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The milling of AISI 4340 with nano-lubricants and Minimum Quantity Lubrication (MQL) offers 

a viable path toward green production. Because of the complex interactions between several 

variables, including the rate of feeding, cutting rate and quantity of the nano-lubricant, optimizing 

the procedure is difficult. Current forecasting techniques frequently lack the accuracy needed for 

efficient optimization and traditional optimization methods can find it difficult to handle the 

complicated parameter space. This study proposes an innovative parallel red deer optimized 

AdaBoost (PRDO-AB) approach for optimum milling of AISI 4340 with nano-lubricants and it 

resolves the requirement for an improved prediction framework. The addition of PRDO, which is 

used to determine the ideal AB's settings, improves the preciseness of the AB approach. In this 

study, a greener Nano-Fluid (NF) with improved thermo-physical properties is produced by 

combining CuO with rice bran vegetable oil. Comprehensive experimental information is used to 

confirm the suggested model and the outcomes show notable gains in tool life, surface polish and 

machining effectiveness over standard techniques. In addition, the environmental impact 

evaluation shows a significant decrease in waste production and resource usage.  

   

Keywords: MQL machining, nano lubricants green production and parallel red deer optimized 

ada boost (PRDO-AB).  
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1. Introduction 

The industrial sector is experiencing an important change at environmentally conscious and 

sustainable practices due to the fast advancement of these innovations. When contrasted with 

conventional machining techniques, MQL cutting has demonstrated great promise in terms 

of significant savings in ecological effects and operating costs [1]. The milling of substances 

such as AISI Grade 4340, strong, low-alloying steel that is utilized in aircraft and automotive 

industries, underscores the importance of this change. AISI Grade 4340 is a highly favored 

option for vital components exposed to stressful conditions because of its well-known 

durability [2]. But the traditional machining methods used for these kinds of materials 

sometimes need large coolant use that raises concerns about the environment and drives up 

expenses. Incorporating MQL cutting, on the other hand, is an unusual strategy to deal with 

these problems and adopt a more environmentally conscious production ethic. Because of the 

small size of their particles and great lubrication qualities, nano-lubricants work better than 

their traditional substitutes [3]. These small lubricants not just assist with extending tool life 

but also decrease wastage as well as use of resources, yet additionally reduce wear and 

friction. MQL processing decreases the negative impacts of liquid manufacturing, 

destruction and the total ecological imprint of machining procedures by lowering the amount 

of liquid used [4, 5]. This decrease in consumption of fluids is in line with the worldwide 

movement to environmentally friendly production practices as it minimizes the discharge of 

hazardous compounds into the environment while conserving valuable assets. Additional 

benefits of using MQL for cutting in AISI Grade 4340 milling include increased dimensional 

accuracy and exterior polish [6, 7]. A more focused and regulated lubrication process is 

ensured by the accurate usage of nano-lubricants in small amounts, leading to better product 

qualities. An additional instance of the possibility for higher energy efficiency is the use of 

nano-lubricants in MQL machining for AISI Grade 4340. The entire electrical usage of the 

machining method is decreased with less wear and friction [8].  

Through reduced energy expenditures and increased total energy efficiency of machining 

processes, this additionally conforms to environmental sustainability goals but also has 

financial implications [9].  

The study [10] proposed that Grey Wolf Optimization (GWO) method were used to improve 

the machining parameters of the AISI 4340 alloy to improve cutting force, roughness of the 

surface and wear of the tool. In accordance with published results, turning experiments were 

carried out using MQL-assisted CuO and Al2O3 NF. It implies that the GWO technique was 

a feasible alternative for optimizing the AISI 4340 alloy's reactions throughout machining 

processes. The paper [11] investigated the use of MQL in a variety of machining techniques, 

cutting, rotating, milling and drilling, with an emphasis on difficult-to-machine metals. 

Optimization of aerosol-supply pathways, tool geometry, tip substances and tool body design 

was critical to improve the efficacy of the MQL system. The research [12] examined the 

effectiveness of NF when they were sprayed into the tool–work connection utilizing the 

MQL misting system after that is combined in various ratios with coconut oil. The 

combination of coconut oil and Nano-Al2O3 revealed enhanced efficiency, leading to an 

improved surface. 

