It contributed to the observation of an inversely correlated 

behaviour for the hardness values, which was confirmed by data analysis, statistical 

techniques and a regression model that used hardness as the resulting variable along with 

time and temperature of austempering as the input parameters. The study [12] investigated 

on the impact of partitioned treatment on the mechanical properties and microstructure of 

austempered ductility iron (ADI). The carbon atoms moved from the α phase to the γ phase 

during the separation process, causing the α phase to become coarser and the γ phase to 
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become increasingly concentrated in carbon. These changes in microstructure contributed to 

a roughly 50% increase in flexibility without compromising strength. The study [13] 

examined the transformation-induced plasticity (TRIP) and mechanical characteristics were 

affected by short-term austenitization in austempered ductile iron. Dilatometers, 

visualization programs, tensile as well as hardness tests, XRD examination, optic along with 

electronic scanning microscopies and other tools were used in the microscopy investigations. 

The smallest (15 min) austenitized sample yielded the largest TRIP effect and the best 

mixture of ductility coupled with hardness. 

Research [14] utilized several machine learning-based intelligent classification approaches to 

determine the hardness of a less prevalent compact graphite iron cast and a conventional 

spheroidal iron cast. Accurately predicting the mechanical characteristics of casting alloys 

was a challenging attempt since significant differences in metallurgical conditions could 

occur during casting. Neural networks were trained using microstructures as inputs and the 

output of the training process was hardness. The effect of austempering temperature on the 

Mechanical capabilities and nanostructures of “austempered ductile iron casting (ADI)” was 

examined in the study [15]. The main focus of their investigation was to examine the 

austempering temperatures that affected the ADI altered by particular Ni, Cu and Mo 

concentrations to promote the development of microstructure, expansion, durability and 

fatigue endurance. 330 °C was the ideal temperature for ADI, according to the results of 

stress-controlled mechanical fatigue testing. The study [16] focused on the fact that heat 

treatment affected the tribological behaviours, rigidity and toughness of the materials. Case-

hardening steel could be exchanged with austempered ductile iron (ADI) in numerous 

applications. They can adjust the chemical structure and heat treatment parameters of ADI to 

alter its mechanical qualities. Cryogenic treatment has been found to enhance wear resistance 

(20%) and enable some austenite to martensite conversions. 

Study [17] examined that niobium addition affects the parameters of toughness and 

durability in graphite, bainite and the process of bainite conversion under specific heat-

treatment configurations. An investigation of the niobium precipitate behaviour could be 

used to understand the impact of niobium inclusion on the graphite microstructure in the 

liquid state. That was discovered that adding niobium in a level of 0.2–0.5 weight percent 

enables the best possible balance of scratch resistance, impact durability and toughness. The 

study [18] provided a highly efficient enhanced multilayer perceptron (eMLP)-based method 

using available experimental data that models the ADI's austempering process for VHN 

predictions. Under the use of the correct technique, ADI's hardness and ductility could be 

customized for a certain purpose. They have demonstrated that the suggested model offers 

comparable efficiency but with less computing complexity by evaluating the eMLP model's 

performance with an MLP-based strategy.  

Study [19] processed Carbamic austempered ductile iron (CADI), an innovative heat 

treatment method that included an austempering treatment and super-high temperatures pre-

treatment. A significant quantity of Fe_3 C nanoparticles was maintained inside the earlier 

austenite as grains after the ductile iron, including superfine pearlite, was reheated. The 

CADI that was developed through the treatment offers outstanding durability under high 

wear pressure and an impact toughness that was 120% stronger than the regular CADI 

without compromising hardness. The study [20] determined that shot-peening affects the as-
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cast and austempered ductile irons' dry-sliding wear characteristics. The materials under test 

were examined using optical, scanning electron and X-ray scattering microscopy to assess 

their microstructure. During shot-peening, the austempered specimens demonstrated a rise in 

surface hardness due to the pressure produced by martensite, but a decrease in resistivity to 

wear results to an increase in surface roughness. This paper presents a novel strategy, termed 

the jellyfish swarm adaptive hybrid AdaBoost method, which aims to enhance hardness 

characterisation in austempered ductile iron.  

The study components could be classified: The approaches are discussed in section 2. The 

experimental setups are presented in section 3. Result & Discussion is presented in section 4. 

