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The milling of AISI 4340 with nano-lubricants and Minimum Quantity Lubrication (MQL) offers
a viable path toward green production. Because of the complex interactions between several
variables, including the rate of feeding, cutting rate and quantity of the nano-lubricant, optimizing
the procedure is difficult. Current forecasting techniques frequently lack the accuracy needed for
efficient optimization and traditional optimization methods can find it difficult to handle the
complicated parameter space. This study proposes an innovative parallel red deer optimized
AdaBoost (PRDO-AB) approach for optimum milling of AISI 4340 with nano-lubricants and it
resolves the requirement for an improved prediction framework. The addition of PRDO, which is
used to determine the ideal AB's settings, improves the preciseness of the AB approach. In this
study, a greener Nano-Fluid (NF) with improved thermo-physical properties is produced by
combining CuO with rice bran vegetable oil. Comprehensive experimental information is used to
confirm the suggested model and the outcomes show notable gains in tool life, surface polish and
machining effectiveness over standard techniques. In addition, the environmental impact
evaluation shows a significant decrease in waste production and resource usage.

Keywords: MQL machining, nano lubricants green production and parallel red deer optimized
ada boost (PRDO-AB).
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1. Introduction

The industrial sector is experiencing an important change at environmentally conscious and
sustainable practices due to the fast advancement of these innovations. When contrasted with
conventional machining techniques, MQL cutting has demonstrated great promise in terms
of significant savings in ecological effects and operating costs [1]. The milling of substances
such as AISI Grade 4340, strong, low-alloying steel that is utilized in aircraft and automotive
industries, underscores the importance of this change. AlISI Grade 4340 is a highly favored
option for vital components exposed to stressful conditions because of its well-known
durability [2]. But the traditional machining methods used for these kinds of materials
sometimes need large coolant use that raises concerns about the environment and drives up
expenses. Incorporating MQL cutting, on the other hand, is an unusual strategy to deal with
these problems and adopt a more environmentally conscious production ethic. Because of the
small size of their particles and great lubrication qualities, nano-lubricants work better than
their traditional substitutes [3]. These small lubricants not just assist with extending tool life
but also decrease wastage as well as use of resources, yet additionally reduce wear and
friction. MQL processing decreases the negative impacts of liquid manufacturing,
destruction and the total ecological imprint of machining procedures by lowering the amount
of liquid used [4, 5]. This decrease in consumption of fluids is in line with the worldwide
movement to environmentally friendly production practices as it minimizes the discharge of
hazardous compounds into the environment while conserving valuable assets. Additional
benefits of using MQL for cutting in AlSI Grade 4340 milling include increased dimensional
accuracy and exterior polish [6, 7]. A more focused and regulated lubrication process is
ensured by the accurate usage of nano-lubricants in small amounts, leading to better product
qualities. An additional instance of the possibility for higher energy efficiency is the use of
nano-lubricants in MQL machining for AISI Grade 4340. The entire electrical usage of the
machining method is decreased with less wear and friction [8].

Through reduced energy expenditures and increased total energy efficiency of machining
processes, this additionally conforms to environmental sustainability goals but also has
financial implications [9].

The study [10] proposed that Grey Wolf Optimization (GWQO) method were used to improve
the machining parameters of the AISI 4340 alloy to improve cutting force, roughness of the
surface and wear of the tool. In accordance with published results, turning experiments were
carried out using MQL-assisted CuO and Al203 NF. It implies that the GWO technique was
a feasible alternative for optimizing the AISI 4340 alloy's reactions throughout machining
processes. The paper [11] investigated the use of MQL in a variety of machining techniques,
cutting, rotating, milling and drilling, with an emphasis on difficult-to-machine metals.
Optimization of aerosol-supply pathways, tool geometry, tip substances and tool body design
was critical to improve the efficacy of the MQL system. The research [12] examined the
effectiveness of NF when they were sprayed into the tool-work connection utilizing the
MQL misting system after that is combined in various ratios with coconut oil. The
combination of coconut oil and Nano-AlI203 revealed enhanced efficiency, leading to an
improved surface.