The paper [13] assessed to discover further about the physicochemical characteristics and 
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atomizing efficiency of NF to understand their function in processing different materials. 

Cutting fluids that utilized vegetable oil as well as water were shown to be more effective 

than those relying on mineral-based oils for dealing with environmental and health problems. 

These changes guaranteed strong ecological sustainability in addition to high-performance 

machining. The study [14] proposed an optimization strategy based on Grey Relational 

Analysis (GRA) that predicted the values of the Grey Relational Grade (GRG) and optimized 

the parameters used for machining by applying predictive algorithms such as RSM and 

support vector machine (SVM). The results showed that when it came to cutting parameter 

prediction, Artificial Neural Networks (ANN) and SVM models outperformed the response 

surface method (RSM) model in terms of accuracy in forecasting. The article [15] discussed 

the investigation of a Computer Numerical Control (CNC) lathe's manufacturing of 

reinforced steel to maximize the parameters for cutting while minimizing surface roughness 

and energy use. In the optimization process, input parameters, such as the rate of feed, tool 

type and cutting speed, were considered. Given that the percentage error in allowable 

bounds, the results of the verification tests indicated effective optimization. 

The research [16] proposed a technique that used regression analysis (RA) and ANN to 

forecast the surface roughness during severe machining of AISI 52100 steel. Through an 

examination of correlation coefficients, the results indicated a strong correlation, with an 

ANN model surpassing the RA model in predicting surface roughness. The paper [17] 

discussed heat, pressure and roughness of surfaces as instances of numerous reactions. That 

requires the adoption of multiple factors optimization approaches and the MQL method was 

investigated as an effective means of maximizing the fluid for cutting usage to improve 

milling efficiency. The response settings produced excellent outcomes, based on the 

experimental information. The study [18] used an Metal-Organic Chemical Vapor 

Deposition (MTCVD) multilayer-coated carbide insertion (TiN/TiCN/Al2O3) to estimate 

wear on the flanks and roughness of the surface during dry hard machining of AISI 52100 

steel (55 ± 1 HRC). Following Pearson correlation coefficient accuracy testing, Multiple 

Linear Regression (MLR) and Multiple Quantile Regression (MQR) prediction models were 

developed using parameters from machining and signals from vibrations. The article [19] 

utilized statistical models to examine how trimming specifications affect surface 

irregularities and the average square root of piece motion in metallic drilling. A mixed-level 

design of tests included slicing rates, feed velocity and radius of the nose, affecting both 

surface roughness and work-piece vibrations speed root mean square. The study [20] 

employed Taguchi design, ANOVA and modeling to examine how machining factors affect 

the surface roughness and cutting force during dry turning of martensitic metal. In 

comparison to multiple regressions, ANN prediction results were found to be superior. 

This paper's aim is to improve prediction model for environmentally friendly MQL 

machining of AISI Grade 4340 composite using nano-lubricants, employing a novel 

optimizer technique to enhance machining efficiency and sustainability. 

The remaining segments of the study were classified into the following categories: The 

methodology is discussed in Section 2. Section 3 includes results. Section 4 ends with 

conclusion. 
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2. METHODOLOGY 

In this study, we present Parallel Red Deer optimized AdaBoost (PRD-AB), a novel 

technique for eco-friendly MQL machining integrating nano-lubricants for enhanced 

sustainability and performance. 

2.1Design for MQL machining of AISI  4340 

The experiments were carried out on AISI 4340 Steel blends, measuring 650 mm in length 

and 50 mm in diameter, was used for the experimentation. 45 ± 2 HRC is the alloy's 

hardness. This alloy, that is utilized in the device tool, motoring and air force sectors, is 

categorized as high-strength and challenging to process. The AISI 4340 steel's chemical 

constitution and biomechanical and thermo-physical characteristics are shown in Tables 1 

and 2.  

Table 1. AISI 4340 steel's chemical composition. 

(Source: author) 

Element Nickel 

(%) 

Carbon 

(%) 

Chromium 

(%) 

Molybdenum 

(%) 

Manganese 

(%) 

Silicon 

(%) 

Copper 

(%) 

Iron(%) 

Weight 1.62 0.42 1.02 0.295 0.81 0.38 0.18 Bal. 

Table 2. AISI 4340 steel's mechanical specifications. 