The last section of this paper, section 5, is the conclusion. 

 

2. METHODOLOGY 

2.1 Jellyfish swarm optimization hybrid  

AdaBoost approach (JSO-AdaBoost) 

To enhance the characterization of hardness in “austempered ductile iron”, the Jellyfish 

Swarm Optimization (JSO) hybrid Adaboost strategy integrates two innovative techniques. 

Motivated by jellyfish behaviour, JSO maximizes feature selection to increase the accuracy 

of the ensuing Adaboost predictive model. Adaboost is an ensemble learning technique that 

creates a robust model by combining weak classifiers. 

Jellyfish swarm optimization 

There are species of jellyfish anywhere in the earth, from shallow waters to deep oceans. 

Their soft bodies are bell-shaped, with long, stinging tentacles on the bottom they employ to 

disable and sting their victims, which are microscopic fish and plankton creatures. They are 

available in a broad range of colours, shapes and sizes. Each one of the several species 

displays distinct adaptations to the sea environment. Features on jellyfish enable them to 

regulate their mobility. To move themselves ahead, they flex their bodies like an umbrella 

forcing water out. They primarily depend on currents and tides to drift in the sea without 

their capacity. Jellyfish have the ability to create swarms when the conditions are right and a 

large number of jellyfish known as Jellyfish bloom. The formation of a swarm is controlled 

by a number of elements, such as temperatures, oxygen supply, accessible nutrients, 

predators and water currents. 

Water currents are thought to be the most significant of these components in the formation of 

a swarm. The way jellyfish search and travel in the ocean became the model for the jellyfish 

search algorithm. Three probable courses of action during jellyfish movement are as follows: 

• A “time control mechanism” controls jellyfish that alternate between moving as they 

are part of a swarm and tracking the current in the water.  

• Jellyfish swim through the ocean in search of food. They are attracted to areas where 

there is a greater supply of food available. 

• The location and its related purpose determine the quantity of food is found there. 
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The behaviour of jellyfish in the ocean. 

A swarm is a big group of jellyfish that migrate in different directions, either in their passive 

(type A) or active (type B) positions. 

Type “A” motion is the movement of jellyfish about their individual locations and each 

jellyfish's current location is provided by, 

Wj(s + 1) = Wj(s) + γ ∗ rand(0,1) ∗ (Ub − Lb)                                            (1) 

Where gamma is the motion coefficient related to the length of motion towards jellyfish 

establishes in citechou 2021 distinct γ=0.1 is determined, yet U_band L_b  are the upper and 

lower bounds of the search space, respectively. 

Then randomly select a jellyfish (i) that is not important to imitate the type B movement 

(Equation 2) and select an angle of the jellyfish in attention (j) to the specified jellyfish (i) to 

establish the direction of the movement (Equation 3). The latter moves toward the initial 

when the quantity of food at the chosen jellyfish's (i) position is greater than that at the 

interested jellyfish's (j) location. If the amount of food accessible for the chosen jellyfish (i) 

is lower than the position of the jellyfish of interest (j), it continues to travel straight away 

from that spot. Equation (4) indicates a jellyfish's updated location. 

step⃗⃗⃗⃗⃗⃗ ⃗⃗  is simulates as rand (0,1) Direction⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                   (2)                                           

     Direction⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
Wi(s) − Wj(s) if f(Wj) ≥ f(Wi)

Wj(s) − Wi(s) if f(Wj) < f(Wi)
       (3)                                     

   Wj(s + 1) = −Wj(s) + step⃗⃗⃗⃗⃗⃗ ⃗⃗                                              (4) 

Adaptive Boosting  

Boosting is a popular method for turning a weak learner into a strong learner to acquire 

classifiers. By improving the prediction capabilities of the weak categorization algorithm, the 

boosting technique intends to create a very advantageous classifier by starting with a weak 

classifier. The yields of numerous weak classifiers are equalized to prepare this expectation. 

Adaptive Boosting, or AdaBoost, is a common boosting technique that targets classification 

issues by constructing a powerful classifier from a large number of weak classifiers. The 

process involves creating an initial version using the training set of data, followed by the 

construction of an additional model designed to address the shortcomings of the initial 

model. Until a training set is determined or the greatest number of entries is merged, models 

are added. 