The paper [13] assessed to discover further about the physicochemical characteristics and
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atomizing efficiency of NF to understand their function in processing different materials.
Cutting fluids that utilized vegetable oil as well as water were shown to be more effective
than those relying on mineral-based oils for dealing with environmental and health problems.
These changes guaranteed strong ecological sustainability in addition to high-performance
machining. The study [14] proposed an optimization strategy based on Grey Relational
Analysis (GRA) that predicted the values of the Grey Relational Grade (GRG) and optimized
the parameters used for machining by applying predictive algorithms such as RSM and
support vector machine (SVM). The results showed that when it came to cutting parameter
prediction, Artificial Neural Networks (ANN) and SVM models outperformed the response
surface method (RSM) model in terms of accuracy in forecasting. The article [15] discussed
the investigation of a Computer Numerical Control (CNC) lathe's manufacturing of
reinforced steel to maximize the parameters for cutting while minimizing surface roughness
and energy use. In the optimization process, input parameters, such as the rate of feed, tool
type and cutting speed, were considered. Given that the percentage error in allowable
bounds, the results of the verification tests indicated effective optimization.

The research [16] proposed a technique that used regression analysis (RA) and ANN to
forecast the surface roughness during severe machining of AISI 52100 steel. Through an
examination of correlation coefficients, the results indicated a strong correlation, with an
ANN model surpassing the RA model in predicting surface roughness. The paper [17]
discussed heat, pressure and roughness of surfaces as instances of numerous reactions. That
requires the adoption of multiple factors optimization approaches and the MQL method was
investigated as an effective means of maximizing the fluid for cutting usage to improve
milling efficiency. The response settings produced excellent outcomes, based on the
experimental information. The study [18] used an Metal-Organic Chemical Vapor
Deposition (MTCVD) multilayer-coated carbide insertion (TiN/TiCN/AI203) to estimate
wear on the flanks and roughness of the surface during dry hard machining of AISI 52100
steel (55 + 1 HRC). Following Pearson correlation coefficient accuracy testing, Multiple
Linear Regression (MLR) and Multiple Quantile Regression (MQR) prediction models were
developed using parameters from machining and signals from vibrations. The article [19]
utilized statistical models to examine how trimming specifications affect surface
irregularities and the average square root of piece motion in metallic drilling. A mixed-level
design of tests included slicing rates, feed velocity and radius of the nose, affecting both
surface roughness and work-piece vibrations speed root mean square. The study [20]
employed Taguchi design, ANOVA and modeling to examine how machining factors affect
the surface roughness and cutting force during dry turning of martensitic metal. In
comparison to multiple regressions, ANN prediction results were found to be superior.

This paper's aim is to improve prediction model for environmentally friendly MQL
machining of AISI Grade 4340 composite using nano-lubricants, employing a novel
optimizer technique to enhance machining efficiency and sustainability.

The remaining segments of the study were classified into the following categories: The
methodology is discussed in Section 2. Section 3 includes results. Section 4 ends with
conclusion.
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2. METHODOLOGY

In this study, we present Parallel Red Deer optimized AdaBoost (PRD-AB), a novel
technique for eco-friendly MQL machining integrating nano-lubricants for enhanced
sustainability and performance.

2.1Design for MQL machining of AISI 4340

The experiments were carried out on AlISI 4340 Steel blends, measuring 650 mm in length
and 50 mm in diameter, was used for the experimentation. 45 + 2 HRC is the alloy's
hardness. This alloy, that is utilized in the device tool, motoring and air force sectors, is
categorized as high-strength and challenging to process. The AISI 4340 steel's chemical
constitution and biomechanical and thermo-physical characteristics are shown in Tables 1
and 2.

Table 1. AISI 4340 steel's chemical composition.
Source: author)

Element | Nickel | Carbon | Chromium | Molybdenum | Manganese | Silicon | Copper | Iron(%)
(%) | (%) (%) (%) (%) (%) (%)

Weight | 1.62 0.42 1.02 0.295 0.81 0.38 0.18 Bal.