(Source: author) 

Propert

y 

Tensil

e 

Force 

(MPa) 

Hardnes

s of 

Yield 

(MPa) 

Flexible 

Modulu

s (GPa) 

Ratio of 

Poisson

s 

Intensit

y 

(kg/m³) 

Conductivit

y of Heat  

The 

Ratio 

of Heat 

Growth 

Particular 

temperatur

e (J/kg.K) 

Value 920 670 205 0.28 7900 45.2 12.8e−

6 

480 

Supplying the drilling of the NF to the cutting zone was done using the MQL-turning with 

nano-lubricants (MQL-TNL) approach. Cupric oxide (CuO) was treated with two slicing NF. 

Because rice bran oil is a vegetable oil that has superior thermo-physical qualities to other 

vegetable-based oils including a sunflower olive, canola and soy beans, it is considered as 

environmentally beneficial and it was utilized as an organizing fluids. The oil's rice bran 

thermo-physical characteristics are shown in Table 3. To achieve complete variation, tiny 

particles were mixed with the base oil at 2% per volume under a stirrer with a magnet for 60 

min. Finally, the produced solution was sterilized for three hours using an ultrasonic 

sonicator. With a high-pressure nozzle that produced NF are applied over the splitting area. 



                                                                     An Enhanced Prediction Model for…. Savita et al. 234  
 

Nanotechnology Perceptions Vol. 20 No.S3 (2024) 

Table 3. The Rice bran oil's thermo-physical characteristics. 

(Source: author) 

Dampness 

(%) 

Turning 

Point 

(⁰C) 

Intensity 

(20⁰C) 

Motion-

Based 

Viscosity 

(mm²/s) 

Value of 

Saponification 

Refractive 

Index 

0.12 190 900 42.0 195 1.475 

2.2 Enhancements in AISI 4340 Machining 

In this section we integrate Red Deer algorithm, which is recognized for imitating the 

behavior of deer herds, is utilized to optimize machining parameters, ensuring effective and 

sustainable procedures. Through utilizing parallel computing capabilities, PRDO accelerates 

the tuning process further. In addition, machining conditions are optimized by the AdaBoost 

method that is recognized for its stability in classification tasks. These developments attempt 

to reduce the negative effects on the environment and increase the effectiveness of AISI 

Grade 4340 machining processes using nano-lubricants. 

2.3 Red Deer Algorithm (RDA) 

The RDA stands out, obtaining inspiration from deer herds' collective behavior. This 

technique, when applied to AISI Grade 4340 composite machining, dynamically refines 

cutting parameters, assuring maximum effectiveness while reducing environmental effect. 

RDA starts with a starting group of Red Deer (RD). Male RDs were selected from the 

population as they were considered some of the best, with the remaining RD generally 

referred to as hinds. We create harems after already roared and fought. A harem is a 

collection of hinds. The mentioned male RD split all of the population's harems according to 

their skill, elegance and strength. In Genetic Algorithm GA, the male RD's refinement and 

strength are inversely related to his physical rating.  

2.3.1 Creating foundational Red Deer. 

We create a value for a variable array that needs to be improved. Although this array is 

known as a genetic material in GA communication system, RD is a term utilized to this. RD 

therefore represents the opposite of the solution. Mvar ,     1 × Mvar  Array represents a RD in 

a Mvar–dimensional optimization issue. In order to define this array, 

RedDeer = [W1, W2, W3, … , WMvar
]  (1) 

Additionally, every Red Deer's functional value can be assessed in the manner described 

below: 

Value = e (RedDeer) = e (W1, W2, W3, … , WMvar
)      (2) 

To start the optimization algorithm we generate the initial population of size  Mpop . We 

select the best Red Deers to Mmale and the rest of to Mhind. 

We create the original group of size Mpopto begin with the optimization method. We give 

Mmale the best RD and Mhind  the remaining ones. 
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2.3.2 Manly roar RD 

In this step, the male RD is shouting in an attempt to show off their grace. That indicates 

whether or not male RD is superior to females. In actuality, we let any male RD to shift 

places. Female RD is attracted to roaring males. 

2.3.3 Choose γ proportion of the top male Red Deer leaders 

The differences between male RD are enormous. Of them, a few have achieved greater 

success than the others.  

The position of males in nature is actually different; some of them take control of harems. 