AdaBoost is a widely used technique for improving decision tree output on binary 

classification tasks. The AdaBoost algorithm was selected because it could be used to 

improve the efficiency of any machine learning technique. When it is done with weaker 

students, it is usually excellent. One-level decision trees are the traditional algorithm used 

with AdaBoost. The trees are called decision stump because they are small and store a single 

option for a class. Weak models are generated using weighted training data and combined 

one after the other. The process keeps going until either a certain number of poor learners are 

generated or the training dataset cannot be improved effectively. Every node in a decision 
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tree reflects a search for a characteristic in the context of machine learning. Each branch 

provides an explanation of the test outcome and the leaf nodes provide an explanation of the 

class label that supports each branch's decisions. A categorization rule is provided by the 

paths from the starting point to the leaf. The purpose of this approach is to display the data 

while making the design less complex. JSO-AdaBoost is represented in Algorithm 1. 

 Algorithm 1: (JSO-AdaBoost) 

initialize_swarm() 

initialize_adaboost() 

for iteration in range(max_iterations): 

        evaluate_fitness() 

    update_best_positions() 

    update_jellyfish_positions() 

    selected_features = feature_selection() 

    adaboost_model = train_adaboost_model(selected_features) 

    adaboost_accuracy = evaluate_adaboost_model(adaboost_model) 

    update_jellyfish_weight(adaboost_accuracy) 

    hardness_prediction = predict_hardness(adaboost_model, selected_features) 

    update_best_hardness_characterization(hardness_prediction) 

print ("Final hardness characterization:", best_hardness_characterization) 

 

3. EXPERIMENTAL SETUP 

The present investigation examines five specimens that have experienced the process of 

austempering at varying temperatures and times, their chemical compositions varies. Table 1 

lists the five specimens' chemical compositions (in weight percentage). The samples were 

austenitized, quenched and submerged in a salt solution instantly for varying amounts of 

time 20, 40, 60, or 80 minutes at 240, 260, or 280 °C. Each specimen was divided into nine 

samples, producing a total of 86 samples. For every sample, the HN was determined as the 

sample was loaded with 8 kg. 75 percent of the 86 data sets (60 items) were used as a 

training set, while the final 25% (26 items) were used as the evaluation set. Figure 1 shows 

the modelling schemes. 
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Fig. 1. The modelling schemes. 

(Source: Author) 

Table 1. Five specimens' chemical composition. 

Chemical 

composition 
Specimen # 

 1 2 3 4 5 Min Max Avg. SD 

C 3.43 3.46 3.41 3.41 3.45 3.41 3.46 3.432 0.0136 

Si 2.31 2.34 2.31 2.32 2.41 2.31 2.41 2.338 0.0381 

Mn 0.23 0.23 0.23 0.22 0.25 0.22 0.25 0.464 0.1039 

Ni 1.01 1.01 1.01 1.03 1.01 1.01 1.03 1.014 0.0100 

Cu 0.51 0.51 0.52 0.52 1.01 0.51 1.01 0.614 0.2292 

Mo 0.11 0.14 0.20 0.24 0.24 0.11 0.24 0.816 0.0591 

Mg 0.050 0.051 0.047 0.048 0.053 0.047 0.053 0.0498 0.0026 

 

4. RESULT & DISCUSSION 

The model's distribution and measurements' scatter plots generated HN values for the entire 

dataset (86 items) are displayed in Figure 2a. This figure displays the CC, MAPE and MSE 

values. Figure 2b displays scatter plots for Model-2. The entire set is stored in Model-2 and 

the evaluation set's CC values can be 0.9988 and 0.9995, proving the effectiveness of this 

modelling process. Low MAPE values indicated excellent HN estimation efficiency. 
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Fig.2. Scatter plots of the generated and evaluated HNs 

(Source: Author) 

The outcomes of Model-2's predictions for the five different specimens are displayed in 

Figure 3, these outcomes are for the temperature at a range of different values and 

austempering times of 20, 40, 60 and 80 minutes, respectively. The measured values are 

shown by the pink symbols, whereas the anticipated values for HN are represented by the 

orange symbols. It appears that the framework is able to provide accurate predictions of HN 

for a variety of values associated with the austempering temperature, which can range 

anywhere from 230 to 290 degrees Celsius. In Figure 4, for each of the five specimens, the 

prediction capabilities of Model-2 are displayed over a range of various quantities of 

austempering time duration at one of three distinct austempering temperatures, namely 240, 

260, or 280 degrees Celsius. 10 to 90 minutes is the range of austempering time that the 

model can properly predict for HN. 
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Fig. 3. Prediction of HN for durations of 20, 40, 60 and 80 minutes at various austempering 

temperatures. 