Table 2. AlISI 4340 steel's mechanical specifications.
(Source: author)

Propert | Tensil | Hardnes | Flexible | Ratio of | Intensit | Conductivit | The Particular
y e S of | Modulu | Poisson |y y of Heat Ratio temperatur
Force | Yield s(GPa) |s (kg/ms3) of Heat | e (J/kg.K)
(MPa) | (MPa) Growth
Value 920 670 205 0.28 7900 45.2 12.8¢— | 480
6

Supplying the drilling of the NF to the cutting zone was done using the MQL-turning with
nano-lubricants (MQL-TNL) approach. Cupric oxide (CuO) was treated with two slicing NF.
Because rice bran oil is a vegetable oil that has superior thermo-physical qualities to other
vegetable-based oils including a sunflower olive, canola and soy beans, it is considered as
environmentally beneficial and it was utilized as an organizing fluids. The oil's rice bran
thermo-physical characteristics are shown in Table 3. To achieve complete variation, tiny
particles were mixed with the base oil at 2% per volume under a stirrer with a magnet for 60
min. Finally, the produced solution was sterilized for three hours using an ultrasonic
sonicator. With a high-pressure nozzle that produced NF are applied over the splitting area.
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Table 3. The Rice bran oil's thermo-physical characteristics.

(Source: author)

Dampness | Turning | Intensity | Motion- Value of | Refractive
(%) Point (20°C) Based Saponification | Index
(°C) Viscosity
(mm2/s)
0.12 190 900 42.0 195 1.475

Enhancements in AISI 4340 Machining

In this section we integrate Red Deer algorithm, which is recognized for imitating the
behavior of deer herds, is utilized to optimize machining parameters, ensuring effective and
sustainable procedures. Through utilizing parallel computing capabilities, PRDO accelerates
the tuning process further. In addition, machining conditions are optimized by the AdaBoost
method that is recognized for its stability in classification tasks. These developments attempt
to reduce the negative effects on the environment and increase the effectiveness of AlSI
Grade 4340 machining processes using nano-lubricants.

2.3 Red Deer Algorithm (RDA)

The RDA stands out, obtaining inspiration from deer herds' collective behavior. This
technique, when applied to AISI Grade 4340 composite machining, dynamically refines
cutting parameters, assuring maximum effectiveness while reducing environmental effect.
RDA starts with a starting group of Red Deer (RD). Male RDs were selected from the
population as they were considered some of the best, with the remaining RD generally
referred to as hinds. We create harems after already roared and fought. A harem is a
collection of hinds. The mentioned male RD split all of the population's harems according to
their skill, elegance and strength. In Genetic Algorithm GA, the male RD's refinement and
strength are inversely related to his physical rating.

231

We create a value for a variable array that needs to be improved. Although this array is
known as a genetic material in GA communication system, RD is a term utilized to this. RD
therefore represents the opposite of the solution. My, 1 X My, Array represents a RD in
a My, —dimensional optimization issue. In order to define this array,

RedDeer = [Wl; Wz, W3' e WMvar] (1)

Creating foundational Red Deer.

Additionally, every Red Deer's functional value can be assessed in the manner described
below:

Value = e (RedDeer) = e (Wl,Wz,W3, ""WMvar) (2)

To start the optimization algorithm we generate the initial population of size My, . We

select the best Red Deers to M,,,41e and the rest of to Mying.

We create the original group of size My, to begin with the optimization method. We give
M, a1e the best RD and My,;,q the remaining ones.
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2.3.2 Manly roar RD

In this step, the male RD is shouting in an attempt to show off their grace. That indicates
whether or not male RD is superior to females. In actuality, we let any male RD to shift
places. Female RD is attracted to roaring males.

2.3.3 Choose y proportion of the top male Red Deer leaders

The differences between male RD are enormous. Of them, a few have achieved greater
success than the others.