We distinguish two categories of male red deer: There are both stags and male commanders, 

hence the quantity of male commanders is connected with γ, will be: 

M. male. Com = round {γ. Nmale}  (3) 

Here M. male. Com is the quantity of men grabbing the harems. We choose this male RD as 

the greatest, while the rest are stags. The quantity of stags is calculated as follows: 

M. stag = Mmale − M. male. Com  (4)       

Where, Male population stag count is M. stag. 

2.3.4 Conflict involving deer and male commanders 

We allowed random fighting between stags and leader males. Yet choose them following a 

battle if the goal function outperforms the previous ones. 

2.3.5 Build harems 

Now, at this stage, we establish the harems. A herd of hinds under the control of a male 

leader is referred to as a harem. The strength of the male leaders determines that many hinds 

are in harems. To forming the harems, we determine the normalized worthy of a male 

commander by dividing hinds among male commanders in a proportional manner by: 

Um = um − max
j

{uj}    (5) 

 Where, umis the normalized value and umis the value of the nth male commander. Every 

male commander's normalized power, with the normalized value of all male commanders is 

defined by: 

Om = |
Um

∑ Uj
M.male.Com
j=1

|    (6) 

From a different angle, the part of hinds that a male commander should have is the 

normalized power .After then, a harem's hind population will be: 

M. haremm = round {Om. Mhind}  (7) 

Where, M. haremm is the quantity of hinds of nth harem and Mhind is the amount of all 

hinds. Allocate the hindquarters among the individual male commanders, we select at 

random M. haremm of the hinds and allow them to handle it. A man and those hinds will 

form the nth harem. 
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2.3.6 Pair the male leader of the harem with∝ percent of the females 

In Genetic Algorithms (GA), we have a model of this feature similar to crossover. These 

parents are the male leader and his harem's hinds are the latest responses to come from the 

offspring. 

The quantity of hinds in a harem that are pairing in their male’s leader in proportion to 𝖺 will 

be: 

M. haremm
mate = round {∝. M. haremm} (8) 

Here M. haremm
mateis the quantity of hindquarters of nth which are prepared to mating with 

these individuals harem. 

We select at random M. harem m
  mateof theM. haremn. 

2.3.7 Mate a man harem leader with % hinds in the other harem 

We randomly select a harem and permit the guy to be the leader to connect with 20% of the 

harem's hinds. To expand his domain, the male RD actually captures other harem. A single 

male RD will mate with a specific number of hinds in a harem. 

M. haremm
mate = round {β. M. haremm} (9) 

Here M. haremm
mate is the quantity of hinds of nth harem that are prepared for mating with 

one male Red Deer. We randomly choose M. haremm
mateof the M. haremn too. 

2.3.8 Mate stag with the nearest hind 

At this point, for each stag, mates with the nearest hind in the group. The male Red Deer 

during the breeding period tends to follow the most hind out of them. This hind can be used 

to one harem or be in its own. We let a stag to mate with the closest hind. This implies that, 

in the worst scenario, each male RD has a chance to mate with as few hind as possible. To 

find the nearest hind, we must first compute the distance among every stag and every hind. 

We operate as a two-dimensional method. The separation among a male RD and his entire 

hinds in J-spatial dimension is calculated as follows: 

cj = (∑ (stagi − hindi
j
)

2

i∈I )

1

2

   (10) 

2.3.9 Selecting the upcoming generation 

We decided the upcoming generation's males red deer as the most suitable solution and hinds 

for the subsequent generations utilizing matches selection, spinning wheels choice, or every 

adaptive procedure for fitness-based selection. 

2.3.10 Convergence 

This stopped condition might be an amount of iterations, the quality of the greatest solution 

ever identified, or a time period. 
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2.4 Parallel red deer optimization (PRDO) 

MPI library functions provide parallelization, as demonstrated in Figure 1, with SLAVE 

CPUs collaborating with the MASTER CPU in Red Deer Optimization. RDO uses MPI for 

CPU coordination and connectivity. The MASTER creates an initial group and assigns 

portions to SLAVE CPUs to optimize. Customized calculations determine fitness for each 

SLAVE. The MASTER produces fresh populations for repeated assessments after receiving 

results. MPI coordinates communication, allowing Red Deer Optimization solves complex 

optimization problems. 