(Source: Author) 

 

5. CONCLUSION 

Hardness characterization was the process of measuring and analyzing the susceptibility of a 

substance to stretching, piercing, or penetration. Austempered ductile iron (ADI)'s hardness 

was a crucial mechanical property that influences its performance in a range of applications. 

The development and application of specialized testing procedures that allow for the special 

characteristics of ADI were required to improve hardness characterization. In this study, we 

proposed Jellyfish swarm adaptive hybrid AdaBoost approach (JSO-AdaBoost) to improve 

hardness characterisation in austempered ductile iron. These models were capable of 

predicting HN at a certain temperature, period of time and weight proportion of the seven 

combinations of chemicals that were austempering. The correlation ratio between the 

predicted and observed HN values was near to 1, as demonstrated by the findings. The 

Model-2 outperforms the Model-1 in terms of performance. It was discovered that the mean 

absolute errors were as low as 0.27%. The generalisation of hardness prediction algorithms 

could be complicated by the variations in composition of materials and processing 
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circumstances. Advanced machine learning techniques and optimization algorithms can be 

explored in future investigations for the purpose of improving the characterization of 

hardness in ADI. 

 

 

References 
1. R. Raghavendran, and A. Meena, Deformation Induced Microstructure Evolution and Phase 

Transformation in an austempered ductile iron (ADI). International Journal of Metalcasting, 

vol. 17, no. 1, pp.233-247, 2023, Doi: 10.1007/s40962-022-00763-3 

2. L.N. López de Lacalle, A. Fernández Valdivielso, F.J. Amigo, and L. Sastoque, Milling with 

ceramic inserts of austempered ductile iron (ADI): process conditions and performance. The 

International Journal of Advanced Manufacturing Technology, vol. 110, no. 4, pp.899-907, 

2020, Doi: 10.1007/s00170-020-05942-2 

3. A.S.O. Pimentel, W.L. Guesser, W.J.R.C. da Silva, P.D. Portella, M. Woydt and J. Burbank, 

Abrasive wear behavior of austempered ductile iron with niobium additions. Wear, vol.  440, 

p.203065, 2019, Doi: 10.1016/j.wear.2019.203065 

4. G.V. Tissi, and G.S. Fonseca, Influence of austempering time and austempering temperature in 

microstructure and mechanical properties in austempered ductile iron. Int J Res-Granthaalayah, 

vol. 8, no. 6, pp.51-62, 2020, Doi: 10.29121/granthaalayah.v8.i6.2020.419 

5. A. Mussa, P. Krakhmalev, and J. Bergström, Wear mechanisms and wear resistance of 

austempered ductile iron in reciprocal sliding contact. Wear, vol. 498, p.204305, 2022, Doi: 

10.1016/j.wear.2022.204305 

6.  Z. Shi, M. Dong, Y. Sun, J. Ma, X. Du and J. Zhao, Effects of austempering time on the 

microstructure and properties of austempered ductile iron. Metallurgical Research & 

Technology, vol. 119, no. 1, p.117, 2022, Doi: 10.1051/metal/2022011 

7. H.A. Aly, A. Nofal, A. Hussein, and E.M. El-Banna, Development of Carbidic Austempered 

Ductile Iron (CADI). Key Engineering Materials, vol. 835, pp.163-170, 2020. 