The position of males in nature is actually different; some of them take control of harems.
We distinguish two categories of male red deer: There are both stags and male commanders,
hence the quantity of male commanders is connected with y, will be:

M. male. Com = round {y. N a1e} (3)

Here M. male. Com is the quantity of men grabbing the harems. We choose this male RD as
the greatest, while the rest are stags. The quantity of stags is calculated as follows:

M.stag = My,,e — M. male. Com 4)
Where, Male population stag count is M. stag.
2.3.4 Conflict involving deer and male commanders

We allowed random fighting between stags and leader males. Yet choose them following a
battle if the goal function outperforms the previous ones.

2.3.5 Build harems

Now, at this stage, we establish the harems. A herd of hinds under the control of a male
leader is referred to as a harem. The strength of the male leaders determines that many hinds
are in harems. To forming the harems, we determine the normalized worthy of a male
commander by dividing hinds among male commanders in a proportional manner by:

Up=uy, — m]_ax{u]-} %)

Where, u,is the normalized value and u,,is the value of the n'" male commander. Every
male commander's normalized power, with the normalized value of all male commanders is
defined by:

Um
Z]M:.male.C0m U]_

Oy = (6)

From a different angle, the part of hinds that a male commander should have is the
normalized power .After then, a harem's hind population will be:

M. harem,, = round {O,,. Mpinq} (7

Where, M.harem,, is the quantity of hinds of nth harem and My;,q is the amount of all
hinds. Allocate the hindquarters among the individual male commanders, we select at
random M. harem,, of the hinds and allow them to handle it. A man and those hinds will
form the n™ harem.
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2.3.6 Pair the male leader of the harem withoc percent of the females

In Genetic Algorithms (GA), we have a model of this feature similar to crossover. These
parents are the male leader and his harem's hinds are the latest responses to come from the
offspring.

The quantity of hinds in a harem that are pairing in their male’s leader in proportion to a will
be:

M. harem®2t* = round {«. M. harem,, } (8)

Here M. harem®23¢js the quantity of hindquarters of n" which are prepared to mating with
these individuals harem.

We select at random M. harem @t€of theM. harem,,.
2.3.7 Mate a man harem leader with % hinds in the other harem

We randomly select a harem and permit the guy to be the leader to connect with 20% of the
harem's hinds. To expand his domain, the male RD actually captures other harem. A single
male RD will mate with a specific number of hinds in a harem.

M. harem®2* = round {f. M. harem,, }(9)

Here M. haremMate is the quantity of hinds of nth harem that are prepared for mating with
one male Red Deer. We randomly choose M. harem®3teof the M. harem,, too.

2.3.8 Mate stag with the nearest hind

At this point, for each stag, mates with the nearest hind in the group. The male Red Deer
during the breeding period tends to follow the most hind out of them. This hind can be used
to one harem or be in its own. We let a stag to mate with the closest hind. This implies that,
in the worst scenario, each male RD has a chance to mate with as few hind as possible. To
find the nearest hind, we must first compute the distance among every stag and every hind.
We operate as a two-dimensional method. The separation among a male RD and his entire
hinds in J-spatial dimension is calculated as follows:

1
\2\2
G = (Ziel (stagi — hind]i) ) (10)
2.3.9 Selecting the upcoming generation

We decided the upcoming generation's males red deer as the most suitable solution and hinds
for the subsequent generations utilizing matches selection, spinning wheels choice, or every
adaptive procedure for fitness-based selection.

2.3.10 Convergence

This stopped condition might be an amount of iterations, the quality of the greatest solution
ever identified, or a time period.

Nanotechnology Perceptions Vol. 20 No.S3 (2024)



237 Savita et al. An Enhanced Prediction Model for....

2.4 Parallel red deer optimization (PRDO)

MPI library functions provide parallelization, as demonstrated in Figure 1, with SLAVE
CPUs collaborating with the MASTER CPU in Red Deer Optimization. RDO uses MPI for
CPU coordination and connectivity. The MASTER creates an initial group and assigns
portions to SLAVE CPUs to optimize. Customized calculations determine fitness for each
SLAVE. The MASTER produces fresh populations for repeated assessments after receiving
results. MPI coordinates communication, allowing Red Deer Optimization solves complex
optimization problems.