 

Fig.1.MPI library Function 

(Source:https://www.sciencedirect.com/science/ar ticle/abs/pii/S0149197014001334) 

2.5 Adaptive Boosting (AdaBoost) 

Adaboost is a powerful ensemble learning algorithm, plays a crucial role in streamlining 

machining procedures and advancing environmentally friendly methods for treating AISI 

Grade 4340 steel using MQL techniques. Its ability to adapt and enhance predicted 

performance. 

The structure of AdaBoost can be summarized as follows. AdaBoost computed the average 

weighted classification error per learner s utilizing the subsequent equation: 

fs = ∑ cm
(s)

 J(zm ≠ gs(wm))M
m=1   (11) 

Where, wm is the prediction vector value for the observations m,   zm represents the actual 

class label and gs represents the hypothesis (learner predictor). In step s,  J is the value of the 

indicator variable and cm
(s)

 is the measurement weight. AdaBoost instructs individuals 

consecutively. AdaBoost calculates prediction utilizing the subsequent equations during the 

conditioning stage: 

e(w) = ∑ ∝s gs(w)S
s=1          (12) 
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∝s=
1

2
log

1−εs

εs
          (13) 

Where ∝s is the ensemble's weak hypotheses weight, AdaBoost retraining can be thought of 

as the minimizing of an exponential loss utilizing the equation below. 

∑ xmexp(−zme(wm))M
m=1                                 (14) 

Given that, zmϵ{−1,1} is the real class, xm are the normalized observed weights and 

e(wm)ϵ(−∞, +∞)is the projected classification. 

2.6 ParallelRed deer optimized Adaboost (PRDO-AB) 

AdaBoost and Parallel Red Deer Optimization (PRDO) are used to create a reliable 

prediction model for MQL machining of AISI Grade 4340 that is ecologically friendly. 

AdaBoost increases the predicted accuracy, whereas PRDO improves the optimization 

process. Through ensuring effective resource utilization, minimizing lubrication needs and 

optimizing machining parameters, this synergistic method seeks to minimize environmental 

impact. When these algorithms are combined, an effective and ecologically friendly 

prediction model for sustainable milling methods on AISI Grade 4340 is produced. 

Algorithm 1 shows the pseudo code for PRDO-AB. 

Algorithm 1: pseudocode for Parallel Red deer optimized adaboost 

# Assuming a dataset X_train, y_train for training and X_test for testing 

# Step 1: Apply Parallel Red Deer Optimization (PRDO) for parameter optimization 

optimized_params = PRDO(X_train, y_train, other_parameters) 

# Step 2: Train a base model with the optimized parameters 

base_model = train_base_model(X_train, y_train, optimized_params) 

# Step 3: Apply AdaBoost to boost the base model 

boosted_model = AdaBoost(base_model, X_train, y_train, other_parameters) 

# Step 4: Make predictions on the test set 

predictions = boosted_model.predict(X_test) 

# Evaluate the model, e.g., using accuracy, precision, recall, etc. 

evaluation_result = evaluate_model(predictions, y_test) 

 

3. RESULT AND DISCUSSION 

In this study, three procedure parameters with four levels were considered: Nourish (0.08, 

0.12, 0.16 and 0.20 mm/rev), cutting speed (90, 110, 130, 150 m/min) and thickness of 

cutting (0.2, 0.4, 0.6, 0.8). As the rate of cutting fluid flow (200 ml/h) and particle 

concentration (0.2%) were kept continuous throughout every experiment. Rough milling is 

done before the tests to eliminate the exterior, a component layer that might include 

undesired substances such as oxide. An overview of the cutting circumstances is shown in 
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Table 4.  

Table 4 .Test conditions for cutting. 

(Source: author) 

Cutting Tool High-Tech CNC Milling Device 

manufacturing 

process 

Precision Milling 

raw material Titanium Alloy (Ti-6Al-4V) 

tool mount High-Performance Carbide Insert 

Holder 

Instrument 

composition. 

Coated Cermet (SNMG 120408) 

Slicing Velocity 

(m/min) 

90, 110, 130, 150 

Nourish 

(mm/rev) 

0.08, 0.12, 0.16, 0.20 

Slicing depth 

(mm) 

0.2, 0.4, 0.6, 0.8 

Slice Agent Coatings (CuO) + Renewably 

Sourced Oil extracted from “rice 

bran”. 