8. O.J. Akinribide, S.O.O. Olusunle, S.O. Akinwamide, B.J. Babalola and P.A. Olubambi, Impact 

of heat treatment on mechanical and tribological behaviour of unalloyed and alloyed ductile 

iron. Journal of Materials Research and Technology, vol. 14, pp.1809-1819, 2021, Doi: 

10.1016/j.jmrt.2021.07.077 

9.  A. Fernández-Valdivielso, L.N. López de Lacalle, P. Fernández-Lucio, and H. González, 

Turning of Austempered Ductile Iron with ceramic tools. Proceedings of the Institution of 

Mechanical Engineers. Journal of Engineering Manufacture, vol. 235, no. 3, pp.484-493, 2021, 

Doi: 10.1177/0954405420957154 

10. G. Dhilip, and S. Arul, Investigation of mechanical properties and wear rate on cryogenically 

treated austempered ductile iron. Materials Today: Proceedings, vol. 46, pp.4691-4695, 2021, 

Doi: 10.1016/j.matpr.2020.10.298 

11. N.A. Rodríguez-Rosales, F.A. Montes-González, O. Gómez-Casas, J. Gómez-Casas, J.S. 

Galindo-Valdés, J.C. Ortiz-Cuellar, J.F. Martínez-Villafañe, D. García-Navarro and C.R. 

Muñiz-Valdez, Statistical data-driven model for hardness prediction in austempered ductile 

irons. Metals, vol. 12, no. 4, p.676, 2022, Doi: 10.3390/met12040676 

12. X. Wang, Y. Du, B. Liu and B. Jiang, Enhanced plasticity of austempered ductile iron (ADI) 

by partitioning treatment. Materials Science and Engineering: A, vol. 804, p.140513, 2021, 

Doi: 10.1016/j.msea.2020.140513 

13. B. Nalcaci, O. Sahin, O. Okur, M. Aydin and M. Erdogan, Effects of short-time austenitization 

on mechanical properties and transformation-induced plasticity in alloyed austempered ductile 

iron. International Journal of Metalcasting, pp.1-13, 2022, Doi: 10.1007/s40962-021-00723-3 



                                  Enhancing Hardness Characterization in…. Anupam Kumar Gautam et al. 180  
 

Nanotechnology Perceptions Vol. 20 No.S3 (2024) 

14. C. Fragassa, M. Babic and E. Domingues dos Santos, Machine learning approaches to predict 

the hardness of cast iron. Tribology in Industry, vol. 42, no. 1, pp.1-9, 2020, Doi: 

10.24874/ti.2020.42.01.01 

15. R. Bendikiene, A. Ciuplys, R. Cesnavicius, A. Jutas, A. Bahdanovich, D. Marmysh, A. Nasan, 

L. Shemet and S. Sherbakov, Influence of austempering temperatures on the microstructure 

and mechanical properties of austempered ductile cast iron. Metals, vol. 11, no. 6, p.967, 2021, 

Doi: 10.3390/met11060967 

16. F.H. Çakir, The Effect of Cryogenic Treatment on Hardness, Toughness, and Tribological 

Properties of Austempered Ductile Iron with Different Nickel Contents. International Journal 

of Metalcasting, vol. 16, no. 3, pp.1442-1454, 2022, 10.1007/s40962-021-00686-5 

17. X. Chen, L. Zhao, W. Zhang, H. Mohrbacher, W. Wang, A. Guo, and Q. Zhai, Effects of 

niobium alloying on microstructure, toughness and wear resistance of austempered ductile iron. 

Materials Science and Engineering, vol. 760, pp.186-194, 2019, Doi: 

10.1016/j.msea.2019.05.100 

18. R.V. Savangouder, J.C. Patra, and C. Bornand, Prediction of hardness of austempered ductile 

iron using enhanced multilayer perceptron based on Chebyshev expansion. In Neural 

Information Processing, vol. 26, pp.12–15, 2019, Doi: 10.1007/978-3-030-36802-9_44 

19. Y. Penghui, F. Hanguang, L. Guolu, L. Jinhai and Z. Xuebo, Microstructures and properties of 

carbidic austempered ductile Iron containing Fe3C particles and superfine ausferrite. Materials 

& Design, vol. 186, p.108363, 2020, Doi: 10.1016/j.matdes.2019.108363 

20. K.H. Silva, J.R. Carneiro, R.S. Coelho, H. Pinto and P. Brito, Influence of shot peening on 

residual stresses and tribological behavior of cast and austempered ductile iron. Wear, vol. 440, 

p.203099, 2019, Doi: 10.1016/j.wear.2019.203099 