1
Updating particlesand 1 pgsessment

calculating velocity :

Slave 1

/ Slave 2

1
Master :
1

(\-L‘\ Slave 3

Slave 4

Fig.1.MPI library Function
(Source:https://www.sciencedirect.com/science/ar ticle/abs/pii/S0149197014001334)
2.5 Adaptive Boosting (AdaBoost)

Adaboost is a powerful ensemble learning algorithm, plays a crucial role in streamlining
machining procedures and advancing environmentally friendly methods for treating AISI
Grade 4340 steel using MQL techniques. Its ability to adapt and enhance predicted
performance.

The structure of AdaBoost can be summarized as follows. AdaBoost computed the average
weighted classification error per learner s utilizing the subsequent equation:

fg = M=1Cr(§) ](Zm * gs(wm)) (11)

Where, wy, is the prediction vector value for the observations m, z,, represents the actual
class label and g, represents the hypothesis (learner predictor). In step s, ] is the value of the
indicator variable and cr(j) is the measurement weight. AdaBoost instructs individuals
consecutively. AdaBoost calculates prediction utilizing the subsequent equations during the

conditioning stage:
e(w) = X3 X gs(w) (12)
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_ l 1-gg
o= 7log— (13)
Where o is the ensemble’s weak hypotheses weight, AdaBoost retraining can be thought of
as the minimizing of an exponential loss utilizing the equation below.

SN Xpexp(-mme i) (14)

Given that, z,e{—1,1} is the real class, x, are the normalized observed weights and
e(wp, )e(—o0, +00)is the projected classification.

2.6 ParallelRed deer optimized Adaboost (PRDO-AB)

AdaBoost and Parallel Red Deer Optimization (PRDO) are used to create a reliable
prediction model for MQL machining of AISI Grade 4340 that is ecologically friendly.
AdaBoost increases the predicted accuracy, whereas PRDO improves the optimization
process. Through ensuring effective resource utilization, minimizing lubrication needs and
optimizing machining parameters, this synergistic method seeks to minimize environmental
impact. When these algorithms are combined, an effective and ecologically friendly
prediction model for sustainable milling methods on AISI Grade 4340 is produced.
Algorithm 1 shows the pseudo code for PRDO-AB.

Algorithm 1: pseudocode for Parallel Red deer optimized adaboost

# Assuming a dataset X_train, y_train for training and X_test for testing

# Step 1: Apply Parallel Red Deer Optimization (PRDQO) for parameter optimization
optimized params = PRDO(X train, y_train, other_parameters)

# Step 2: Train a base model with the optimized parameters

base_model = train_base_model(X_train, y_train, optimized_params)

# Step 3: Apply AdaBoost to boost the base model

boosted_model = AdaBoost(base_model, X_train, y_train, other_parameters)

# Step 4: Make predictions on the test set

predictions = boosted_model.predict(X_test)

# Evaluate the model, e.g., using accuracy, precision, recall, etc.

evaluation_result = evaluate_model(predictions, y_test)

3. RESULT AND DISCUSSION

In this study, three procedure parameters with four levels were considered: Nourish (0.08,
0.12, 0.16 and 0.20 mm/rev), cutting speed (90, 110, 130, 150 m/min) and thickness of
cutting (0.2, 0.4, 0.6, 0.8). As the rate of cutting fluid flow (200 ml/h) and particle
concentration (0.2%) were kept continuous throughout every experiment. Rough milling is
done before the tests to eliminate the exterior, a component layer that might include
undesired substances such as oxide. An overview of the cutting circumstances is shown in
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Table 4.

Table 4 .Test conditions for cutting.

Source: author)

Cutting Tool High-Tech CNC Milling Device

manufacturing Precision Milling

process

raw material Titanium Alloy (Ti-6Al-4V)

tool mount High-Performance Carbide Insert
Holder

Instrument Coated Cermet (SNMG 120408)

composition.