Distribution 

approach 

MQL 

Rate of flow 200 ml/hr 

distance of 

Machining 

150 mm 

% of nano-

material 

0.2% 

This section describes an experiment using AISI 4340 alloy steel with dimensions of 650 

mm in length and 50 mm in diameter. To minimize experimental error, the trial was 

conducted three times and average responses were calculated. Table 5 illustrates the test 

setup and the measured reactions. 
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Table 5. Experimental setup and measurement responses. 

(Source: author) 

Ex

p. 

No. 

Cuttin

g 

Veloci

ty  

Nouris

h  

Dept

h of  

Cut 

Machinin

g Force 

(N) 

Surface 

Unevenne

ss a(μm) 

Tool 

Degrad

ation 

(mm) 

CuO CuO CuO 

1 90 0.08 0.6 135 0.382 0.041 

2 90 0.12 0.8 142 0.395 0.042 

3 90 0.16 0.2 149 0.405 0.043 

4 90 0.20 0.4 154 0.418 0.046 

5 110 0.08 0.6 161 0.428 0.048 

6 110 0.12 0.8 166 0.415 0.052 

7 110 0.16 0.2 168 0.452 0.053 

8 110 0.20 0.4 176 0.464 0.055 

9 130 0.08 0.6 185 0.473 0.057 

10 130 0.12 0.8 189 0.478 0.060 

The cutting force metric specifies the speed that the work-piece is manipulated by the 

milling tool. This crucial parameter affects removal of materials rates and tool wear, shaping 

MQL effectiveness and sustainability. The surface roughness metric is an accurate measure 

of the variations and irregularities on the AISI Grade 4340 composite's milled surfaces. This 

metric is a critical instrument for assessing that MQL machining with nano-lubricants is 

operating with its enhanced predictive model that calculates and maximizes surface 

roughness. Tool wear metric refers to the measurement of wear and tear on the cutting tool 

utilized in MQL machining operations. This metric predicts and evaluates tool cutting edge 

degradation during ecologically friendly AISI Grade 4340 machining, especially with nano-

lubricants. Table 6 depicts the cutting replies based on various levels. 

Table 6. Cutting replies based on various levels. 

(Source: author) 

Adjustable 

parameter 

Condition 

of cutting 

Level Machining 

Force (N) 

Surface 

Unevenness 

(μm) 

Tool 

Degradation 

(mm) 

Cutting 

speed 

CuO-NF 1 6.238322 0.01787 0.002944 

2 8.062258    0.017462    0.003948 

3 8.693868    0.024515 0.00216 

4 14.59166 0.051983   0.011434 
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Feed rate CuO-NF 1 34.10279   0.071705 0.010664 

2 35.75262 0.075525   0.012285 

3 38.30905 0.080571   0.013938 

4 40.4753 0.105351 0.019909 

Cutting 

depth 

CuO-NF 1 31.58586 0.066695 0.010773 

2 37.22454   0.08074 0.012856 

3 38.43935 0.080129 0.012447 

4 41.89272   0.106525 0.020869 

In this section, six statistical metrics, including the determination coefficient (R2), root mean 

square error (RMSE), mean absolute error (MAE), were employed to assess the performance 

of the proposed model. 

The experimental results and data anticipated by the generated models cutting depth 

variations. Feed and speed in the “MQL-TNL” procedure using CuO, NF are presented. 

Figure 2 plots the results, demonstrating the high exactness of the PRDO-AB model. The 

dispersed dots representing estimated data are entirely in the region of the line (Destination). 

 

Fig.2. Outcome of machining force, finishing quality and tool integrity. 