Slicing Velocity
(m/min)

90, 110, 130, 150

Nourish 0.08, 0.12, 0.16, 0.20

(mm/rev)

Slicing depth | 0.2,0.4,0.6,0.8

(mm)

Slice Agent Coatings (CuO) + Renewably
Sourced Oil extracted from “rice
bran”.

Distribution MQL

approach

Rate of flow 200 ml/hr

distance of | 150 mm

Machining

% of nano- | 0.2%

material

This section describes an experiment using AISI 4340 alloy steel with dimensions of 650
mm in length and 50 mm in diameter. To minimize experimental error, the trial was
conducted three times and average responses were calculated. Table 5 illustrates the test
setup and the measured reactions.
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Table 5. Experimental setup and measurement responses.

(Source: author)

Ex | Cuttin | Nouris | Dept | Machinin | Surface Tool
p. g h h of | g Force | Unevenne | Degrad
No. | Veloci Cut | (N) ss a(pm) ation
ty (mm)
CuO CuO CuO
1 90 0.08 06 | 135 0.382 0.041
2 90 0.12 0.8 142 0.395 0.042
3 90 0.16 0.2 149 0.405 0.043
4 90 0.20 0.4 154 0.418 0.046
5 110 0.08 0.6 161 0.428 0.048
6 110 0.12 0.8 166 0.415 0.052
7 110 0.16 0.2 168 0.452 0.053
8 110 0.20 0.4 176 0.464 0.055
9 130 0.08 0.6 185 0.473 0.057
10 | 130 0.12 0.8 189 0.478 0.060

The cutting force metric specifies the speed that the work-piece is manipulated by the
milling tool. This crucial parameter affects removal of materials rates and tool wear, shaping
MQL effectiveness and sustainability. The surface roughness metric is an accurate measure
of the variations and irregularities on the AISI Grade 4340 composite's milled surfaces. This
metric is a critical instrument for assessing that MQL machining with nano-lubricants is
operating with its enhanced predictive model that calculates and maximizes surface
roughness. Tool wear metric refers to the measurement of wear and tear on the cutting tool
utilized in MQL machining operations. This metric predicts and evaluates tool cutting edge
degradation during ecologically friendly AISI Grade 4340 machining, especially with nano-
lubricants. Table 6 depicts the cutting replies based on various levels.

Table 6. Cutting replies based on various levels.

(Source: author)

Adjustable | Condition | Level | Machining | Surface Tool
parameter of cutting Force (N) Unevenness | Degradation
(pm) (mm)
Cutting CuO-NF 1 6.238322 0.01787 0.002944
speed 2 8.062258 | 0.017462 | 0.003948
3 8.693868 0.024515 0.00216
4 14.59166 0.051983 0.011434
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Feed rate CuO-NF 1 34.10279 0.071705 0.010664
2 35.75262 0.075525 0.012285
3 38.30905 0.080571 0.013938
4 40.4753 0.105351 0.019909
Cutting CuO-NF 1 31.58586 0.066695 0.010773
depth 2 37.22454 0.08074 0.012856
3 38.43935 0.080129 0.012447
4 41.89272 0.106525 0.020869

In this section, six statistical metrics, including the determination coefficient (R?), root mean
square error (RMSE), mean absolute error (MAE), were employed to assess the performance
of the proposed model.

The experimental results and data anticipated by the generated models cutting depth
variations. Feed and speed in the “MQL-TNL” procedure using CuO, NF are presented.
Figure 2 plots the results, demonstrating the high exactness of the PRDO-AB model. The
dispersed dots representing estimated data are entirely in the region of the line (Destination).
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Fig.2. Outcome of machining force, finishing quality and tool integrity.

(Source: author)

CuO NF in the MQL-TNL cutting process, cutting force has an outcome of R? value of
0.997, 0.995 and 0.970 for Ad+PRD, RD and Adaboost, in that order. Regarding surface
roughness, the corresponding outcome of R? values for Ad+PRD, RD and Adaboost are
0.994, 0.988 and 0.959, respectively. The outcome of R? values for the tool wear is 0.988,
0.977 and 0.955 for Adaboost, RD and Ad+PRD, respectively. In comparison to RD and
Adaboost, the anticipated and measured outcomes of Ad+PRD exhibit a fit correlation, as
indicated by the higher value of R2 Figure 3 and Table 7 depict the R? of the proposed
method.
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Table 7. Outcome of R?
RZ
Measurements Adaboost RD AB+  PRD
(AB) [Proposed]
Cutting Force 0.970 0.995 0.997
Surface Roughness | 0.959 0.988 0.994
Tool Wear 0.955 0.977 0.988

CuO- NF is used in the MQL-TNL cutting process. The corresponding RMSE values of
cutting force are 11.031, 12.262 and 30.955. For Ad+PRD, RD and Adaboost, the
corresponding RMSE values for surface roughness are 0.038, 0.045 and 0.104. For
Ad+PRD, RD and Adaboost, the corresponding RMSE values for tool wear are 0.002, 0.008
and 0.013. The cutting force RMSE value for the hybrid Ad+PRD is less than the Adaboost
and RD. Furthermore, RMSE values of Ad+PRD are below than that of RD and Adaboost.
The minimalistic values of the RMSE validate the precision of the forecast of the hybrid
Ad+PRD algorithm over RD and Adaboost. Figure 4 and Table 8 demonstrate the outcome
of RMSE.
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Table 8. Outcome of RMSE
(Source: author)
RMSE
Measurements | Adaboost | RD AB+ PRD
(AB) [Proposed]
Cutting Force 30.955 12.262 | 11.031
Surface 0.104 0.045 0.038
Roughness
Tool Wear 0.013 0.008 0.002

Figure 5 and Table 9 depict the proposed method’s MAE. The MAE cutting force magnitude
equals to 10.650, 11.226 and 28.461 for Ad+PRD, RD and Adaboost, respectively, The
“surface roughness”, principles of MAE are 0.022, 0.045 and 0.094 for Ad+PRD, RD and
Adaboost, sequentially, For the “tool wear”, the principles of MAE are 0.002, 0.005 and
0.003 for Ad+PRD, RD and Adaboost. Furthermore MAE values of Ad+PRD are below than
that of RD and Adaboost. Minimalistic values of the MAE validate the precision of the
forecast of hybrid Ad+PRD method over RD and Adaboost.
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Table 9.MAE
(Source: author)
MAE
Measurements | Adaboost | RD AB+ PRD
(AB) [Proposed]
Cutting Force 28.461 11.226 | 10.65
Surface 0.094 0.045 0.022
Roughness
Tool Wear 0.003 0.005 0.002

4. CONCLUSION

The nano-MQL technique replaced traditional cooling through flooding during the turning
process of AISI 4340 alloy, employing eco-friendly rice bran oil as a slicing agent. The oil's
thermo-physical properties were enhanced by introducing CuO nano-particles. A novel
Parallel Red Deer optimized Adaoost (PRDO-AB) approach was anticipating and forecasting
process outcomes. Key findings indicate that the CuO- NF yielded a smooth surface,
preserving the tool due to enhanced thermo-physical properties. The nano-fluid's higher
thermal conductivity improved cooling, lower viscosity enhanced flow, reduced contact
angle and surface tension contributed to favorable characteristics. CuO NF showed increased
“surface roughness and tool wear with higher cutting speed”, moderate increase with feed
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and decreased cutting depth. Optimal parameters recommended for minimizing cutting force,
surface roughness and tool wear, while maintaining a high material removal rate, were “high
cutting depth, moderate feed rate and high cutting speed”. A high R? of 0.998 was acquired
by employing the created PRDO-AB model that is greater than that of AB (0.955) and RD
(0.977) for the predicted findings. The prediction model's applicability can be limited to
specific machining conditions and its generalizability to diverse scenarios and materials
might be a challenge. In future, research could focus on optimizing nano-lubricant
formulations for different materials and machining conditions. This could involve exploring
various nano-particle concentrations, sizes and compositions to maximize lubrication
efficiency.
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