(Source: author) 

CuO NF in the MQL-TNL cutting process, cutting force has an outcome of R2 value of 

0.997, 0.995 and 0.970 for Ad+PRD, RD and Adaboost, in that order. Regarding surface 

roughness, the corresponding outcome of R2 values for Ad+PRD, RD and Adaboost are 

0.994, 0.988 and 0.959, respectively. The outcome of R2 values for the tool wear is 0.988, 

0.977 and 0.955 for Adaboost, RD and Ad+PRD, respectively. In comparison to RD and 

Adaboost, the anticipated and measured outcomes of Ad+PRD exhibit a fit correlation, as 

indicated by the higher value of R2. Figure 3 and Table 7 depict the R2 of the proposed 

method. 
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Fig.3.Outcome of R2 

(Source: author) 

Table 7. Outcome of R2 

R2 

Measurements Adaboost 

(AB) 

RD  AB+ PRD 

[Proposed] 

Cutting Force  0.970 0.995 0.997 

Surface Roughness 0.959 0.988 0.994 

Tool Wear 0.955 0.977 0.988 

CuO- NF is used in the MQL-TNL cutting process. The corresponding RMSE values of 

cutting force are 11.031, 12.262 and 30.955. For Ad+PRD, RD and Adaboost, the 

corresponding RMSE values for surface roughness are 0.038, 0.045 and 0.104. For 

Ad+PRD, RD and Adaboost, the corresponding RMSE values for tool wear are 0.002, 0.008 

and 0.013. The cutting force RMSE value for the hybrid Ad+PRD is less than the Adaboost 

and RD. Furthermore, RMSE values of Ad+PRD are below than that of RD and Adaboost. 

The minimalistic values of the RMSE validate the precision of the forecast of the hybrid 

Ad+PRD algorithm over RD and Adaboost. Figure 4 and Table 8 demonstrate the outcome 

of RMSE. 
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Fig.4. Outcome of RMSE 

(Source: author) 

Table 8. Outcome of RMSE 

(Source: author) 

RMSE 

Measurements Adaboost 

(AB) 

RD AB+ PRD 

[Proposed] 

Cutting Force 30.955 12.262 11.031 

Surface 

Roughness 

0.104 0.045 0.038 

Tool Wear 0.013 0.008 0.002 

Figure 5 and Table 9 depict the proposed method’s MAE. The MAE cutting force magnitude 

equals to 10.650, 11.226 and 28.461 for Ad+PRD, RD and Adaboost, respectively, The 

“surface roughness”, principles of MAE are 0.022, 0.045 and 0.094 for Ad+PRD, RD and 

Adaboost, sequentially, For the “tool wear”, the principles of MAE are 0.002, 0.005 and 

0.003 for Ad+PRD, RD and Adaboost. Furthermore MAE values of Ad+PRD are below than 

that of RD and Adaboost. Minimalistic values of the MAE validate the precision of the 

forecast of hybrid Ad+PRD method over RD and Adaboost. 
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Fig.5.MAE 

(Source: author) 

Table 9.MAE 

(Source: author) 

MAE 

Measurements Adaboost 

(AB) 

RD AB+ PRD 

[Proposed] 

Cutting Force 28.461 11.226 10.65 

Surface 

Roughness 

0.094 0.045 0.022 

Tool Wear 0.003 0.005 0.002 

 

4. CONCLUSION 

The nano-MQL technique replaced traditional cooling through flooding during the turning 

process of AISI 4340 alloy, employing eco-friendly rice bran oil as a slicing agent. The oil's 

thermo-physical properties were enhanced by introducing CuO nano-particles. A novel 

Parallel Red Deer optimized Adaoost (PRDO-AB) approach was anticipating and forecasting 

process outcomes. Key findings indicate that the CuO- NF yielded a smooth surface, 

preserving the tool due to enhanced thermo-physical properties. The nano-fluid's higher 

thermal conductivity improved cooling, lower viscosity enhanced flow, reduced contact 

angle and surface tension contributed to favorable characteristics. CuO NF showed increased 

“surface roughness and tool wear with higher cutting speed”, moderate increase with feed 
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and decreased cutting depth. Optimal parameters recommended for minimizing cutting force, 

surface roughness and tool wear, while maintaining a high material removal rate, were “high 

cutting depth, moderate feed rate and high cutting speed”. A high R2 of 0.998 was acquired 

by employing the created PRDO-AB model that is greater than that of AB (0.955) and RD 

(0.977) for the predicted findings. The prediction model's applicability can be limited to 

specific machining conditions and its generalizability to diverse scenarios and materials 

might be a challenge. In future, research could focus on optimizing nano-lubricant 

formulations for different materials and machining conditions. This could involve exploring 

various nano-particle concentrations, sizes and compositions to maximize lubrication 

efficiency. 
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